Título
[en] FORECASTING IN HIGH-DIMENSION: INFLATION AND OTHER ECONOMIC VARIABLES
Título
[pt] PREVISÃO EM ALTA DIMENSÃO: INFLAÇÃO E OUTRAS VARIÁVEIS ECONÔMICAS
Autor
[pt] GABRIEL FILIPE RODRIGUES VASCONCELOS
Vocabulário
[pt] PREVISAO
Vocabulário
[pt] ECONOMETRIA EM ALTA DIMENSAO
Vocabulário
[pt] LASSO
Vocabulário
[pt] BIG DATA
Vocabulário
[pt] MODELO DE FATORES
Vocabulário
[en] FORECASTING
Vocabulário
[en] HIGH-DIMENSION ECONOMETRICS
Vocabulário
[en] LASSO
Vocabulário
[en] BIG DATA
Vocabulário
[en] FACTOR MODELS
Resumo
[pt] Esta tese é composta de quatro artigos e um pacote de R. Todos os artigos têm como foco previsão de variáveis econômicas em alta dimensão. O primeiro artigo mostra que modelos LASSO são muito precisos para prever a inflação brasileira em horizontes curtos de previsão. O segundo artigo utiliza vários métodos de Machine Learning para prever um grupo de variáveis macroeconomicas americanas. Os resultados mostram que uma adaptação no LASSO melhora as previsões com um alto custo computacional. O terceiro artigo também trata da previsão da inflação brasileira, mas em tempo real. Os principais resultados mostram que uma combinação de modelos de Machine Learning é mais precisa do que a previsão do especialista (FOCUS). Finalmente, o último artigo trata da previsão da inflação americana utilizando um grande conjunto de modelos. O modelo vencedor é o Random Forest, que levanta a questão da não-linearidade na inflação americana. Os resultados mostram que tanto a não-linearidade quanto a seleção de variáveis são importantes para os bons resultados do Random Forest.
Resumo
[en] This thesis is made of four articles and an R package. The articles are all focused on forecasting economic variables on high-dimension. The first article shows that LASSO models are very accurate to forecast the Brazilian inflation in small horizons. The second article uses several Machine Learning models to forecast a set o US macroeconomic variables. The results show that a small adaptation in the LASSO improves the forecasts but with high computational costs. The third article is also on forecasting the Brazilian inflation, but in real-time. The main results show that a combination of Machine Learning models is more accurate than the FOCUS specialist forecasts. Finally, the last article is about forecasting the US inflation using a very large set of models. The winning model is the Random Forest, which opens the discussion of nonlinearity in the US inflation. The results show that both nonlinearity and variable selection are important features for the
Random Forest performance.
Orientador(es)
ALVARO DE LIMA VEIGA FILHO
Coorientador(es)
MARCELO CUNHA MEDEIROS
Banca
ALVARO DE LIMA VEIGA FILHO
Banca
CRISTIANO AUGUSTO COELHO FERNANDES
Banca
EDUARDO FONSECA MENDES
Banca
MARCELO CUNHA MEDEIROS
Banca
MARCIO GOMES PINTO GARCIA
Banca
RODRIGO DOS SANTOS TARGINO
Catalogação
2018-09-26
Apresentação
2018-07-06
Tipo
[pt] TEXTO
Formato
application/pdf
Idioma(s)
INGLÊS
Referência [pt]
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35237@1
Referência [en]
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35237@2
Referência DOI
https://doi.org/10.17771/PUCRio.acad.35237
Arquivos do conteúdo
NA ÍNTEGRA PDF