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Abstract

Filipe Rodrigues Vasconcelos, Gabriel; de Lima Veiga Filho,
Alvaro (Advisor); Cunha Medeiros, Marcelo (Co-Advisor).
Forecasting in high-dimension: Inflation and other
economic variables. Rio de Janeiro, 2018. 169p. Tese de
Doutorado — Departamento de Engenharia Elétrica, Pontificia
Universidade Catélica do Rio de Janeiro.

This thesis is made of four articles and an R package. The articles are
all focused on forecasting economic variables on high-dimension. The first
article shows that LASSO models are very accurate to forecast the Brazilian
inflation in small horizons. The second article uses several Machine Learning
models to forecast a set o US macroeconomic variables. The results show
that a small adaptation in the LASSO improves the forecasts but with high
computational costs. The third article is also on forecasting the Brazilian
inflation, but in real-time. The main results show that a combination of
Machine Learning models is more accurate than the FOCUS specialist
forecasts. Finally, the last article is about forecasting the US inflation using
a very large set of models. The winning model is the Random Forest, which
opens the discussion of nonlinearity in the US inflation. The results show
that both nonlinearity and variable selection are important features for the

Random Forest performance.

Keywords

Big data; High-dimension econometrics; LASSO; Factor models;

Forecasting;
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Resumo

Filipe Rodrigues Vasconcelos, Gabriel; de Lima Veiga Filho,
Alvaro; Cunha Medeiros, Marcelo. Previsdo em alta dimensio:
Inflacao e outras variaveis econdmicas. Rio de Janeiro, 2018.
169p. Tese de Doutorado — Departamento de Engenharia Elétrica,
Pontificia Universidade Catoélica do Rio de Janeiro.

Esta tese é composta de quatro artigos e um pacote de R. Todos os
artigos tém como foco previsao de variaveis econdmicas em alta dimensao. O
primeiro artigo mostra que modelos LASSO sao muito precisos para prever a
inflacao brasileira em horizontes curtos de previsao. O segundo artigo utiliza
varios métodos de Machine Learning para prever um grupo de variaveis
macroeconomicas americanas. Os resultados mostram que uma adaptagao
no LASSO melhora as previsdoes com um alto custo computacional. O
terceiro artigo também trata da previsao da inflagdo brasileira, mas
em tempo real. Os principais resultados mostram que uma combinagao
de modelos de Machine Learning é mais precisa do que a previsao do
especialista (FOCUS). Finalmente, o ultimo artigo trata da previsao da
inflacdo americana utilizando um grande conjunto de modelos. O modelo
vencedor ¢ o Random Forest, que levanta a questao da nao-linearidade
na inflacado americana. Os resultados mostram que tanto a nao-linearidade
quanto a selecdo de variaveis sao importantes para os bons resultados do

Random Forest.

Palavras-chave

Big data;  Econometria em alta dimensao; LASSO;  Modelos de

Fatores;  Previsao;
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1
Introduction

In the dynamic world of today, forecasting important variables has
become a difficult challenge because of the infinite amount of data being
generated every day. The first problem is computational, it is not trivial to
work and visualize big datasets. In many cases, simple personal computers
might not be enough to deal with this data. The second problem concerns the
selection of the most suited method to construct the analysis and the forecasts.
New methods are published in a very high frequency and it is unclear for the
researcher if there is an overall superior method or which method is mode
adequate to each problem. To name some methods we have the LASSO family
(2, 3), factor models (4, 5, 6), boosting (7), bagging (8), regression trees (9)
and many more.

Sometimes the theory on these models helps the researcher to select the
best suited model. For example, LASSO and factor models are supposed to be
used on opposite situations. The first requires sparsity, i.e, only a small subset
of the potential variables are in fact useful. The second needs all variables to
have some common behavior that can be extracted, therefore, most variables
are important but the common behavior may be enough to describe them.
However, the situation that best fits the data is not always clear. For example,
if we are dealing with a large set of economic variables, it is reasonable to
assume that these variables are all linked though a common trend. But we
could also have only a few really important variables and all the rest with
coefficients very close to zero that could simply be ignored.

Another important issue to consider is whether to iterate forecasts or
to estimate them directly to the forecasting horizon of interest. For example,
if we want to forecast the inflation five months ahead we could regress the
inflation in ¢ 4+ 5 on potential variables in . However, we could also use the
t + 1 inflation and iterate the forecast until ¢ + 5. The second case creates
another complication on the covariates, because they would also need to be
predicted. Fortunately VAR models can deal with this situation, even on high-
dimension, if we estimate the equations by LASSO or using Bayesian VARs
such as (10).

This thesis is composed of four articles, and one R package with
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implementations. Three of these articles are already published the and other
two are working papers. The R package is available on GitHub! and is yet to
be submitted to CRAN.

The first article is on the forecasting of the Brazilian inflation using high-
dimensional data (11). In this case we do not use real-time? data. Instead, we
use variables in their corresponding period even when they are published with
delay. Additionally, we do not consider expectation variables. The results shows
that the LASSO are more accurate for small forecasting horizons (until four
months ahead), but on long horizons neither the LASSO nor factor models are
able to beat simple autorregressives.

The second article aims to forecast the Brazilian inflation using real-time
data in a much more sophisticated environment (12). We included several
models such as Bayesian VARs, expectation variables, density forecasting,
model confidence set and forecasting combinations. The expectation variables
improves the forecasting accuracy in a way that for all forecasting horizons (five
days to eleven months plus five days) there is at least one high-dimensional
model that beat the naive models such as ARs and Random Walks.

The third article uses a very large set of high-dimensional models to
forecast the US inflation (13). We also try to give an interpretation to the
selected variables and rank them using importance measures. Moreover, we
found evidence that nonlinear tree models such as Random Forests are very
accurate to forecast US inflation and we explored this feature proposing two
mixed linear models to understand if the Random Forest performance is due
to variable selection or nonlinearity.

Finally, the R package HDeconometrics has implementations of many
models used across the articles. Some models such as LASSO or Random
Forests already have very good implementations on R, therefore, we only
made small adjustments when required. However, to the best of our
knowledge models such as Bagging, Complete Subset Regressions, some types
of Bayesian VARs and others do not have implementations on CRAN or the
implementations do not meet our needs. Additionally, our package has the
advantage to combine many models in a single platform with a unifying use
and notation.

The reminder of this thesis is divided in five chapters besides this
introduction. Chapter two is a methodological survey and the remaining

chapters are one for each article.

Lgabrielrvsc/HDeconometrics
2By real-time we mean only the data available to the econometrician in the day the
forecast is computed.
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2
Survey of Methods and Framework

Although all articles in this thesis are about forecasting economic
variables, the models and the notation are not exactly the same across all
articles. This goal of this chapter is to unify the notation, framework and

models used in all papers.

2.1
General Framework

Consider the following model:
yt+h:Th(wt)+Ut+h7 ,h:]_,...,H, t:]_,...7T, (2—1)

where y;, 4, is the response variable at time t+h; x; = (x1y, . .., Tn) is a n-vector
of covariates, possibly containing lags of y; and/or common factors as well as a
large set of potential predictors; Tj(+) is the mapping between covariates and
future values of the response variable; and u; is a zero-mean random error.
The target function Ty (x;) can be a single model or an ensemble of different
specifications. There is a different mapping for each forecasting horizon, h.

The direct forecasting equation is given by

§t+h|t = Th,tth+1:t(wt)> (2‘2)

where fm, Ry+1:¢ 1s the estimated target function based on data from time
t— Ry, + 1 up tot and Ry, is the window size, which varies according to the
forecasting horizon and the number of lagged variables in the model.

The framework above is called direct forecast. This approach estimates
one different model for each forecasting horizon and it has the advantage that
we do not need to forecast the covariates for forecasting horizons larger than
1. The alternative way is called recursive forecast. In this case we only need
to estimate the model one time but the forecasts must be iterated until the
desired horizon, which requires forecasts of the covariates. I adopted direct
forecasts because most of machine learning models are built to estimate single
equations and forecasting the covariates would be a complicated problem. The
only exception is the Bayesian VAR, which estimates a system of equations for

all covariates at the same time.
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The forecasts are based on a rolling window framework of fixed length.
Suppose that we have T observations, define t5 << T, as the number of
observations in each window , K as the number of windows, the rolling window

procedure follows the steps below:
—fork=1,....K

1. estimate the model in (2-1) using the observations k, ..., to+k—1,

2. compute the forecast in (2-2)

The alternative to the rolling window approach is the expanding

window, which follows the steps below:
—fork=1,....K

1. estimate the model in (2-1) using the observations 1,...,to+k —1,

2. compute the forecast in (2-2)

The difference between the two methods is that the rolling window keeps
the window size fixed and the expanding window increases it as we move on
k. I adopted rolling windows because it is a requirement for some statistical
tests to compare the forecasts and also because economic variables may have
significant changes on their dynamics over long periods of time. Therefore,
if we grow the estimation sample in a expanding window framework we will
probably have multiple regimes in the sample and the forecasts would be less

accurate.

2.2
Models

I used the following classification for models:

— Benchmarks : Autorregressive model(AR), Random Walk (RW),
Unobserved Component Stochastic Volatility model (UCSV) (for

inflation only).

— Shrinkage: Ridge Regression (RR), LASSO, adaLASSO, Elastic-Net,
adaptive Elastic-Net.

— Ensemble: Bagging, Complete Subset Regression (CSR), Jackknife
model averaging (JMA).

— Factor based: Factor model, target factor model, boosting of factors.

— Nonlinear: Random Forest (RF)
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— Bayesian: Large Bayesian VAR (LBVAR)

The objective in this section is to do a brief presentation of all the models
above. All the information contained here is also in the articles in the next
chapters. The objective here is to put the models and the framework together.
If the reader chooses to read this chapter he/she may skip all methodology

sections in the articles.

2.2.1
Benchmark Models
The first benchmark is the RW model, where for h = 1,...,12, the

forecasts are computed as follows:

Z?t+h|t = Yi- (2-3)

For the accumulated twelve-month forecast, we consider the following equation:

?7t+1:t+12\t = Yt—-11:t, (2‘4)

where y;_11.; is the accumulated inflation over the previous twelve months.
The second benchmark is the autoregressive (AR) model of order p,
where p is determined by the Bayesian information criterion (BIC) and the
parameters are estimated by Ordinary Least Squares (OLS). The forecast

equation is - ~ ~
Ytrnlt = Qop + Qra¥e + -+ PpnY—pr1- (2-5)

There is a different model for each horizon. The accumulated forecasts are
computed by aggregating the individual forecasts.
Finally, the third benchmark is the UCSV model, which is described as

follows:
Y =T + eht/25t,
T =Ti—1 + Uy, (2-6)
hy =hi—1 + vy,

where {g;} is a sequence of independent and normally distributed random
variables with zero mean and unit variance and ¢, ~ N(0, 1), u; and v; are
also normal with zero mean and variance given by inverse-gamma priors.
71 ~ N(0, V;) and h; ~ N(0,V}), where V. = V}, = 0.12. The model is estimated
by Markov chain Monte Carlo (MCMC) methods. The h-steps-ahead forecast
is computed as Yiyp = Ty

For accumulated forecasts, the UCSV is estimated with the twelve-month

inflation as the dependent variable.
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2.2.2
Regularization and Shrinkage

This subsection shows a discussion of all models in the Shrinkage Sparse
group plus the Ridge from the Shrinkage Non-Sparse group. These are linear
models where T}, (x;) = B),x; and

R T—h

B, = arg mﬁin Z (Ypn — B’a:t)Z + A Zp(ﬁi; wi, @) | (2-7)

t=1 =1
where p(;; w;, ) is a penalty function that depends on the penalty parameter \
and on a weight w; > 0. We consider different choices for the penalty functions

as described below.

2.2.2.1
Ridge Regression (RR):

RR shrinkage was proposed by (14, 15) and consists of the following
penalty function: n n
)\Zp(ﬂi;wi,a) = )\Zﬁf. (2-8)

RR has the advantalg_e1 of having an ai;glytical solution that is easy
to compute and shrinks the irrelevant variables to zero. However, given the
geometry of the penalty, the coefficients rarely reach exactly zero for any size
of A\. Therefore, RR is not an sparsity-inducing method.

One interesting fact about RR is its relation to principal component
(factor) models. Let X be the centered T x n predictor matrix and consider
its singular value decomposition X = USV’ with S being a diagonal matrix
with diagonal elements s;, 2 =1,...,n.

The forecasts of the dependent variable are given by

N B _ s2
yridge = X/Bridge = X(X,X + )\I) 1X,y = Udlag (82 n )\> U,y,

whereas for the factor model with k& factors are given by

k —k

However, this parallel to factor models does not hold exactly in our
implementation as the variable set for the RR is larger than the one for the
principal component factor construction as it includes four lags of each variable,
autoregressive terms and the factors as well. Nevertheless, the comparison is
useful to understand the potential differences in performance between RR and

factor alternatives.
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2.2.2.2
Least Absolute Shrinkage and Selection Operator (LASSO):

LASSO was originally proposed by (2). LASSO is similar to RR but

penalizes the ¢; norm of the coefficients as follows:

i=1
LASSO shrinks the irrelevant variables to zero and has some good properties
both in variable selection and goodness of fit. In order to achieve consistent
variable selection, LASSO requires the irrepresentable condition! (IRC) to be
satisfied (3). However, even if the IRC is not satisfied, LASSO still has the
variable screening property, i.e., LASSO selects the relevant variables with

high probability, but it may also select some extra variables.

2.2.2.3
Adaptive LASSO (adalLASSO):

adalLASSO was proposed by (16), who showed that the inclusion of
some additional information regarding the importance of each variable could
considerably improve the results. The adalLASSO does not need the IRC to
have variable selection consistency and also has oracle properties, i.e., it not
only selects the correct set of variables with high probability, but the coefficient
distribution of these variables is also the same as the OLS estimation using
only the correct set of variables. adalLASSO uses the same penalty as LASSO
with the inclusion of a weighting parameter that comes from a first-step model
that can be LASSO or even OLS:
A p(Biwisa) == A;wi\ﬁil, (2-10)

=1

where w; = |3f|7! and 3} are the coefficients from the first-step model. Finally,
LASSO has some good properties for high-dimensional data. LASSO can
handle many more variables than observations and works well in nonGaussian

environments and under heteroskedasticity (17).

2.2.2.4
Elastic Net (EINet)

Elastic net (ElNet) is a generalization that includes LASSO and RR as
special cases. ElNet is a convex combination of the ¢; and the ¢ norms (18).
ElNet also does regularization and selects the most relevant variables. Since

!The irrepresentable condition imposes some restrictions on the correlation structure

between the relevant and the irrelevant variables. In other words, the correlation between
the two groups is bounded and must be small.
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its penalty is between that of LASSO and RR, EINet normally selects more
variables than LASSO, at least for the same value of A. The EINet penalty is

defined as follows:

n

)\Zp(ﬂi;wi,a) = a)\ZBf—i—(l —Oz))\2|6i|; (2-11)
i=1 i=1

i=1
where o € [0, 1]. We also consider an adaptive version of ElNet (adaEINet).

This version works in the same way as the adaptive LASSO, i.e., we estimate

a first-step model and use it to calculate the weights w;.

2.2.3
Factor Models

Factor models using principal components are very popular approaches to
avoid the curse of dimensionality when the number of predictions is potentially
large. The idea is to extract common components from all variables, thus
reducing the model dimension.

Factors are computed as principal components of a large set of variables
z; such that F; = Az;, where A is a rotation matrix and F'; is the vector of
the principal components. Consider equation (2-1). In this case, x; is given by
Yi—j, 3 =0,1,2,3 plus f,_;, 7 =0,1,2,3, where f, is the vector with the first
four principal components of z;. The assumptions and the theory behind factor

models and when can we treat factors as observed variables can be found in

(4, 5, 6).

2.23.1
Target Factors

To improve the forecasting performance of factor models, (6) proposed
targeting the predictors. The idea is that if many variables in z; are irrelevant
predictors of y; 5, factor analysis using all variables may result in noisy factors
with poor forecasting ability. The target factors are regular factor models with
a pretesting procedure to select only relevant variables to be included in the
factor analysis. Let z;;, ¢ =1, ..., ¢ be the candidate variables and w; a set of
fixed regressors that will be used as controls in the pretesting step. We follow

(6) and use w; as AR terms of y;. The procedure is described as follows.

1. Fori=1,...,q, regress y;+, on w; and z;; and compute the ¢ statistics

for the coefficient corresponding to z; ;.
2. Sort all ¢ statistics calculated in step 1 in descending order.

3. Choose a significance level o and select all variables that are significant

using the computed ¢ statistics.
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4. Let zi(a) be the selected variables from steps 1-3. Estimate the factors

F, from z;(a) by principal components.

5. Regress y;1p on wy and f,_;, 7 =0,1,2,3, where f, C F;. The number
of factors in f, is selected using the BIC. (6) also selected the number of

lagged factors using the BIC.

The same procedure was used by (13). The authors showed that in most
cases, target factors slightly reduce the forecasting errors compared to factor

models without targeting.

2.2.3.2
Factor Boosting

The optimal selection of factors for predictive regressions is an open
problem in the literature. Even if the factor structure is clear in the data,
it is not obvious that only the most relevant factors should be included in
the predictive regression. I adopt the boosting algorithm as proposed by (7)
to select the factors and the number of lags that must be considered in the
predictive regression. Define z; € R?, the set of all n factors computed from
the original n variables plus four lags of each factor. Therefore, ¢ = 5n. Define
also SSR as the sum of the squared residuals.

The algorithm is defined as follows:
1. Let @9 =y for cach t, where § = 31, y:.
2. Form=1,...,M:

(a) Compute Uy = yr — Pe_pm—1-

(b) For each candidate variable i = 1,. .. ¢, regress the current residual
on z;; to obtain Bl and compute €,; = U — zztgz Calculate
SSR; = €le;.

(c) Select ¥, as the index of the variable which delivers the smallest
SSR and define &t,m = zi%tgiin,

(d) Update (i)t,m = &)t,mfl + v¢1m, where v is the step length. We set
v =0.2.

3. Stop the algorithm after the Mth iteration or when the BIC of the last

residuals starts to increase.
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2.2.4
Ensemble Methods

Ensemble forecasts are constructed from a (weighted) average of the
predictions of an ensemble of methods. In this section, I describe the techniques

considered in this paper.

2.24.1
Bagging

The term “bagging” comes from bootstrap aggregation, which was
proposed by (8). The idea is to combine forecasts from several unstable
models. Normally, there is much more to gain from combinations of models if
they are very different. The first source of instability is generated by
re-estimating the model using bootstrap samples, and the second source
comes from a pretesting step prior to the estimation, which for each
bootstrap sample selects a subset of variables based on their statistical

significance. The bagging steps are as follows:

1. For each bootstrap sample b, run a regression with all candidate variables

and select those with |t| > ¢, where ¢ is a pre-defined critical value.

2. Estimate a new regression only with the variables selected in the previous

step.

3. The coefficients from the second regression are finally used to compute

the forecasts on the actual sample.

4. Repeat the first three steps for B bootstrap samples and compute the

final forecast as the average of the B forecasts.

We used B = 100. Note that in our case, the number of observations may
be smaller than the number of variables, which makes the regression in the first
step unfeasible. We solve this issue by introducing a new source of instability in
the pretesting step. For each bootstrap sample we randomly divide all variables

in groups and run the pretesting step for each one of the groups.

2.24.2
Complete Subset Regressions

CSR was developed by (19, 20). The motivation for developing CSR was
that selecting the optimal subset of x; to predict y,,, by testing all possible
combinations of regressors is computationally very demanding, and in most

cases, even unfeasible. Supposing that we have n candidate variables, the CSR
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selects a number ¢ < n and computes all combinations of regressions using
only ¢ variables. The forecast of the model will be the average forecast of all
regressions in the subset.

CSR deals well with a small number of candidate variables. However,
for large sets, the number of regressions to be estimated increases very fast.
For example, with n = 25 and ¢ = 4, we need to estimate 12,650 regressions.
As the number of candidate variables is much larger, we adopt a pretesting
procedure similar to that used with the target factors. We start fitting a linear
regression of ;5 on each of the candidate variables (including lags) and save
the t-statistics of each variable?. The t-statistics are ranked by absolute value,
and we select the n variables that are more relevant in the ranking. The CSR

forecast is calculated on these variables. We used n = 25 and ¢ = 4.

2.243
Jackknife Model Averaging

JMA is a different way to combine forecasts from several small models.
Instead of using the naive average of the forecasts, JMA uses leave-one-out
cross-validation to estimate optimal weights. The procedure I followed is that
of (21) with some adjustments for time series as discussed in (22).

Suppose we have M candidate models that we want to average from and
write the forecast of each model as ﬂgf,z, m=1,...,M. Set the final forecast
as

)
Yisn = Z ngprha
m=1
where 0 < w,, < 1forallm € {1,...,M} and ¥  w,, = 1.
The JMA procedure is as follows:

1. For each observation of (xy, y414):

(a) Estimate all the candidate models leaving the selected observation
out of the estimation. Since we are in a time series framework with
k lags in the model, we also removed k observations before and &

observations after (xy, y;1p).

(b) Compute the forecasts from each model for the observations that

were removed in the previous step.

2. Choose the weights that minimize the cross-validation errors subject to

the constraints previously described.

2We did not use a fixed set of controls, wy, in the pretesting procedure like we did for
the target factors.
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The minimization problem above is quadratic and has the restriction that
w must be positive and sum to 1. The problem does not have a closed solution
but can be easily solved using the quadprog package in R. Given our set of
candidate variables, each candidate model in the JMA has four autoregressive

lags of the dependent variable and four lags of one candidate variable.

2.2.5
Regression Trees and Random Forests

The RF methodology was initially proposed by (9) as a solution to
reducing the variance of regression trees and is based on bootstrap aggregation
(bagging) of randomly constructed regression trees. In turn, regression trees are
flexible nonparametric predictive models that recursively partition the set of
explanatory variables, X, into subsets, each modeled using regression methods;
see (8).

To understand how a regression tree works, an example from (1) is useful.
Consider a regression problem in which X; and X5 are explanatory variables,
each taking values in some given interval, and Y is the dependent variable. We
first split the space into two regions, at X; = s, and then, the region to the
left (right) of X; = s is split at Xy = s5 (X7 = s3). Finally, the region to the
right of X; = s3 is split at X5 = s4. As illustrated in the right plot of Figure
2.1, the end result is a partitioning of X into five regions: R,,, m = 1,...,5.
In each region R,,, we assume that the model predicts Y with a constant c,,,
which could be estimated, for example, as the sample average of realizations
of Y that “fall” within region R,,. A key advantage of this recursive binary
partition is that it can be represented as a single tree, as illustrated in the left

plot of Figure 2.1. Each region corresponds to a terminal node of the tree.

X €5,
1
R
’ X,<s, X1 <53
N R, S,
=<
R X, <s
S, Ry R: R, R; |7—‘
R,
R, R.
51 S3
Xy

Figure 2.1: Example of a regression tree. Reproduction of part of Figure 9.2 in

(1).
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Now we turn to the question as to how to choose splitting variables and
split points, i.e., how to grow a tree, when there are p explanatory variables.
Let x¢ = (214, Tay, ..., 2py), for t = 1,...,T, where x;; is the realization of
variable X; in period t.

We proceed backwards. Suppose that after choosing the splitting
variables and split points, we reach M regions. If we adopt the sum of
squared errors as our minimization criterion, the prediction of Y at T', ¢,,, is
simply the average of previous realizations y; such that x; belongs to R,,.

Algebraically, for m =1, ..., M,

T T

« . p i I(It € Rm)yt

Cm = ar mlnEIx € Ry —cm)? = )
& t=1 (@ e ) ZiTzl I(z; € Ry)

where I is the indicator function.

(2-12)

The idea is to use the sum of squared errors to inform how to grow
the regression tree. To begin, consider a splitting variable j and a split point
s to partition X into two regions, namely, Ri(j,s) = {X|X; < s} and
Ry(j,s) = {X|X; > s}. Then, seek the pair (7, s) that solves

T T
I(z; € Ri(j,5))(ye — 1)* +min Y _L(ze € Ro(j, 5)) (3 — c2)”
1 t=1

min |min
j:S €1 t

Once the best split is found, we proceed iteratively, repeating this process on
each of the resulting regions.

A natural question arises: when should we stop this process? A very
large tree might overfit the data, which would be highly unstable. However, a
tree that is too small might not capture a complex nonlinear relation between
variables in the data. One possibility to address this trade-off is the cost-
complexity pruning method described in Hastie et al (2009). Instead, we follow
the RF method, which applies the essential idea of bagging, i.e., RF reduces
the variance by averaging many noisy and unbiased models. The drawback is
the loss of interpretability.

An RF is a collection of regression trees, each specified in a
bootstrapped subsample of the original data. Suppose there are B
bootstrapped subsamples. For each subsample, obtain a prediction for Y by
applying a modified version of the aforementioned splitting iterative process
until a prespecified minimum number of observations, say five, is reached in
any resulting region. In particular, the modification is to select ¢ variables at
random from the p explanatory variables at each step of the process. Finally,
simply average the predictions of Y across the B bootstrapped subsamples.

Since we are dealing with time series, bootstrapped samples are calculated
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using block bootstrapping.
The main advantages of the RF method are twofold: RF can handle
both a very large number of explanatory variables and complex nonlinear

relationships between variables.

2.2.6
Hybrid Linear-Random Forests Models

RF/OLS and adaLASSO/RF deserve some special attention because
these are adaptations made specifically to answer how important the variable
selection is and the nonlinearity in forecasting the US inflation. RF/OLS is

estimated using the following steps:

1. For each bootstrap sample b:

(a) Grow a single tree with & nodes (we used k& = 20) and save the
N < k split variables,

(b) Run an OLS on the selected splitting variables,

(c) Compute the forecast g7, ,.

2. The final forecast will be ., = B~* 25:1 ;Qf '+, Where B is the number

of bootstrap samples.

The main objective of the RF /OLS is to check the performance of a linear
model using variables selected from the RF. If the results are very close to the
full RF, we understand that nonlinearity is not an issue, and the RF is superior
solely because of variable selection. However, if we see some improvement on
accuracy compared to other linear models, especially bagging®, but if RF/OLS
is still less accurate than RF, we have evidence that both nonlinearity and
variables selection play an important role.

The second adapted model is LASSO/RF, where we use the adaptive
LASSO for variable selection and then estimate a fully grown RF with the
variables selected by adaptive LASSO. If LASSO/RF performs similarly to
RF, we understand that the variable selection in RF' is irrelevant, and the
only thing that matters is the nonlinearity. LASSO/RF and RF/OLS together
create an ”if and only if” situation where we test the importance of variable
selection and nonlinearity from both sides. Our results point to the middle
case where nonlinearity and variable selection are both important. The two
adapted models perform very well compared to other linear specifications, but
RF is more accurate than both. In other words, the good performance of RF

is driven by both variable selection and nonlinearity.

3Bagging and RF are bootstrap-based models, the first of which is linear and the second
is nonlinear.
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2.2.7
Bayesian Vector Autoregressive Model

The Bayesian VAR that we used is capable of estimating large models
with many variables and lags with a small computational cost. The idea is to
set the priors of most coefficients in the VAR to zero *. The trick is to inflate
the model with dummy observations as in (10) in a way that the coefficients
of the inflated model are estimated by OLS and the model replicates a VAR
estimated with the desired prior.

Let Y = (Y14, Y215 - - - Ynt) be described as the following VAR model:

Yt = C+A1Yt_1 + .- +Ath—p+,u’t7 (2—13)
where ¢ is a n-dimensional vector of constants, A;, ¢ = 1...p are (n X n)
matrices of coefficients and u; is the n—dimensional error vector. The same

model may be written as a system of equations:
Y=XB+U (2-14)

where Y = (Y4,...,Y ) isa (T xn) matrix, X = (X4,..., Xr) isa (T xk)
matrix with £k = np+1 and X; = (1,Y1,...,Y,,), U = (uy,...,ur),
and B = (¢, Ay,..., A,)".

The model is estimated using dummy observations Y,; and X, of
dimensions Ty x n and Ty x k respectively (for details on creating the dummy
observations see (10)). Using these dummies is equivalent to imposing the
normal inverted Whishart prior on the covariance matrix of B. The dummy
observations are used to create Y* = (Y',Y)) and X* = (X', X})". The
posterior mean of B is the same as the ordinary least-squares (OLS) estimates
of the regression of Y* on X™ and also the same as the Minnesota prior.
Additionally, by using the dummies we ensure that for each regression of the
VAR the number of observations is larger than the number of variables, which
makes the OLS estimation of B feasible. Another important issue is the choice
of the expected value of the priors for the diagonal of the A; matrix. We choose

the value of 0.5 for all elements.

4These priors have a shrinkage interpretation in the model. The coefficients only deviate
from the prior if the data is informative.
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Forecasting Brazilian inflation with high-dimensional models

JEL: C22.

Keywords: Emerging economies, Monetary policy, Brazilian inflation,
Forecasting, LASSO, Shrinkage, Model selection.

Abstract: In this paper, we use high dimensional models, estimated by the
least absolute shrinkage and selection operator (LASSO) to forecast Brazilian
inflation. The models are compared to benchmark specifications such as
linear autoregressive (AR) and the factor models based on principal
components. Our results show that the LASSO-based specifications have the
smallest errors for short-horizon forecasts. However, for long horizons, the
AR benchmark is the best model with respect to point forecasts, even though
there is no significant difference between them. The factor model also
produces some good long-horizon forecasts in a few cases. We estimated all
the models for the two most important Brazilian inflation measures, the
IPCA and the IGP-M indexes. The results also show that there are
differences in the selected variables for both measures. Finally, the most
important variables selected by the LASSO-based models are, in general,
related to government debt and money. On the other hand, variables such as
unemployment and production are rarely selected by the LASSO. Therefore,
our evidence is against the Phillips curve as the driving mechanism of

Brazilian inflation.
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3.1
Introduction

Inflation is a hard-to-forecast economic variable. However, reliable
forecasts provide us with a more transparent economic environment. For
example, companies need to know the future inflation to make their
investment decisions; investors use inflation forecasts to know their real
gains; wages are adjusted based on future inflation; and contracts such as
rent and mortgages use it as an index to correct future prices. Furthermore,
Central Banks usually need reliable inflation forecasts in order to conduct
monetary policy (inflation targeting). For countries like Brazil, which had a
long and recent hyperinflation experience, it is even more important to
understand the components and future behavior of inflation.

In 1999, the Brazilian government adopted inflation-targeting policies to
make the economy more transparent and stable. This changed the dynamics
of inflation and created new challenges to keep it on the target. For example,
volatility in the exchange rate had to be controlled since it is directly connected
to inflation (23). (24) argues that inflation targets may be a good alternative
for monetary policies in emerging countries; however, they have to be handled
carefully. In the Brazilian case, they have brought lower inflation rates and
more stable prices (25, 26).

There is an extensive recent literature on the determinants of Brazilian
inflation, especially on the Phillips curve and its relation to unemployment
(27, 28, 29). But some of these results are controversial, especially when
different proxies and different periods of analysis are considered (29). The
literature on inflation forecast is smaller, but also rich. More recently, (30) used
several linear and nonlinear models and the Phillips curve to forecast inflation.
The authors showed that some nonlinear models and the simple autoregressive
(AR) model produce smaller forecast errors than the Phillips curve. (31) used
long-memory heteroskedastic models to show that Brazilian inflation has long-

range dependence both on the mean and on the variance. However, they do
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not exclude the importance of the short-term AR component. The relevance
of past inflation is also pointed out by (32).

Although the Phillips curve is the main theoretical framework to model
inflation, there is an increasing interest in finding other variables that may
describe its dynamics. (33) did an extensive work with a large list of
macroeconomic variables and showed that the best variables to forecast
inflation are, in general, linked to production. However, these variables can
be very different from what is expected in the traditional Phillips curve
unemployment framework. Additionally, (34) showed that the Phillips curve
cannot produce better forecasts when compared with simpler naive models.
These results led to the search for models and variables to forecast and
explain inflation, such as commodity prices (35), financial variables (36), and
several economic activity and expectation variables (37). In many cases,
these variables were relevant to inflation forecast.

The main goal of this paper is to forecast inflation considering a large
number of potential variables. We also analyze the selected variables and show
their possible interpretation in the model. We use three types of models. First,
the simple AR model, which uses only past inflation as a predictor. Second,
since our dataset has more than 100 variables, we also used factor models.
These models use principal components as explanatory variables. We selected
the number of components using (4) criterion'. The last class of models is
based on shrinkage, more precisely on the LASSO (least absolute shrinkage
and selection operator, (2)) and on the adaLASSO (adaptive least absolute
shrinkage and selection operator, (3)). These models try to select the relevant
variables using a penalty on the loss function. Although they may produce
estimates with in-sample bias, they significantly reduce out-of-sample forecast
errors and variance. The adalLASSO is an improved version that corrects some

of the problems with the LASSO.

'We adopted the BICsy criterion, which selected five factors. The PC; and IC; selected
around eight factors. We selected the BIC3 for parsimony, since our data have a small T
and we are also using lagged factors and autorregressive components.
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Our research contributes to the literature in several ways. First, we use
high dimensional models to forecast Brazilian inflation in the same spirit as
in (13). Most of the previous works use only Phillips curve related variables
or simple univariate time-series models. Our results show that LASSO and
adalLASSO models produce reliable inflation forecasts for horizons up to four
months ahead. However, even with the inclusion of many candidate variables,
the best model for longer horizons is the simple AR model. Second, we
analyze and forecast the two most widely used Brazilian inflation measures
and we are able to point several differences between them, especially for short-
horizon models, where the selected candidate variables are different for both
measures. Third, although our main goal is to forecast inflation, we have
some new evidence on which variables are relevant to explain the Brazilian
inflation dynamics. We show that for the official inflation (IPCA), nearly all
the selected variables are related to government debt. Although we do not
establish any causality relationship, it is important to point out that these
variables were selected among more than 100 candidates. We also show that
for the alternative inflation measure (IGP-M), variables related to the amount
of money and credit in the economy are relevant predictors as well. These
findings are evidence against the Phillips curve as the driving mechanism of
Brazilian inflation. The IPCA is driven basically by an inertial component and
variations in government debt. The IGP-M has other driving factors; however,
they are mostly linked to debt through the issue of government bonds.

This chapter is organized as follows. Section 3.2 presents the LASSO and
the adaLLASSO models and how they select the relevant variables amongst all
the candidates; in Section 3.3, we discuss the characteristics of the inflation

measures used and show the main results. Section 3.4 concludes.

3.2


DBD
PUC-Rio - Certificação Digital Nº 1421640/CA


PUC-Rio- CertificagaoDigital N° 1421640/CA

Chapter 3. Forecasting Brazilian inflation with high-dimensional models 31

LASSO models

The least absolute shrinkage and selection operator (LASSO) was
initially proposed by (2). The idea behind the method is to shrink irrelevant
coefficients in a regression to zero. This is done by adding a penalty to the
loss function that penalizes directly the estimated parameters, excluding

those which are irrelevant. The LASSO estimator is defined as:

p
5:argmﬁinHY—Xm@HijL (3-1)

=1
where S is the n x 1 vector of parameters, Y = (y1, ..., yn)’, X is the P xn data

matrix and A is the shrinkage parameter. Figure 3.1 shows how the LASSO
works: on the x axis, we have the A and on the y axis, the coefficients; each line
represents a different variable. The figure shows that the number of selected
variables and the size of the coefficients decrease as we increase the shrinkage
parameter. Moreover, the LASSO can be used when one is dealing with more
variables than observations (16, 38).

If we define Bo as the ordinary least squares (OLS) estimator without
any shrinkage and A, as the largest penalty parameter that delivers the
same result as the OLS (no shrinkage), there will be shrinkage for any
A > Ay Additionally, let A. be the smallest penalty parameter that results in
a model only with a constant term. Then, we must choose A\ from the interval
Aots < A < A.. The best A is chosen using cross-validation or some information
criterion such as the Bayesian Information Criterion (BIC).

(16) and (3) showed that the LASSO does not have the oracle property
as defined by (39), i.e., the LASSO may fail to select the correct subset
of relevant variables and its parameters may not have the same asymptotic
distribution as the OLS estimator with only the relevant variables. To solve
these issues, (3) proposed the adaptive LASSO (adaLASSO). It consists of
a two-step estimation that uses a first model to generate different weights

for each candidate variable. These weights are then used in the LASSO as
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Figure 3.1: Shrinkage coefficients - LASSO

additional information. The adalLASSO estimator is defined as:

p
,3ZargmgnHY—XB||§+>\ij|ﬁj|, (3-2)

i=1

where w; = | B;‘|_T, Bj* is a first-step estimate and 7 is a parameter chosen by
using the same criterion as .

In order to maximize the model’s predictive power, it is usual to select the
parameters A and 7 by using cross-validation. However, in a time-series case
when the data are not independent and identically distributed (i.i.d.), (40)
and (41) showed that the BIC is a reliable alternative since cross-validation
in a non-i.i.d. framework may be complicated. Moreover, (17) showed that
selecting the parameters A and 7 in a time-series environment by using the
BIC and the LASSO as the first step for the adaLASSO yields estimates that
have the oracle property even in adverse situations with heteroskedasticity
and t distributed errors. Moreover, the authors allow the number of candidate
variables to increase with the number of observations and show that, based
on these conditions, the adalLASSO has model selection consistency, i.e., it
chooses the most parsimonious model asymptotically. These are very strong

results since, by assuming that we have the oracle in our set of variables and
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asymptotic conditions are met, the adaLASSO will select the right variables
and their distribution will be the same as the OLS estimator with the correct
variables. Moreover, it will not select useless variables.

3.3
Main Results

In this section, we show the results for the two most important
Brazilian price indexes: the IPCA, calculated by the Brazilian Institute of
Geography and Statistics (IBGE); and the IGP-M, calculated by the Getilio
Vargas Foundation (FGV). Figure 3.2 shows the inflation calculated by both
indexes. Our dataset consists of 102 monthly variables that cover production,
government debt, price indexes, financial markets, taxes, import and export
of goods and services, government accounts, savings, investment, wages,
international variables that may be related to the Brazilian economy, etc.
These variables came from the Brazilian Central Bank, the FGV, the IBGE,
the IPEADATA, and the Bloomberg database. The period of analysis spans
from January 2000 to December 2013. We selected these data because the
inflation-targeting policy in Brazil started only in July 1999, and before that,
the inflation-generating process was probably different. Additionally, the
Brazilian economy was still adapting to the new currency, implemented in
1994, and to the economic policy during the late 1990s.

We estimated simple AR models, factor models using (4) BICj criterion
to select the number of principal components, and the LASSO and adaLLASSO
models using the BIC to choose the pair? (), 7) and the LASSO as the first
step for the adaLASSO. All variables were tested for unit-root and first-
differentiated when necessary. Moreover, we used four lags of the candidate
variables and monthly dummies as possible predictors of inflation. The models
were estimated using a rolling window of 132 observations and the forecasts

were compared using the (42) test. The out-of-sample period goes from January

2The pair (A, 7) is determined in-sample (See the Appendix for more information).
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2011 to December 2013. Finally, we estimated models and forecasts for 1 to 12
steps ahead. The estimated equation is defined in (3-3):
3 3
Tith = O + Z ViTt—i + Z Bz + upin, (3-3)
i=0 i=0

. . . Piin—Piin_
where, 7, is the inflation calculated as %7;?1)

, (g is a constant term,
x; is the vector containing all candidate variables and wu; is an error term.
Equation (3-3) states that the monthly inflation A periods ahead is a function

of today’s and of the previous 3 months’ inflation and of other control variables.
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Figure 3.2: IPCA and IGM-M time series

3.3.1
IPCA Inflation Index

The IPCA is the Brazilian official price index. It is calculated monthly by
IBGE using data from families that earn between 1 and 40 monthly minimum
wages and live in urban areas.

The first noteworthy result is that Brazilian inflation is highly
autocorrelated, which means that simple AR models tend to provide good
forecasts (30, 31). Figure 3.3 shows that the first-order autocorrelation of the

IPCA inflation exceeds 0.6 and remains high up to the fourth lag. Moreover,
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there is also a small seasonal behavior. We included the monthly dummies as
candidate variables to control for this seasonality. However, it is more likely
that the dummies will be excluded by the LASSO and the seasonality will be
captured by other candidate variables with a similar behavior. To
contextualize, the autocorrelation of US inflation, if we consider the CPI, is
also around 0.6 in the first lag for monthly data. However, it decreases
significantly slower than the Brazilian autocorrelation, which is less than 0.3
in the third lag and statistically zero in the fifth one. In the US case,
autocorrelation remains close to 0.6 up to the 10th lag and, in the 25th lag, it

gets close to 0.4.
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Figure 3.3: Autocorrelation function: IPCA

Figure 3.4 shows the root mean squared error (RMSE) and the mean
absolute error (MAE) for the AR, the factor model, the LASSO, and the
adalLASSO specifications for all the 12 forecast horizons. Regarding the RMSE
in (a), the adaLLASSO has smaller error for short horizons (up to 4 months) and
the AR is the best model on most of the remaining horizons. The LASSO has
errors slightly bigger than the adaLASSO and the factor model performed
badly up to period 8, but it presented the smallest errors for 9 and 10

months ahead. The results for the MAE (panel (b)) are similar to those of the
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RMSE; the most important differences are that the AR has a slightly better
performance in the ¢t 4+ 2 forecasts and the LASSO and the adalLASSO have
basically the same error in ¢ + 6. The adalLASSO had a few large errors, which
are more penalized by the RMSE. The mean absolute error for the adaLASSO
in t 4+ 1 is approximately 0.13%. If we consider all the forecast horizons, the
average MAE is approximately 0.166% and 0.167% for the adaLASSO and the
AR, respectively. If we consider the first four horizons, the errors are 0.151%

and 0.167%; on the last 8 horizons, they are 0.171% and 0.164%.
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Figure 3.4: RMSE and MAE of all models: IPCA

Figure 3.5 shows the average number of variables selected by the LASSO
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and the adaLASSO on all forecast horizons. The adalLASSO is, in general,
more parsimonious, which is natural, since its first step was the LASSO.
However, starting in ¢ + 6, both models select basically the same variables;
and from ¢+ 8 to t+ 12, most models select zero variables, becoming constant-
only models. Considering that the adaLASSO has the oracle property, there
are three possible conclusions: 1) the Brazilian monthly inflation cannot be
predicted on long horizons using macroeconomic variables available todays, i.e.,
no variable is relevant; 2) the relevant variables are not in our database, which
is very unlikely since we covered all types of variables; 3) many variables are
relevant for long horizons, but their coefficients are very small and the LASSO
forces them to be zero. The most plausible hypotheses are 1 and 3. To test the
third hypothesis, we re-estimated the adalLASSO using the ridge regression as
the first step, but the results were the same. The ridge regression is similar
to the LASSO; however, it penalizes the squared parameters instead of their
absolute value. The squared penalization never excludes variables, i.e., their
coefficients can be very small, but they do not reach zero. Using the ridge as
the first step gives more liberty for the adalLASSO to choose the variables,

since none of them were previously excluded.
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Figure 3.5: Number of selected variables: IPCA
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Table 3.1 shows the correlation between the forecasts and the Giacomini
and White (GW) test (42) p-values to check if the forecasts are statistically
equal. We show the results for t+1, t43, t+6, and t+12. The results show that,
although some models perform better than others on different horizons, their
forecasts are indeed statistically equal even when their correlation is small.
Unfortunately, our dataset does not allow us to have more than 36 out-of-
sample periods to check the robustness of these results. However, since the
forecasts are statistically very similar, the adaLLASSO forecasts are at least as
good as the best forecast. This evidence supports that the variables selected
by the model are indeed relevant to generate the dynamics of the IPCA.

Figure 3.6 shows the cumulative squared errors for the same horizons as
in Table 3.1. It shows that, even though some models have smaller errors, they
have a very similar behavior (excluding the factor model) especially on the
horizons t 4 6 and ¢ 4 12. While the factor model forecasts are apparently very
different from the others, especially on ¢t 4+ 6, the GW test failed to capture

this difference in most cases.

t+1 AR(4)  Factors LASSO adaLASSO ¢+3  AR(4) Factors LASSO adaLASSO
AR() 1 0.48 0.75 0.74 1 0.22 0.46 0.33
- (0.037)  (0.268) (0.405) - (0.168)  (0.161) (0.155)
Factors 0.48 1 0.36 0.41 0.22 1 0.35 0.41
(0.037) - (0.198) (0.390) (0.168) - (0.343) (0.286)
LASSO 0.75 0.36 1 0.96 0.46 0.35 1 0.89
(0.268)  (0.198) - (0.380) (0.161)  (0.343) - (0.245)
0.74 0.41 0.96 1 0.33 0.41 0.89 1
adaLASSO ) 405)  (0.390)  (0.380) - (0.155)  (0.286)  (0.245) -
t+6 tr 12
AR() 1 0.23 0.49 0.13 1 0.50 0.77 0.27
- (0.297)  (0.172) (0.349) - (0.329)  (0.458) (0.496)
Factor 0.23 1 0.14 0.30 0.50 1 0.20 0.12
(0.279) - (0.426) (0.459) (0.329) - (0.212) (0.151)
LASSO 0.49 0.14 1 0.68 0.77 0.20 1 0.37
(0.172)  (0.426) - (0.185) (0.458)  (0.212) - (0.340)
0.13 0.30 0.68 1 0.27 0.12 0.37 1
adaLASSO  (1510)  (0.459)  (0.185) - (0.496)  (0.151)  (0.340) -

This table shows the correlation and the p-value of the Giacomini and White test for the forecasts
in Figure 3.4.

The p-values are shown in parentheses. The null hypothesis of the GW test is that the forecasts
are statistically equal.

Table 3.1: Forecast correlations and GW test p-values: IPCA

Figures 3.7 and 3.8 present the selected variables in the LASSO and


DBD
PUC-Rio - Certificação Digital Nº 1421640/CA


PUC-Rio- CertificagaoDigital N° 1421640/CA

Chapter 3. Forecasting Brazilian inflation with high-dimensional models 39

(1) (t+3)

cumulated forecast sq

2011, 01 2011, 07 2012, 01 2012,07 2013, 01 2013,07 201312 2011, 01 2011, 07 2012, 01 2012, 07 2013, 01 2013,07  2013,12
time time

(t+6) (t+12)

cast st

cumulated fore

2011, 01 2011, 07 2012, 01 2012, 07 2013, 01 2013,07 201312 2011, 01 2011, 07 2012,01 2012, 07 2013, 01 2013,07  2013,12

time time

—  AR(@4) —  Factor — Lasso Adalasso

Figure 3.6: Cumulative squared errors: IPCA

adalLASSO for several forecast horizons®. The ¢ + 1 forecast models have more
variables than the others and the only horizon with AR terms. Factors were not
selected, except for one period in the LASSO. Amongst the selected variables
in the adaLASSO case are other inflation indexes, such as the IGP-DI, the
federal government debt, the dollar exchange rate, state and municipal debt,
among others. Government debt variables are selected very often for the ¢ + 1
and occasionally for ¢t 4+ 3 models, especially state and municipal debt. Since
this type of variable is first differentiated, when the variation of the debt is
very big and positive, it probably means that the government is spending
more money and putting upward pressure on inflation. The results for ¢ + 6
and t+12 show the same information as Figure 3.5, i.e., most of the models are

constant-only, with government debt variables and unemployment appearing a

3We do not have space to show exactly which variables were selected in each model in
the paper. The exact variables are available from the authors upon request.
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few times. Finally, there was an unusual result in the ¢ + 12 adalLASSO, which
selected 17 variables. This model in particular had a forecast error of nearly
40%.

Table 3.2 shows how the selected variables are distributed. The first
row displays the proportion of other inflation indexes, AR components, and
dummy variables. In many cases, the AR terms were replaced with other
indexes, especially with the IGP-DI. The second row shows the proportion
of the variables which are not included in the first row, i.e., variables that
are mostly unrelated to prices. We define this group as leading economic
variables. They are selected more often than those in the first row, meaning
that there is relevant information which is not the simple AR component of
the inflation. The second group of rows (3-7) shows how the economic variables
are distributed. In the ¢ 4+ 1 case, government debt (especially municipal and
state debt) accounts for nearly 70% of all the economic variables selected by the
model. Therefore, an increase in government debt is incorporated very fast into
inflation. If we consider all the horizons, money variables, exchange rates and
unemployment become more representative. However, these three categories
together are selected approximately in the same proportion as the government
debt variables alone. Money variables are mostly M3 and M4; in a very general
way, M3 considers all the paper money held by the population, demand and
time deposits, applications in investment funds and savings whereas M4 is M3
plus government bonds.

Brazil historically has a very interventionist government and our results
are evidence that government debt is the most important variable to forecast
inflation, excluding its AR component. This result may be related to the poor
performance of the Phillips curve in forecasting inflation in (30) and to the
ambiguous results in different studies of Brazilian inflation pointed out by
(29). Finally, our results suggest that government debt is incorporated very

fast into inflation. It is more expressive on the first forecast horizon than if we
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look at all the horizons together.
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Figure 3.7: Variables selected by the LASSO: IPCA

3.3.2
IGP-M Inflation Index

The IGP-M is also a very important index for measuring inflation in
Brazil. It is used in several contracts, such as energy prices and rent. Its
construction is basically the same as that of the IGP-DI; the only difference is
that the IGP-M refers to the 21st day of the previous month until the 20th day
of the current month, while the IGP-DI covers all days of the current month.

The IGP-M is more volatile than the IPCA. Its coefficient of variation is
1.24, much larger than that of the IPCA, which is 0.73. Moreover, the IGP-M

is also larger. In our sample, it has an average of 0.65% per month against
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Figure 3.8: Variables selected by the adaLASSO: IPCA

0.52% of the IPCA. Finally, the correlation between the two indexes is 0.73.
This is a low correlation considering that the two most important American
inflation measures, the CPI and the PCE, have a correlation of approximately
0.90. The IGP-M has an autocorrelation even bigger than that of the IPCA.
Figure 3.9 shows that the first-order autocorrelation is approximately 0.75.
Figure 3.10 shows the RMSE and the MAE for all IGP-M models on
all the 12 forecast horizons. The first important thing to point out is that
the factor model is more stable in the IGP-M than in the IPCA, even though
it still produces larger errors. The LASSO had a very bad performance on
the horizons ¢t 4+ 6 and t 4+ 11. However, the adalLASSO successfully corrected
the big errors of the LASSO. The adalLASSO has smaller errors than the AR

only on t + 1, ¢+ 3 and t + 7, and its performance starts to deteriorate on
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LASSOt+1 adaLASSOt+1 LASSO-all adaLASSO-all

P., AR, Dummy 0.46 0.35 0.29 0.31
Other Variables 0.54 0.65 0.71 0.69
G. debt 0.64 0.69 0.45 0.42
Unemployment 0.05 0.05 0.02 0.19
Exchange 0.17 0.16 0.16 0.02
Money 0.10 0.10 0.21 0.23
Others 0.04 0 0.16 0.14

The table shows how often a variable from each of the groups was selected.
The first row shows how often autorregressive terms, other inflation
measures, and dummy variables were selected. The second row shows the
proportion of the variables which are not considered in the first row.
Rows 3-7 show how the variables from row 2 are distributed.

Table 3.2: Most selected variables: IPCA
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Figure 3.9: Autocorrelation function: IGP-M

t + 8. However, this time, the adalLASSO ¢ + 1 forecast is statistically different
from the AR and factor model forecasts (see Table 3.3). The average IGP-M
inflation is 0.50% in the out-of-sample periods and the average MAE for all
horizons is 0.37% for the AR and 0.40% for the adalLASSO. These are very
large errors compared to the IPCA and to the average out-of-sample inflation.

The average number of selected variables by the LASSO and the
adalLASSO on all forecast horizons is shown in Figure 3.11. The LASSO has
around five selected variables up to the ¢ + 7 horizon, when it increases to 20
variables. Note that the poor performance of the LASSO was also on the

horizons t + 6 and ¢t 4+ 11, t + 12. These are exactly the same forecast horizons
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Figure 3.10: RMSE and MAE of all models: IGP-M

whose number of variables is high.

Table 3.3 and Figure 3.12 show the correlations between the forecasts,
the GW p-values and the cumulative squared errors of all the models on the
horizon t 4+ 1, t + 3, t + 6 and ¢t + 12. The results here are very different from
the IPCA case. First, there are many statistically different forecasts, according
to the GW test, on t + 1, t + 6 and t + 12. Second, there are some negative
correlations between the forecasts. Third, the LASSO and adalLASSO large
errors are caused by one single out-of-sample period on t + 12. Finally, the

LASSO and the adalLASSO are statistically the best models to forecast the
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Figure 3.11: Number of selected variables: IGP-M

t + 1 inflation.

Figures 3.13 and 3.14 show the LASSO and adalLASSO selected variables.
There were more unusual results with many selected variables for the IGP-M
than for the IPCA. The results were unfavorable in all cases except for the
t + 6 adaLASSO forecast, which had an RMSE slightly smaller than the AR.
Both the LASSO and the adalLASSO selected more variables on the ¢ + 12
horizon and their errors for this horizon were very large. On t41 and t+ 3, the
LASSO selected the IGP-DI instead of the AR component. Government debt
and exchange rates were also selected, but mostly in a smaller proportion than
in the IPCA case. Additionally, the models consistently selected M3 and M4
variables. The adalLASSO on t+1 uses basically only the IGP-DI as a predictor
for the inflation; the other two dots refer to government debt. On ¢+ 6 and on
some of the omitted horizons, we obtained the constant-only model. Finally,
in the IGP-M case, the government also plays an important role in inflation,
especially when M4 is included. However, its importance is smaller than it was
in the IPCA case.

Table 3.4 shows the proportion of the selected variables. As we mentioned

before, the most frequently selected variables are related to money. Government
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t+1 AR(4) Factors LASSO adaLASSO t+3 AR(4) Factors LASSO adaLASSO
AR() I 0.58 0.92 0.93 I 0.28 0.40 0.69
- (0.044)  (0.182) (0.023) - (0.320)  (0.434) (0.453)
Factors 0.58 1 0.62 0.55 0.28 1 0.33 0.36
(0.044) - (0.001) (0.003) (0.320) - (0.156) (0.180)
LASSO 0.92 0.62 1 0.98 0.40 0.33 1 0.81
(0.182)  (0.001) - (0.329) (0.434)  (0.156) - (0.176)
0.93 0.55 0.98 1 0.69 0.36 0.81 1
adalLASSO () 093)  (0.003)  (0.329) - (0.453)  (0.180)  (0.176) -
t+6 i+ 12
AR() 1 0.11 0.12 0.10 1 0.39 0.04 -0.15
- (0.019)  (0.498) (0.489) - (0.12)  (0.022) (0.006)
Factor 0.11 1 012 -0.12 0.39 1 -0.05 -0.09
(0.019) - (0.128) (0.127) (0.016) - (0.116) (0.384)
LASSO 0.12 -0.12 1 0.99 0.04  -0.05 1 0.88
(0.498)  (0.128) - (0.030) (0.022)  (0.116) - (0.465)
0.10 -0.12 0.99 1 015  -0.09 0.88 1
adalLASSO () g0)  (0.127)  (0.030) . (0.006)  (0.384)  (0.465) -

This table shows the correlation and the p-value of the Giacomini and White test for the forecasts

in Figure 3.10.

The p-values are shown in parentheses. The null hypothesis of the GW test is that the forecasts

are statistically equal.

Table 3.3: Forecast correlations and GW test p-values: IGP-M

debt came second and unemployment and exchange rates were rarely selected.

The t4+1 adaLLASSO selected only government debt variables. However, Figure

3.14 and the first row of the table show that this is not very important. The

continuous segment of dots on the t + 1 adaLLASSO is the IGP-DI and debt

variables were selected only twice (the two dots in the middle of the ¢+ 1 plot),

accounting for 6% of the selected variables.

LASSO t+1 adaLASSO t+1 LASSO-all adalasso total

P., AR, Dummy 0.27 0.94 0.07 0.14
Other Variables 0.73 0.06 0.93 0.86
G. debt 0.24 1 0.25 0.41
Unemployment 0 0 0.02 0.09
Exchange 0.15 0 0.02 0
Money 0.56 0 0.43 0.46
Others 0.05 0 0.28 0.04

The table shows how often a variable from each of the groups was selected.
The first row shows how often autorregressive terms, other inflation
measures, and dummy variables were selected. The second row shows the
proportion of the variables which are not considered in the first row.
Rows 3-7 show how the variables from row 2 are distributed.

Table 3.4: Most selected variables: IGP-M

3.4
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Figure 3.12: Cumulative squared errors: IGP-M

Final Remarks

We analyzed the two most important Brazilian inflation measures, the
IPCA, which is the official measure, and the IGP-M, which is used in several
contracts.

Our main objective was to forecast inflation. We used several econometric
models such as AR models, factor models, LASSO, and adalLASSO. The
latter two are models based on shrinkage estimations. This sort of estimation
procedure selects only a few regressors in a high dimensional framework with
hundreds of candidate variables.

We used all the models to produce forecasts for several horizons. The
adaLLASSO was the best model to forecast the IPCA inflation from one up to
four months ahead. On the other hand, for longer horizons, the AR and the

factor models have shown smaller errors. The Giacomini and White test for
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Figure 3.13: Variables selected by the LASSO: IGP-M

equal predictive accuracy showed that, in the IPCA case, the forecasts of all
the models were not statistically different. However, this finding may be due to
the restricted sample size (only 36 observations). Finally, most of the variables
selected by the LASSO and adalLASSO were related to government debt and
to the AR component of inflation.

Regarding the IGP-M inflation, the adaLASSO was statistically the best
model for one-month-ahead forecasts. However, the AR dominated all the other
models for longer horizons. Government debt variables were also selected, but
in a smaller proportion than in the IPCA case. Additionally, the M3 and M4
variables were consistently selected.

We have three main results. First, economic variables other than price

indexes are not good at predicting inflation on longer horizons. Second, apart
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Figure 3.14: Variables selected by the adaLLASSO: IGP-M

from variables related to inflation persistence, government debt variables
represent the most important predictors to forecast short-term inflation. Third,
our evidence is that the inflation mechanisms in Brazil are not those stated by
the Phillips curve, especially when it comes to the unemployment-inflation
relationship. Although Brazilian unemployment indexes are very low, the
proportion of the population that does not work is big due to some public
policies that target only those who are not currently working. These people
are not considered unemployed because they are not looking for jobs. This type
of policy may change the relationship that variables related to production have
with inflation.

Finally, studies such as this one are especially important for emerging

countries like Brazil. It helps academics and practitioners to understand the
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inflation determinants and it also produces reliable forecasts. Many of these
countries, including Brazil, have experienced periods of hyperinflation, and
even though Brazilian inflation is much more under control now than in the
late 1980s and early 1990s, it is still bigger than the inflation in developed
countries and it is much easier for emerging countries to lose control over it.

3.5
Chapter Appendix

3.5.1
Estimation Procedures

In this Appendix, we show some technical details on the estimation
procedure.

3.5.1.1
Differentiation

We used the Augmented Dickey-Fuller test (ADF) and the
Kwiatkowski-Phillips—Schmidt—Shin test (KPSS) to decide whether to
differentiate the variables. An important thing to mention is that we assumed
that the IPCA and the IGP-M indexes are stationary. The ADF strongly
rejected the null, with p-values smaller than 0.01. The KPSS p-value was
greater than 0.1 for both indexes (recall that the null hypothesis for the
KPSS is stationary). Several results for both tests in our dataset indicated
the opposite or that the p-values were very close to the frontier of rejection.
We adopted the criterion of differentiating the time-series when the test
results were not reliable. All variables were differentiated, except the inflation
indexes.

3.5.1.2
LASSO and adaLASSO estimation

The LASSO was estimated using the R package GLMNET package (43).
Let A\ys be the penalty parameter that implies the model with the biggest

possible number of variables, and A. the penalty parameter that results in a
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constant-only model such that A\, < A.. We estimate the LASSO for 100
different values of A\ such that the first model uses A\, and the last model has
only a constant. All the other 98 models have at least one selected variable. This
is the standard procedure in the GLMNET. We select the best 100 models using
the BIC. Figure 3.15 shows the BIC as a function of the penalty parameter. The
dashed line is the best model and the upper axis shows the number of selected
variables in each model (including the constant). Although the function is not

convex, it clearly has a global minimum.

Recall that the adalLASSO estimator is defined as:
N P,

ﬁzargmﬁinllY—XﬂHngA;( 7771851, (3-4)
(13) choose parameter 7 computationally. After estimating the LASSO’s
first step, they estimate the adalLASSO for different 7’s and select the best
model using the BIC in a very similar way to the one implemented to select
the best A. This increases considerably the computational cost since for each
7 we have to estimate 100 models to select the A\. We used the same procedure
to estimate the A, as this is the standard in the R package GLMNET. As for
the 7, we selected one fixed value for each index (0.3 for the IPCA and 0.5
for the IGP-M). The values were selected using the BIC in the first subsample
of the rolling window implementation. This procedure saves time as one 7 is
selected for each window with a negligible variation in the results, given that

the best 7 does not change much across the rolling window samples.
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Figure 3.15: Model selection using the BIC
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3.5.2
List of Variables

Prices

IPCA - general -index (dec. 1993 = 100)
IGP-M - general - index (aug. 1994 = 100)
IGP-DI - general - index (aug. 1994 = 100)
IGP-OG - general - index (aug. 1994 = 100)
IGP-10 - index (ago. 1994 = 100)

Employment and Wages

Unemployment Rate - RMSP

Unemployment Rate - Open - RMSP
Unemployment Rate - Hidden - RMSP
Unemployment Rate - Hidden - Precarious - RMSP
Employment Personnel - Industry

Working Hours (Hours Worked???) - Production - Industry
Number of Employees

Employment level - Industry

Average Income

Minimum Wage - Industry

Real Minimum Wage

Payroll - Industry

Minimum Wage - Purchasing Power Parities
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International Transactions and Government Debt

Balance of Payments - Total Result - US$

Financial and Capital Accounts - US$

Current Transactions - US$

Unrequited Transfers - US$

External Debt - States and Cities

Fiscal Debt - Public Sector

Internal Debt - States and Cities

Internal Debt - Federal Government

Total Net Debt - States and Cities

Total Net Debt - Federal Government and Central Bank

Economic Activity and Production

Apparent Consumption - Alcohol

Apparent Consumption - Oil and Derivatives
Apparent Consumption - Capital Goods

Apparent Consumption - Intermediate Goods
Apparent Consumption - Consumer Goods - All
Apparent Consumption -Durable Consumer Goods

Apparent Consumption -Semi-durable and Non-durable Goods

Apparent Consumption -Industry - General
Apparent Consumption - Manufacturing Industry
Real Income - Industry

Real Sales - Industry

Electricity - Consumption

Default - Number of Queries

Default - New Registers - Net

Economic Condition Index

Bad Checks

Capacity Utilization

Industrial Production - Intermediate Goods
Industrial Production - Plastic and Rubber
Industrial Production - General

Industrial Production - Capital Goods
Industrial Production - Metallurgy
Industrial Production - Cellulose and Paper
Industrial Production - Oil

Industrial Production - Steel

Industrial Production - Motor Vehicles
Slaughter Cattle and Poultry

Slaughter Pigs

Construction Index

o4
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Taxes and Government Income

Cofins - total - Gross Income

Social Contribution over Net Profits
PIS / Pasep - total - Gross Income
Gross Collection of Federal Revenues
Taxes on Goods Circulation
Financial Execution

Import Taxes

Income Taxes - Legal Entity
Income Taxes - Individual

Total Gross Income Taxes

Taxes on Rural Properties

Social Security Cash Flow

Tax on Motor Vehicles

Other Taxes

Payment Rates

Financial Taxes

Industry Taxes

Exchange Rates and Finance

Exchange Rate - Dollar - Commercial
Exchange Rate - Dollar - Tourism
BOVESPA Stock Index

Dow Jones Stock Index

Average Return on Investment Funds
Return on Savings

Returns on Gold

Interest Rate - CDI / Over

Interest Rate - TJLP

Interest Rate - Over / Selic

Money

MO - Monetary Base
M1

M2

M2 - Savings Deposits
M2 - Corporate Securities
M3 - Fixed Income Funds
M3 - New Concept

M4 - New Concept

M4 - Federal Bonds

25
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Economic Confidence

Consumer Confidence Index

Index of Economic Expectations

Government Evaluation - Excellent and Good
Government Evaluation - Regular
Government Evaluation - Poor

Way of Governing - Approves

Way of Governing - Disapproves

Confidence in the President - Good
Confidence in the President - Poor

26
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4
Forecasting Macroeconomic Variables in Data-Rich
Environments

JEL: C22.

Keywords: Big Data, forecasting, LASSO, Shrinkage, Model selection.

Abstract: We show that high-dimensional models produce, on average,
smaller forecasting errors for macroeconomic variables when we consider a
large set of predictors. Our results showed that, empirically, a good selection

of the adaptive LASSO hyperparameters also reduces forecast errors.


DBD
PUC-Rio - Certificação Digital Nº 1421640/CA


PUC-Rio- CertificagaoDigital N° 1421640/CA

Chapter 4. Forecasting Macroeconomic Variables in Data-Rich Environments58

4.1
Introduction

Recent advances in computer science, statistics and econometrics allow
us to work with large and complex datasets. In this paper we consider
high-dimensional econometric models to forecast macroeconomic variables
in situations when is hard to select predictors. Our results show that in
most cases, more complex models provide smaller forecast errors than simple
autoregressive and factor models.

4.2
Econometric Models for Data-Rich Environments

4.2.1
LASSO

The Least Absolute Shrinkage and Selection Operator (LASSO) was
proposed by (2) as an alternative to ridge regression. Instead of imposing
a quadratic penalty on the parameters, the LASSO penalizes their absolute
value. This type of penalization allows irrelevant variables to be shrinked
exactly to zero. The LASSO estimator is defined as

. p

ﬁzargmﬂinllY—XﬂlngrA;Ile, (4-1)
where B is a N-dimensional vector of parameters, X is a 17" x N matrix
of candidate variables,! Y is the dependent variable and ) is the shrinkage
parameter. The second part of (5-4) controls the shrinkage and depends
directly on the size of A\, which is selected using the BIC.

However, (3) showed that the LASSO does not have the oracle property
and its performance tends to deteriorate as we increase the number of
candidate variables. (3) showed that the oracle could be achieved by using a

weighted penalization with weights estimated from a first-step model. This

new estimator is the adaptive LASSO (adaLASSO), defined as:

!The LASSO can be used even when N > T (16).
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p
ﬂZargmﬁinHY—Xﬂ!|§+)\zwj!5jl7 (4-2)
j=1
where w; = |B}‘|_T, 3;‘ is a parameter estimated in a first-step, and 7 > 0

determines how much we want to emphasize the weights.

We estimated the adaLLASSO using the LASSO as the fist-step and 7 = 1,
or using the elastic-net? as first step, selecting 7 using the BIC. We call this
last model flex-adalLASSO.

4.2.2
Bagging

The use of bagging to forecast time-series was proposed by (44). It
consists on using several bootstrap samples to estimate the parameters,
selecting the relevant variables on each sample using t-statistics. After we
computed the forecasts using the estimated parameters from each bootstrap
sample, we use the average forecast as the final object.

The bootstrap samples were draw using block-bootstrap and the number
of samples was 100. Since we are dealing with 130 variables, and we also use lags
and factors as candidate variables, we did a pre-testing to select the relevant
variables in two steps. First, we divided the sample into five arbitrary groups
of variables and selected those with |¢| > 1.96. Then we did another pre-testing
with the selected variables from the five groups. The ones that remained with
|t| > 1.96 were selected.

4.2.3
Target Factors

(6) showed that one could achieve better forecasting results using factor
models considering which variable is going to be predicted. In other words, if

we have a very large set of potentially relevant variables, we could improve our

2The elastic-net is a convex combination of the LASSO penalization and the ridge
penalization. We determined how much weight to put on each penalization also using the
BIC. This procedure has a very high computational cost.
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forecasts simply by doing some type of pre-test to select which variables might
be more relevant to forecast our targeted variable.

Let y; be the variable we want to forecast, h is the forecasting horizon
and W, contains a set of controls in the pre-test. In our case, W contains only
lags of y;. Furthermore, X;;, ¢ = 1,..., N represents the candidate variables.

The details of the pre-test are as follows:

1. For each i = 1,..., N, fit a regression® of y,,, on W, and X;; and save

the t-statistics for all Xj;.
2. Sort the absolute t-statistics of each Xj;; in descending order.

3. Select a significance level a. The variables considered as relevant will be

those with |t;| bigger than the critical value.

4. Let x(a) be the selected relevant variables. Compute factors F; from

@,(«) using principal components.

5. Fit a regression of y;,, on W, and ]Act c F..

In the last step, we selected f, using the criteria in (4). Additionally,
instead of selecting lags for f, using the BIC like (6), we allowed four lags of
each candidate variable in the pre-testing procedure.

4.2.4
Complete Subset Regression

The Complete Subset Regression (CRS) was proposed by (45). It consists
of selecting a number & < N, where N is the number of variables in the
database, and fit regressions for all possible combinations of k£ variables. In
our case we have 25 variables and & = 4, therefore we had to estimate
12,650 regressions. The final forecasts is the average forecast computed from

all regressions.

3We followed (6) and used W as four lags of y;.
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Note that, initially, we have 131 potential variables, and as in the target
factors case, we allowed four lags of each variable. This number of variables
makes the CSR computationally infeasible, therefore, we had to use a pre-
testing procedure to select only a few variables (25). Following the same

notation we used for the target factors, the pre-testing is described below:

1. For each i = 1,..., N, fit a regression of y;;5 on X;;. This time we did
not use fixed controls W, the autorregressive variables were treated as

variables in X;.
2. Select the K variables with biggest |t|. We used K = 25.

3. Fit regressions for y;,;, using all possible subsets of k variables from the

K pre-selected variables. In our case, k = 4.

4. Compute the final forecast as the average forecast from all the fitted

regressions.

4.3
Estimation Procedures and Data

4.3.1
Estimation Procedures

We estimated models directly for the horizons we wanted to forecast,
in this case, one and four steps ahead. Furthermore, we used a rolling
window scheme of 144 windows to compare the forecasts. Considering the

particularities of each model, the estimated equation was:

N
Yi+n = Qo + Z Biis + €14 (4-3)

i=1

where, y; is the variable we want to forecast, h is the forecast horizon, aq is
a constant, (; are the regression parameters, x;; represents all variables, or in
some cases, candidate variables and &; is an error term.

We used autoregressive terms in all models. They are candidate

variables on the LASSO models, CSR and Bagging. In the target factors,
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Mean SD Min Max

CPI 0.0033 0.0032 -0.0179 0.0181
emptot  0.0014  0.0026 -0.0099  0.0147
iptot ~ 0.0022  0.0077 -0.0413  0.0309
ncom 63.0539 14.8183 18.0000 97.6000
nempl 49.1782  6.9385 25.3000 67.8000
nprod 55.4676  7.4651 26.3000 80.6000

Table 4.1: Descriptive Statistics

four autoregressive lags were included in the regression, they are represented
by W, which is used as fixed control on the pre-testing and on the factor
regression.

4.3.2
Data

We used 131 macroeconomic variables related to the US economy. The
period of analysis is from January 1960 to December 2011. This data-set was
also used by (46). We selected six variables from the data to be forecasted using
all the remaining 130 variables. The selected variables were the CPI inflation,
variations on the total total number of employees on the private sector except
by the farm (emptot), variations on the aggregated industrial production index
(iptot) and NAPM indexes for commodities (ncom), employment (nempl) and
production (nprod).

4.4
Results

In this section we show the results for h = 1 and h = 4. First, Table 4.1
shows descriptive statistics for the forecasted variables. The forecast results
for h = 1 are displayed in Table 4.2 where the values in parenthesis are the p-
value of the test of (42) using the AR(4) as benchmark. The results show that
the flex-adalLASSO produces smaller forecast errors for all variables. The high-
dimensional models provided better forecasts for all variables, except for the
emptot, where these models had forecast errors equal to the AR(4) on average.

The CSR was the high-dimensional model with the worst performance.


DBD
PUC-Rio - Certificação Digital Nº 1421640/CA


PUC-Rio- CertificagaoDigital N° 1421640/CA

Chapter 4. Forecasting Macroeconomic Variables in Data-Rich Environment$3

Cpl  EMPTOT IPTOT NCOM NEMPL NPROD

AR(4) 0.0033 0.0011 0.0068 6.13 2.44 3.21

AR(4) + Factors 0.0033 0.0012 0.0061 6.04 2.29 3.06
(0.760) (0.271) (0.068) (0.844)  (0.288) (0.414)

T. Factors 0.0032 0.0012 0.0060 6.37 2.34 3.04
(0.914) (0.192) (0.049) (0.099)  (0.509) (0.736)

Lasso 0.0029 0.0012 0.0065 5.90 2.40 3.02
(0.021) (0.081) (0.036) (0.370)  (0.992) (0.336)

adaLasso 0.0031 0.0011 0.0065 11.49 3.86 3.90
(0.008) (0.663) (0.457)  (0.000)  (0.000) (0.002)

PO adaLasso 0.0031 0.0011 0.0065 10.94 2.33 3.52
(0.223) (0.849) (0.288) (0.000)  (0.750) (0.151)

Flex-adaLasso 0.0028 0.0011 0.0059 5.72 2.26 2.75
(0.079) (0.562) (0.001) (0.078)  (0.315) (0.013)

PO flex-adalasso  0.0029 0.0011 0.0059 5.78 2.27 2.73
(0.126) (0.929) (0.002) (0.126) (0.314) (0.009)

Bagging 0.0030 0.0011 0.0064 6.16 2.29 2.90
(0.114) (0.414) (0.329) (0.822) (0.999) (0.182)

CSR 0.0032 0.0013 0.0065 8.26 3.16 3.90

(0.061)  (0.002)  (0.019) (0.000) (0.000)  (0.001)

Values in parenthesis are the GW p-values using the AR(4) as benchmark and rows
with PO are post-ols estimation.

Table 4.2: RMSE across the rolling windows and Giacomini-White test for
h=1

Table 4.3 shows the results for four steps ahead forecasts. The Flex-
adalLASSO had the smallest forecast errors for four of the six variables. The
target factor had the smallest errors for the variable emptot, however it was
not statistically different from that of the AR(4). The AR(4) generated the
smaller errors for the iptot variable, but it was also not statistically different
from the forecasts of many other models.

Additionally, there was no significant gain in estimating the post-ols for
the adaLASSO and the flex-adalLASSO. Finally, the parameter 7 from the
adalLASSO seems to make a big difference on the results. For example, on the
ncom variable for h = 1, the adaLASSO had very big erros, however, when we
selected the 7 using the BIC as in the flex-adaLASSO, the adaLASSO went

from the worst model to the best model.
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Ccpl  EMPTOT IPTOT NCOM NEMPL NPROD

AR(4) 0.0038 0.0017 0.0072 14.59 4.78 6.37

AR(4) + Factors 0.0037 0.0016 0.0073 14.18 4.69 6.07
(0.764) (0.501) (0.617) (0.898)  (0.369) (0.594)

T. Factors 0.0036 0.0015 0.0074 14.17 4.58 6.05
(0.513) (0.949) (0.865) (0.661)  (0.371) (0.298)

Lasso 0.0036 0.0019 0.0078 13.18 4.38 6.28
(0.099) (0.000) (0.075) (0.004)  (0.127) (0.668)

adaLasso 0.0035 0.0016 0.0073 14.12 6.44 7.39
(0.020) (0.201) (0.866) (0.830)  (0.000) (0.004)

PO adaLasso 0.0035 0.0017 0.0077 14.21 6.38 7.28
(0.071) (0.169) (0.349) (0.809)  (0.000) (0.007)

Flex-adalLasso 0.0035 0.0017 0.0075 12.69 4.08 5.67
(0.051) (0.056) (0.047) (0.015)  (0.031) (0.023)

Po flex-adaLasso 0.0035 0.0017 0.0079 12.87 3.99 5.69
(0.256) (0.070) (0.005) (0.041)  (0.015) (0.055)

Bagging 0.0037 0.0017 0.0076 14.19 4.50 5.84
(0.917) (0.440) (0.107) (0.571)  (0.312) (0.156)

CSR 0.0036 0.0020 0.0079 13.15 5.08 6.80

(0.011)  (0.000)  (0.126) (0.016) (0.005)  (0.243)

Values in parenthesis are the GW p-values using the AR(4) as benchmark and rows
with PO are post-ols estimation.

Table 4.3: RMSE across the rolling windows and Giacomini-White test for
h=4

4.5
Conclusion

We showed that high-dimensional models such as LASSO and Bagging
provide smaller forecast errors for some macroeconomic variables. The results
for target factors and complete subset regression were less conclusive. The
adalLASSO had the smaller forecast errors of all models when we allowed the

hyper
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Real-Time Inflation Forecasting with High-Dimensional
Models: The Case of Brazil

JEL: C22.

Keywords: real-time inflation forecasting, emerging markets, shrinkage,
factor models, LASSO, regression trees, random forests, complete subset
regression, machine learning, model confidence set, forecast combination,
expert forecasts.

Abstract: We show that high-dimensional econometric models, such as
shrinkage and complete subset regression, perform very well in real time
forecasting of inflation in data-rich environments. We use Brazilian inflation
as an application. It is an ideal example because it exhibits high short-term
volatility and several agents devote extensive resources to forecast its
short-term behavior. Therefore, precise specialist’s forecasts are available
both as a benchmark and as an important candidate regressor for the
forecasting models. Furthermore, we combine forecasts based on model
confidence sets and we show that model combination can achieve superior
predictive performance.

5.1
Introduction

Forecasting inflation in real-time is a difficult task and it has been
extensively studied in the literature. At least since (47) introduced the concept
of real interest rates, forecasting inflation has been a crucial issue for both
academics and practitioners. We estimate models to forecast inflation in real-

time and in data-rich environments. By real-time we mean that forecasts are
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computed by using solely the information available to the econometrician at
the time the forecasts are made. A data-rich environment is the one where the
number of potential predictors is large, possibly larger than the sample size.
We consider the case of an emerging economy with inflation targeting, where
precise inflation forecasts are of utmost importance for monetary policy and
investment strategies (48).

Emerging markets usually exhibit higher and more volatile inflation,
which tend to shorten the investment horizon. In Brazil, a country that
conquered hyperinflation only in 1994, most fixed income assets are still very
short. Therefore, the importance of forecasting short-term inflation is higher
than in advanced economies, with more resources being devoted by financial
institutions to such endeavor. Forecasting short-term inflation in Brazil is not
only hard enough an exercise, with lots of data, but also one where extremely
good expert forecasts exist with which different econometric techniques may
be compared.

The literature on inflation forecasting is vast and there is substantial
evidence that models based on the Philips curve do not provide good inflation
forecasts. Although (33) showed that many production-related variables are
useful predictors of the US inflation, (34) showed that in many cases the Philips
curve fails to beat even simple naive models. These results inspired researchers
to look for different models and variables in order to improve inflation forecasts.
Among the variables used are financial variables (36), commodity prices (35)
and expectation variables (37).

Real-time inflation forecasting has been recently considered by several
authors. (48) evaluate forecasts made in real time to support monetary policy
decisions at the Swedish Central Bank from 2007 to 2013. The authors
compare Dynamic Stochastic General Equilibrium (DSGE) models with
Bayesian  Vector Autoregressive (BVAR) models. (49) propose a

mixed-frequency model for daily forecasts of euro area inflation in real-time.
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The authors showed that the mixed-frequency model has superior predictive
performance with respect to forecasts based only on economic derivatives.
(50) consider real-time inflation forecasts by AR models and with revised
data. Finally, (37) evaluate the use of Bayesian Model Averaging (BMA) to
forecast inflation in real-time. However, none of these authors have
considered the use of large-dimensional machine learning models.

There is also a growing literature on inflation forecasting in Brazil. (30)
used several linear and nonlinear models and the Phillips curve to forecast
inflation. The authors showed that some nonlinear models and the simple
autoregressive (AR) model produce smaller forecast errors than the Phillips
curve. (31) used long-memory heteroskedastic models to show that Brazilian
inflation has long-range dependence both on the mean and on the variance.
However, they do not exclude the importance of the short-term AR component.
The relevance of past inflation is also pointed out by (32). More recently, (11)
considered different high-dimensional models to forecast Brazilian inflation.
The authors showed that techniques based on the Least Absolute Shrinkage
and Selection Operator (LASSO) have the smallest forecasting errors for short
horizon forecasts. For longer horizons, the AR benchmark is the best model
with respect to point forecasts, even though there is no significant differences
between them. Factor models also produces some good long-horizon forecasts
in a few cases. However, none of the above papers consider real-time forecasts.

In this paper, we make use of the most important advances in econometric
modeling to estimate real-time forecasts of the Brazilian CPI inflation (IPCA).
This is not only the most widely used inflation measure in Brazil, but is also
the index used to set the inflation target for central bank policy.

As far as we know, this is the first paper to use high dimensional and
machine learning models to forecast inflation in real-time for an emerging
economy, using expert survey forecasts as potential candidate predictors. The

models used here may be classified into shrinkage models, such as the LASSO


DBD
PUC-Rio - Certificação Digital Nº 1421640/CA


PUC-Rio- CertificagaoDigital N° 1421640/CA

Chapter 5. Real-Time Inflation Forecasting with High-Dimensional Models:
The Case of Brazil 68

(2), the adaptive LASSO (3), or the Post-Ordinary Least Squares (51), and
models that combine information, such as target factors (6) and Complete
Subset Regression (45, 20). We also included AR models and Random Walk
forecasts as benchmarks and the Random Forest model (9) as a nonlinear
alternative. As a robustness check, we also compare the high-dimensional
models with the Unobserved Component Stochastic Volatility (UC-SV) model
advocated by (52) and a Bayesian vector autoregression with priors from (10).
Furthermore, we use specialist’s forecasts compiled by the Brazilian Central
Bank (BCB) both to gauge the quality of our forecasts and to include them as
potential variables in our models. The specialist’s forecasts are obtained in the
FOCUS report, which contains expectations for several variables regarding the
Brazilian economy (53). The FOCUS is an online environment that collects
projections from more than a hundred professional forecasters about key
Brazilian macroeconomic variables. The report was created to support the
inflation target regime and it is published by the Brazilian Central Bank
weekly, every Monday. The information is collected from several agents in the
market such as banks, fund managers, and consulting companies. We use the
median, the mean and the standard deviation of these market expectations
in our models. Additionally, the FOCUS report also publishes the Top5
expectations, which includes only the five agents which were more accurate on
previous periods. The expectations are collected daily, but many forecasters
update their forecasts only on Friday, since the survey is published every
Monday. Besides inflation, the report also publishes expectations on GDP,
industrial production, exchange rates and other variables. All this information
is used by the Brazilian Central Bank to gauge its monetary policy. Finally,
following (54), we use a forecast combination strategy based on the model
confidence sets proposed by (55). The idea is to compute the average of the
forecasts from the models included in a given confidence set. We show that

this delivers superior forecasts than all individual models as well as the simple
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average of all models.

We estimated forecasts for the following forecast-horizons: five days
before the CPI index is published to 11 months plus five days (12 forecasts
on total). For five-day-ahead, the LASSO and the FOCUS (expert forecast)
are virtually the same. For the second horizon, the adaptive LASSO is
superior than any other model. For the remaining horizons, the Complete
Subset Regression dominates all other alternatives. The results are the same
if we either use the root mean squared error or the mean absolute error. In
terms of accumulated inflation, the Complete Subset Regression is the model
which delivers the most precise forecasts. However, most of the forecasts from
different models are not statistically different according the model confidence
set. In light of this finding, we construct the final forecast as the average
of the models included in the confidence set. This approach delivers the
best forecasts among all the competing alternatives. Finally, we also compute
density forecasts for each model based on bootstrap re-sampling. According
to the log-score statistic, the CSR has superior performance for most of the
forecasting horizons except the first two where LASSO based methods are
ranked as the best models.

Following this Introduction, this paper has four sections. In Section 2,
we describe the models that were used, as well as the empirical procedures. In
Section 3, we explain the dataset. The main results are presented and discussed
in Section 4. Finally, the main conclusions are summarized in Section 5. A
description of the dataset is included in the appendix.

5.2
Empirical Methods

In this section we describe the methods used in this paper to forecast
future inflation. We consider a direct forecast approach where the inflation
h-periods-ahead, w5, is modeled as a function of a set of predictors measured

at time t such as:
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Topn = 1T(21) + Upn, (5-1)

where T'(x;) is a possibly nonlinear mapping of a set of ¢ predictors and
Uy, is the forecasting error, @ = (214,...,74) € X C R? may include
weakly exogenous predictors, lagged values of inflation and a number of factors
computed from a large number of potential covariates. Importantly, as we
focus on real-time forecasts, x; contains only variables that are observed and
available to the econometrician at time ¢. Many variables are published months
after their period of reference. These variables are not included in the dataset
at time t. Note further that by considering direct forecasts models for each
horizon, this avoids the necessity to estimate a model for the evolution of ;.

For most of the methods considered in this paper, the mapping T'(+) is
linear, such that:

T = B + Urpn, (5-2)

where B € R? is a vector of unknown parameters.

5.2.1
Factor Models with Targeted Predictors

Factor models using principal components are a very popular approach to
avoid the curse of dimensionality when the number of predictions is potentially
large. The idea is to extract common components from all variables, thus
reducing the model dimension.

Consider equation 5-2. When the number of candidate predictors ¢ is
large, potentially larger than the sample size T, ordinary least squares (OLS)
is either infeasible or have a very large variance. One solution to circumvent
this drawback is to use factors as predictors instead of x;. The factors can
be observed as in Fama and French (1993,1996) or unobserved as in (56) and
(57). Our focus are on unobserved factors. Consider the following forecasting

model: »
Tith = Z’Y;ftfi + Uth, (5-3)

i=1

where, f, is a vector of £ of common factors extracted from x; and k is
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much smaller than ¢g. Note that f, is not observed and must be estimated by
principal components. The assumptions and the theory behind factor models
and when can we treat factors as observed variables can be found in Bai and
Ng (2002,2006,2008).

In order to improve the forecasting performance of factor models, (6)
proposed targeting the predictors. The idea is that if many variables in a;
are irrelevant predictors of 7.y, factor analysis using all variables may result
in noisy factors with poor forecasting ability. The target factors are regular
factor models with a pre-testing procedure to select only relevant variables
to be in included in the factor analysis. We show the steps of this procedure
pointing out where our methodology differs from that proposed by (6). Let
Zig, © = 1,...,q, be the candidate variables and w; a set of fixed regressors
that will be used as controls in the pre-testing. We follow (6) and use w; as

AR terms of ;. The procedure is described as follows.

1. Fori=1,...,q, regress m), on w; and x;; and compute the t-statistics
for the coefficient corresponding to x;,. We include four lags of each
candidate variable in the pre-testing. (6) uses only the variables in ¢ and

select the lags latter.
2. Sort all ¢-statistics calculated in Step 1 in descending order.

3. Choose a significance level «, and select all variables which are significant

using the computed t-statistics.

4. Let x¢(a) be the selected variables from Steps 1-3. Estimate the factors

F, from x;(«) by principal components.

5. Regress my1p on w; and f, C F;. The number of factor in f, is selected
using the BIC. (6) selected also the number of lagged factors using the
BIC. However, since we use lagged variables as regressors in the pre-

testing, we did not use lagged factors.
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The same procedure was used by (58). The authors showed that, in most
cases, target factors slightly reduce the forecasting errors compared to factor
models without targeting.

5.2.2
LASSO and adaptive-LASSO

A successful alternative to factor models to estimate parameters in large
dimensions is to use shrinkage methods. The idea is to shrink to zero the
parameters corresponding to irrelevant variables. Under some conditions, it
is possible to handle more variables than observations. Among shrinkage
methods, the Least Absolute Shrinkage and Selection Operator (LASSO),
introduced by (2), and the adaptive LASSO (adaLASSO) of (3), have received
particular attention. It has been shown that the LASSO can handle more
variables than observations and the correct subset of relevant variables can
be selected (59, 16, 38). As noted in (16) and (3), for attaining model
selection consistency, the LASSO requires a rather strong condition denoted
“Irrepresentable Condition” and does not have the oracle property. (3) proposes
the adaLASSO to amend these deficiencies. The adaLASSO is a two-step
methodology which uses a first-step estimator, usually the LASSO, to weight
the relative importance of the regressors.

The LASSO estimator is defined as

A

T q

= arg mln [Z Tieh — iL‘t)Q A |/8j|] , (5-4)
t=1 j=1

where A\ controls the amount of shrinkage and is determined by data-driven

techniques such as cross-validation or the use of information criteria.

The adaLLASSO is defined as:

T q
B = arg mﬁin {Z (Ten — B/ict)Q + A Z wj|ﬁj’] g (5-5)

=1 j=1

where w; = | Bj|_7 represents different weights on the penalization of each

variable, 3%

* is the parameter estimated on a first step, and 7 > 0 determines
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how much we want to emphasize the difference of the weights. (17) showed
that the conditions that must be satisfied on the adalLASSO are very general.
The model works even when the number of variables increases faster than the
number of observations and when errors are non-Gaussian and heteroskedastic.

The most usual is to make 7 = 1. However, (58) showed that selecting
7 using the BIC reduces the forecasting errors. They refer to this model as
Flex-adaLASSO. The 7 is not bounded on both sides as the A. If 7 — 0 then
we have the traditional LASSO without weights, however, we do not have an
upper bound. Note that if 7 — oo, then the w; — 0 and we have no penalty.
Thus, in order to select the 7 using an information criterion, one must establish
an upper bound or the problem becomes computationally infeasible. If we use
the LASSO as the first model, than some weights will be infinite. To deal with
this issue computationally, we sum T3 to all coefficients from the first model.

(51) showed that the estimating a linear regression with the variables
selected by the LASSO (post-OLS) is at least as good as the LASSO itself in
terms of rate of convergence to the oracle and it also has a smaller bias. We
estimated the post-OLS regression for the Flex-adaLLASSO in order to check
if it reduces forecasting errors.

5.2.3
Random Forest

The Random Forest (RF) methodology was initially proposed by (9) as
a solution to reduce the variance of regression trees and is based on bootstrap
aggregation (Bagging) of randomly constructed regression trees.

A regression tree is a nonparametric model based on the recursive binary
partitioning of the covariate space X where the function 7'(-) is a sum of
local models (usually just a constant), each of which is determined in K € N
different regions (partitions) of X. The model is usually displayed in a graph
which has the format of a binary decision tree with N € N parent (or split)

nodes and K € N terminal nodes (also called leaves), and which grows from
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the root node to the terminal nodes. Usually, the partitions are defined by a
set of hyperplanes, each of which is orthogonal to the axis of a given predictor
variable, called the split variable. Hence, conditionally to the knowledge of the
subregions, the relationship between 7, and x; in (5-1) is approximated by
a piecewise constant model, where each leaf (or terminal node) represents a
distinct regime.

To mathematically represent a complex regression-tree model, we
introduce the following notation. The root node is at position 0 and a parent
node at position j generates left- and right-child nodes at positions 25 + 1
and 25 + 2, respectively. Every parent node has an associated split variable
Ty, € X¢, where s; € S = {1,2,...,¢}. Furthermore, let J and T be the sets
of indexes of the parent and terminal nodes, respectively. Then, a tree
architecture can be fully determined by J and T.

The forecasting model based on regression tree can be mathematically

represented as

Teen = Hyr(xe9) + wen = Y BiByi (%45 0;) + wepn (5-6)
ieT
where
g5 (4ng 5) (1=n4,5)(1+ni,5)
By; (x4;0;) = H I(xg, 15 ¢5) P [1 — I(,; 1; cj)} , (5-7)
F€T

1 ifa,,, <c
Iy sic) = (59)

0 otherwise,

—1 if the path to leaf i does not include the parent node j;

Nij =140 if the path to leaf 7includes the right-child node of the parent node j;

1 if the path to leaf 7includes the left-child node of the parent node j.
(5-9)

Let J; be the subset of J containing the indexes of the parent nodes that form
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the path to leaf i. Then, 6; is the vector containing all the parameters ¢ such
that k € J;, ¢ € T. Note that 3_;c; By (x;0;) = 1, Vx, € R7TL
A Random Forest is a collection of regression-trees each of which is
specified in a bootstrapped sub-sample of the original data. Suppose there
are B bootstrapped sub-samples and denote Hy,r,(-;%,) as the estimated
regression-tree for each one of the sub-samples. The final prediction is defined
as: | B
Tish = 5 bz:; Hy,m, (@45 9. (5-10)
For each of the bootstrapped sub-samples a regression-tree is estimates
by recursively repeating the following steps for each terminal node of the tree

until the minimum number of observations at each node is achieved.
1. Randomly select m out of ¢ covariates as possible split variables.
2. Pick the best variable/split point among the m candidates.
3. Split the node into two children nodes.

Random Forests can deal with a very big number of explanatory variables
and the predicted model is highly nonlinear. It is important to notice that since
we are dealing with time-series, bootstrap samples are calculated using block
bootstrap.

5.2.4
Complete Subset Regression with Targeted Predictors

The Complete Subset Regression (CSR) was developed by (45, 20). The
motivation is that selecting the optimal subset of x; to predict m;,, by testing
all possible combinations of regressors is computationally very demanding
and in most of the times even unfeasible. Suppose that we have ¢ candidate
variables, the CSR selects a number n < ¢ and computes all combinations
of regressions using only n variables. The forecast of the model will be the

average forecast of all regressions in the subset.
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The CSR deals well with a small number of candidate variables. However,
for large sets the number of regressions to be estimated increases very fast. For
example, with ¢ = 25 and n = 4 we need to estimate 12,650 regressions.
As the number of candidate variables is much larger, we adopt a pre-testing
procedure similar to the one used with the target factors. We start fitting a
linear regression of 7,5 on each of the candidate variables (including lags) and
saving the t-statistics of each variable!. The t-statistics are ranked in absolute
value and we select the ¢ variables which are more relevant on the ranking.
The CSR forecast is calculated on these variables. We used ¢ = 25 and n = 4.

5.3
The Data

Inflation is measured by the Brazilian Consumer Price Index (IPCA),
which is the official inflation index in Brazil. Furthermore, a sizeable amount
of inflation-linked bonds use the IPCA as reference. The dataset is obtained
from Bloomberg and from the Central Bank of Brazil, covering the period
from January 2003 to December 2015, a total of 156 observations. We have
59 macroeconomic variables and 34 variables linked to specialist forecasts.
The number of macroeconomic variables is smaller than that of (11) because
we are using only variables available on the period the forecast is computed.
The dataset also includes expert forecasts from the FOCUS survey produced
by the Central Bank of Brazil. Among expectation variables we consider the
median of the h-period-ahead specialist forecasts, the median of the top five
(Top5) experts, i.e., the five experts who produced the best forecasts in the
previous period, and, finally, the mean and the standard deviation of the Topb.
The macroeconomic variables cover several inflation and industry indexes,
unemployment and other variables related to labour, energy consumption,
exchange rates, stock markets, government accounts, expenditure and debt,

taxes, monetary variables and exchange of goods and services. The inflation

'We did not use a fixed set of controls, w;, in the pre-testing like we did on the target
factors.
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series as well as the Top5 median are presented in Figure 5.1. As can been
seen from Figure 5.1, the Topb delivers the smallest RMSE for h = 1 (five-day-

ahead) but rapidly looses performance as h grows.

Panel(a): t+1 Panel(b): t+2

Inflation %
1.0

0.5

0.0

Panel(c): t+6 Panel(d): t+12

Inflation %
1.0

0.5

0.0
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Figure 5.1: Brazilian Consumer Prices Index and Focus Top5 Forecasts

5.4
Main Results

5.4.1
Forecasting Errors

We estimate all models described in Section 5.2 for h = 1,...,12. Recall
that h = 1 is five days before the IPCA inflation is published, h = 2 is one
month plus five days and h = 12 is 11 months plus five days. In this section
we show the results and compare the forecasting errors of all models. We also
estimate autoregressive models with lags selected by the BIC and include as
well Random Walk forecasts in the comparison. All models are estimated in a

nine-year rolling-window scheme and the first forecast is for January 1, 2012.
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Therefore, the models are evaluated based on 48 point forecasts with the last
forecast being for December 20152, This period covers different situations of
the Brazilian economy. In 2012 and 2013 the Brazilian GDP increased 1.9%
and 3% respectively, 2014 had an increase of 0.1% and 2015 had a decrease
of 3.7%. Figure 5.1 shows that the state of the economy does not affect the
precision of the short term forecasts. However, for longer forecasting horizons
the errors are bigger in 2015, which was an year of 10.67% inflation. Note that
the inflation target is 4.5% and its ceiling is 6.5%.

Table 5.1 shows the root mean squared error (RMSE) and the Mean
Absolute Error (MAE) for all forecasting models. The model with the smallest
forecasting error in each horizon is displayed in bold font. The last column of
Table 5.1 shows the cumulative error for the 11 months inflation. The LASSO
and the Flex-adalLASSO have the smallest errors for h = 1 and h = 2 and
the CSR has the smallest errors for all other horizons. However, for h = 1,
the forecasts from the LASSO are not statistically different from the expert
forecasts. On the other hand, for larger horizons there is a substantial gain from
using the CSR models. The target factor models become more competitive as
h increases. The Random Walk and the autoregressive models have both a
poor performance. The Random Forest was not the best model in any horizon,
however, its performance was not bad overall. Its cumulative forecasting error
was smaller than that of the FOCUS, the Top5 and the LASSO. Additionally,
the Post-OLS estimation with the variables selected by the Flex-adalLASSO
delivers larger errors than the Flex-adalLASSO itself.

The reason the LASSO and the Flexible adalLASSO are the best models
for small horizons is due to the fact that expert forecasts are very precise
for h = 1 and h = 2. As previously mentioned, market players devote

considerable amount of resources to inflation forecasting. Therefore, variable

2We start producing forecasts in 2012 in order to have a reasonably number of point
forecasts for each forecasting horizon and still have enough observations for the in-sample
estimation of the models. As the models are for direct forecasts, we have 108 observations
to estimate models for h = 1, 107 for h = 2, and so on. We also show results for 24 rolling
windows.
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The table shows the root mean squared error and the mean absolute deviation, in parenthesis, of the forecasts. The values in bold represent the
best model in each measure of error and each forecasting horizon. All values are multiplied by 1000. The column Acc. shows the errors of the
forecast accumulated over 11 months

Brazilian Consumer Price Index

RMSE x 1000 Forecast Horizon

(MAE x 1000) t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12 Acc.
RW 241 3.23 3.68 4.10 4.40 4.62 4.76 4.33 3.76 3.40 3.03 2.75 33.94
(1.99)  (2.63) (3.01) (3.38) (3.44) (3.64) (3.71) (3.41) (3.04) (2.73) (2.58) (2.13) (26.11)

AR 230 2.89 3.26 3.31 3.23 3.18 3.04 2.82 2.72 2.70 2.67 2.64 20.75
(1.93)  (2.21) (247) (2.60) (2.54) (249) (2.37)  (2.16) (2.13)  (2.07) (2.06) (2.01) (16.14)

Factors 1.33 2.19 2.42 2.48 2.44 2.49 2.48 2.37 2.29 2.50 2.38 2.44 14.31
(0.98) (1.75) (1.88) (1.93) (1.83) (1.91) (1.96) (1.89) (1.79) (2.01) (1.86) (1.93) (9.63)

LASSO  0.95 1.85 2.85 3.21 2.75 2.83 2.79 3.33 2.80 3.33 3.51 3.33 17.09
(0.74) (1.46) (2.28) (2.44) (2.11) (224) (2.12) (2.65) (2.15) (2.69) (2.89) (2.71) (12.42)

F.aL 098 1.58 2.20 2.43 2.39 2.42 2.53 2.86 2.48 2.56 2.54 2.46 13.50
(0.75)  (1.30) (1.75) (1.94) (1.82) (1.89) (2.04) (233) (1.94) (206) (2.01) (1.88) (9.39)

P.OLS  0.98 1.62 2.23 2.23 2.49 2.52 2.53 3.08 2.52 2.66 2.61 2.46 14.02
(0.75)  (1.34)  (1.80)  (1.80) (1.89) (1.97) (2.02) (2.48) (1.94) (2.11) (2.06) (1.89) (9.58)

RF 1.43 1.95 2.56 2.54 2.66 2.88 2.82 2.85 2.71 2.65 2.64 2.46 15.67
0.97)  (145) (1.93) (1.93) (2.06) (2.30) (2.21) (225) (2.09) (1.96) (1.99) (1.82) (12.36)

CSR 1.05 1.64 2.04 2.23 2.25 2.29 2.29 2.26 2.26 2.27 2.25 2.26 11.93
(0.88) (1.33) (1.69) (1.75) (1.79) (1.80) (1.80) (1.80) (1.81) (1.79) (1.77) (1.78) (8.41)

FOCUS 0.95 1.83 2.39 2.48 2.53 2.57 2.56 2.53 2.55 2.57 2.58 2.60 16.82
(0.76)  (1.50)  (1.87)  (1.91) (1.93) (1.97) (1.94) (1.91) (1.93) (1.93) (1.94) (1.96) (12.51)

Top 5  0.96 1.69 2.32 2.48 2.62 2.70 2.77 2.67 2.51 2.65 2.56 2.55 16.69

(0.74)  (1.39) (1.83) (1.90) (1.99) (2.07) (2.06) (2.03) (1.99) (1.97) (1.91) (1.89) (12.12)

Table 5.1: Forecasts Mean Absolute Errors and Root Mean Squared Errors

selection models such as the LASSO perform better than those methods
that combine information from many variables such as target factors and
CSR. However, as we increase the forecast horizons the expert forecasts
loose their prediction power of prediction and many variables become more
relevant. Models that combine information can successfully extract common
information on all variables that are useful to forecast inflation. Figure 5.2
shows the average number of variables selected by the LASSO and the Flexible
adaLASSO in all horizons. For h = 1 and 2, the number of selected variables is
very small for both models, and it gets bigger for other horizons, especially in
the case of the LASSO. For shorter horizons, the Flexible adalLASSO is mostly
a combination of specialist forecasts.

Frequently, the model with the smallest average squared error may not
be the model with smallest errors in most of the 48 rolling windows. Table 5.2
shows the ranking of models for each forecasting window. The table reports the
proportion of cases where each model is in each position of the ranking. The
results are aggregated for all horizons. Surprisingly, the Random Walk, which
performed badly in terms of average errors, is the best model in 24% of the
cases, the same proportion as the Top5. However, the same two models deliver

the worst forecasts in 19% and 17% of the cases, respectively. The CSR model,
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Figure 5.2: Average Number of Selected Variables by the Shrinkage Methods

The table shows the proportion which each model is in each ranking position.
The results are aggregated for all forecasting horizons.

Brazilian Consumer Price Index
Model Position

1 2 3 4 ) 6 7 8 9 10

Rw 0.24 001 0.08 0.07 0.02 0.056 0.03 0.02 0.28 0.19
AR 004 0.06 0.06 0.06 0.03 0.07 0.06 0.06 0.24 0.31
Factors 0.14 0.05 0.18 0.07 0.09 0.15 0.09 0.10 0.06 0.08
LASSO 0.06 0.08 0.12 0.08 0.15 0.15 0.14 0.18 0.02 0.02
F.aL. 0.03 0.07 0.10 0.14 0.18 0.15 0.09 0.20 0.02 0.02
P.OLS 0.05 0.10 0.11 0.12 0.18 0.12 0.11 0.17 0.03 0.02
RF 0.05 0.14 0.11 0.16 0.17 0.09 0.11 0.13 0.03 0.03
CSR 0.07 0.14 0.10 0.15 0.10 0.10 0.15 0.09 0.06 0.04
FOCUS 0.08 0.16 0.08 0.07 0.05 0.06 0.16 0.04 0.19 0.12
Top5 0.24 0.20 0.06 0.08 0.02 0.05 0.09 0.02 0.07 0.17

Table 5.2: Proportion each Model was in each Position of the Error Ranking

which is the best model on average in most horizons has the smallest errors
only on 7% of the forecasts, and the Flexible adaLASSO model, which is the
second best model considering the cumulative inflation, is the best model only
in 3% of the cases. The models with smallest errors on average are the ones
that perform well when most models perform bad. However, when all models
are doing well they are not the best models anymore.

We show the correlation of the forecasting errors in Figure 5.3. The figure
displays the heat-maps for horizons 1, 2, 6, and 12. The pattern is very similar

for all horizons. The FOCUS and the Top5 are positively correlated. However,
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their correlation with all other models is negative. The remaining forecasts
are all positively correlated. The two best models, which are the Flexible
adalLASSO and the CSR models, have a strong negative correlation with both
expert forecasts considered in this paper. This result shows that even though
some models and the expert forecasts have small forecasting errors, these
forecasts are considerably different, and that opens the possibility of improving
the results using combinations of these forecasts, which will be discussed on

the next section.
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Figure 5.3: Forecasting Errors Correlation

5.4.2
Model Confidence Sets and Model Combination

In this section we report the Model Confidence Set (MCS) developed by
(55). The MCS allows us to compare a large number of models at the same time.
The test returns a confidence set that includes the best model with probability
(1 — a). As we decrease « the set becomes wider (with more models) and for
large values of @ we may even have a set with only one single model.

The MCS uses bootstrapped samples of a given loss function, in our

case squared error, to create the test statistics. The confidence set estimates p-
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values for all models using the bootstrapped samples and uses « to select which
models are inside the set. Since models are removed from the set interactively,
the MCS also generates a ranking. The best model has a p-value equals 1 by
definition, since it can only be as good as itself and there is no other model
to compare. If model 1 is removed from the set with p-value equals k; and
model 2 is removed afterwards with p-value equals ks, the test p-value if only
model 1 and model 2 are excluded will be max{ky, ky}. Therefore, the p-value
may not decrease when a new model is excluded from the confidence set. We
exclude models until the null hypotheses is not rejected. There are two statistics
proposed by (55) to be used as a decision rule, the 7,4, m and the Ty \. We
adopted the first, since it is simple and easy to compute. The second statistic
compares all the models two by two to create the set, making the procedure
more intensive.

The MCS p-values are presented in Table 5.3. Values in bold represent
models that remained in the confidence set with o = 20%. Autoregressive
models and the Random Walk were removed from the set on most forecasting
horizons. The only models which are in the confidence set for all horizons are
the Flex-adaLLASSO, the Random Forest, the Complete Subset Regression and
the FOCUS forecast. If we include the cumulative forecasts than we remain
only with the Flex-adaLASSO and the CSR as the models which are always
in the set. If we look at the ranking, the CSR is the model with more p-values
equal to 1.

We use the results from Table 5.3 to generate combined forecasts from
the models in the confidence set. These results are displayed in Table 5.4. The
first row of the table shows the forecasting errors from averaging the forecasts
from all models. The second row shows the forecasting errors from averaging
the forecasts of the models in the confidence set and the last row shows the

forecasting error of the best model from Table 5.1 on each forecasting horizon?.

3The cumulative errors are calculated considering the 95% confidence set in order to
include the specialist forecasts. This was done because of the results in Figure 5.3, which
show that the specialist forecasts are negatively correlated with the other forecasts.
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The table shows the Model Confidence Set p-values for all forecasting horizons and the 12 month accumulated
inflation. Values in bold are included in the a = 20% or 80% confidence set. The p-values can be used to rank
the models. The model with p-value equals 1 is the best model, or the model that remains in all confidence sets.

Brazilian Consumer Price Index
Forecast Horizon

t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9  t+10 t+11 t+12 Acc
RW 0.00 0.00 0.00 0.00 0.01 0.01 000 0.03 0.01 005 015 0.68 0.01
AR 0.00 0.03 0.03 0.03 0.02 011 0.42 0.56 0.43 0.75 0.74 0.70 0.03
Factors 0.16 0.03 0.48 0.80 0.68 0.71 0.62 0.52 0.79 0.54 0.35 0.75 0.35
LASSO 0.94 0.48 0.07 0.31 0.28 0.22 0.42 0.13 0.43 0.05 0.02 0.01 0.06
F.aL. 0.79 1.00 0.24 0.65 0.68 0.71 0.90 0.46 0.66 0.67 0.90 0.95 0.34
P.OLS 0.76 0.74 0.19 0.91 0.64 0.59 0.76 0.42 0.41 0.85 0.79 0.93 0.35
RF 0.27 0.48 0.28 0.91 0.61 0.22 0.27 0.56 0.39 0.76 0.81 0.93 0.06
CSR 0.31 0.74 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
FOCUS 1.00 0.48 0.48 0.80 0.64 0.59 0.90 0.34 0.72 0.58 0.90 0.70 0.05
Top5 0.94 0.49 0.29 0.88 0.42 0.20 0.45 0.19 0.72 0.85 0.79 0.95 0.05

Table 5.3: Model Confidence Set

The table shows the forecasting errors of the average forecast of all models and of the models in the confidence set. The last row shows
the best individual model to compare with the combined forecasts. All values are multiplies by 1000.

Brazilian Consumer Price Index

RMSE x 1000 Forecast Horizon
MAE x 1000  ¢+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10  t+11  t+12 Acc.
All Models  0.74 1.18 1.48 1.53 1.52 1.58 1.58 1.63 1.49 1.55 1.52 1.42 9.72
(0.62) (0.89) (1.15) (1.17) (1.15) (1.18) (1.18) (1.32) (1.15) (1.24) (1.25) (1.12) (7.13)
MCS Models  0.42 0.71 0.80 1.22 1.15 1.73 1.38 1.81 1.33 1.22 1.19 1.27 9.69
(0.33) (0.58) (0.63) (0.97) (0.85) (1.35) (1.08) (1.47) (1.05) (0.97) (0.95) (0.99) (6.72)
Best ind. Model  0.96 1.58 2.04 2.23 2.25 2.29 2.29 2.26 2.26 2.27 2.25 2.26 11.93

(0.74) (1.30) (1.69) (1.75) (1.79) (L.80) (1.80) (1.80) (L.79) (L.79) (L.77) (1.78) (8.41)

Table 5.4: Combined Forecasts Mean Absolute Errors and Mean Squared
Errors

The results in Table 5.4 show that the simple average of all models improves
the results from the best individual model. The combined forecast from the
MCS improves the results even more, especially considering the first forecasting
horizons. Even on the horizon A = 1, which is only five days before the IPCA
is published, the forecasting errors are considerably smaller when we combine
forecasts. In many cases the forecasting errors are less than half the errors from
the best individual model.

5.4.3
Look Ahead Bias on the MCS Combined Forecasts

Our combined forecasts based on the MCS is contaminated with look
ahead bias as we need the forecasting errors in order to estimate the confidence
set. However, the selected models in the confidence set tend to be stable over
the time. To test how stable and to provide results free of look ahead bias
we split the sample of 48 observations into two sub-samples: one with 36

observations to estimate the confidence set and another with 12 observations to
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This table shows the forecasting errors of the average forecast of all models and of the models in the confidence set. The last row
shows the best individual model to compare with the combined forecasts. All values are multiplies by 1000.

Brazilian Consumer Price Index

RMSE x 1000 Forecast Horizon
(MAE x 1000)  t+1 t+2 t+3 t+4 t+5 t+6 t+7 1+8 t+9  t+10  t+11 412 Acc.
All Models  0.75 1.62 2.23 2.24 2.32 2.39 2.29 2.27 2.20 2.10 2.03 2.09 15.67
(0.67) (1.33) (1.93) (1.84) (1.95) (2.01) (1.89) (1.89) (1.78) (1.73) (1.73) (1.81) (13.68)
MCS Models  0.43 0.93 1.02 1.71 1.71 1.35 1.80 1.61 1.85 1.64 1.71 1.86 12.08
(0.35) (0.83) (0.86) (1.43) (1.43) (1.10) (L.51) (1.39) (1.48) (L.32) (1.40) (1.61) (9.97)

Table 5.5: Combined Forecasts Mean Absolute Errors and Mean Squared
Errors without Look Ahead Bias

estimate the combined forecasts. We also estimate the simple average forecast
for these 12 months.

The results are displayed in Table 5.5. They show that the combined
MCS forecasting errors calculated without look ahead bias are still smaller
than those calculated with a simple average across all models. Note that these
results are only for the last 12 months in the sample (January to December,
2015), which was the worst year in terms of GDP growth for the Brazilian
economy in our sample.

5.4.4
Different Window Size

Given the length of the dataset, it is not viable to test the models on a
completely different sample. However, we can check if changing the size of the
rolling window, and consequently, the number of forecasts, has a significant
impact on our results.

Increasing the window size from 9 to 10 years, reduces the number of
forecasts (windows) from 48 to 24. Table 5.6 shows the forecasting RMSEs and
MAESs when the models are estimated with a larger window of observations.
The results are similar to the case of 48 windows. However, the errors in Table
5.6 are in general larger because the forecasts are just for 2014 and 2015,
two years of more instability in the Brazilian economy (specially 2015). As we
mentioned before, the forecasting errors are larger in 2015 for longer horizons,
and that is what shifted the errors up. The target factor are the model with
the smallest errors in several forecasting horizons. The other models worth

mentioning are the LASSO and Flexible adalLASSO, which performed well on
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The table shows the root mean squared error and the mean absolute deviation, in parenthesis, of the forecasts based on 24 rolling windows. The
values in bold represent the best model in each measure of error and each forecasting horizon. All values are multiplied by 1000. The column
Acc. shows the errors of the 12 month cumulative forecast build using the monthly forecasts.

Brazilian Consumer Price Index - 24 Rolling Windows

RMSE %1000 Forecast Horizon

MAE %1000 t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t411 t+12 Acc.
RW  2.69 3.80 4.37 4.81 5.14 5.46 5.72 5.29 4.40 3.77 3.45 3.17 43.16
(2.25)  (3.13)  (3.68)  (4.02) (4.10) (4.45) (4.69) (4.36) (3.72)  (3.00) (2.97) (2.44) (34.70)

AR 261 3.41 3.29 3.55 3.82 3.77 3.60 3.38 3.33 3.26 3.22 3.26 32.59
(2.24)  (2.66) (2.68) (2.81) (3.12) (3.06) (2.90) (2.68) (2.71) (2.62) (2.61) (2.54) (29.57)

Factors 1.50 2.45 2.72 2.96 3.15 3.11 2.95 2.85 2.56 2.45 2.45 2.55 21.83
(1.15)  (1.98) (2.32) (2.40) (249) (241) (2.20) (2.33)  (2.09) (2.01) (1.97) (2.07) (18.04)

LASSO  0.95 2.15 2.87 3.17 3.21 3.24 3.23 3.21 3.20 3.32 3.79 3.55 25.27
(0.76) (1.75)  (2.35) (2.48) (2.45) (2.56) (2.54)  (2.51)  (248)  (2.64) (2.91) (2.97) (23.04)

F.aL  1.03 1.76 2.50 2.84 2.84 2.97 3.32 3.30 3.32 3.28 3.31 3.35 24.84
(0.83) (1.46) (2.08) (2.32) (2.24) (2.32) (2.64) (2.60) (2.59) (2.56)  (2.60) (2.70) (22.83)

P. OLS 1.04 1.77 2.58 2.58 2.95 3.06 3.36 3.27 2.96 2.93 2.87 2.81 22.74
(0.83)  (1.48) (2.08) (2.08) (2.28) (2.38) (2.72) (2.58) (2.33) (2.31) (2.17) (2.15) (20.02)

RF  1.65 2.30 3.03 3.11 3.36 3.69 3.57 3.64 3.39 3.10 3.08 2.99 25.17
(1.08)  (1L.74)  (2.36)  (2.46) (2.60) (2.94) (2.80) (2.79) (2.52) (2.27) (2.31) (2.22) (23.00)

CSR 1.05 1.87 2.44 2.71 2.77 2.75 2.68 2.71 2.69 2.59 2.62 2.63 18.04
(0.91)  (1.55)  (2.09) (2.18) (2.23) (2.20) (2.11) (2.11) (2.05) (1.93) (1.99) (2.02) (16.40)

FOCUS 0.97 2.14 2.99 3.13 3.20 3.25 3.22 3.20 3.22 3.25 3.27 3.28 26.95
(0.83) (1.74) (2.38) (2.48) (2.51) (2.60) (2.56) (2.52) (2.55)  (2.58)  (2.58)  (2.60) (24.86)

Top5  0.99 1.92 2.80 3.09 3.29 3.34 3.46 3.35 3.05 3.35 3.27 3.24 26.94
(0.78)  (1.55) (2.21) (2.42) (257) (2.64) (2.64) (2.63) (2.48) (2.58) (2.54) (2.48) (24.72)

Table 5.6: Forecasts Mean Absolute Errors and Root Mean Squared Errors for
24 Rolling Windows

shorter horizons, and the Complete Subset Regression, which has good results
for longer horizons. We already detected an improvement on target factor
models on longer horizons in the results for 48 rolling windows. The difference
it that for 24 rolling windows, factor models are able to beat the CSR in some
cases.

We show the Model Confidence Set results for the 24 rolling window
analysis in Table 5.7. The results are similar to those of the 48 windows.
However, the only model in the confidence set on the accumulated inflation is
the CSR. If we look at the monthly horizons individually, the models that are
included in the 80% confidence set on all horizons are the Flexible adaLLASSO,
the Post-OLS estimated with the variables selected by the Flexible adalLASSO,
the Random Forest and the CSR. The CSR was the last remaining model in
six cases, against four of the target factors. The LASSO and the Flexible
adalLASSO are the last remaining models in one case each.

5.4.5
Bayesian Alternatives

In this section we show the results using two alternative Bayesian
models. First, the Unobserved Component Stochastic Volatility (UC-SV)

model proposed by (52), which is a very popular model for the U.S. inflation;
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The table shows the Model Confidence Set p-values for all forecasting horizons and the 12 month cumulative
inflation using 24 rolling windows. Values in bold are included in the a = 20% or 80% confidence set. The size
of the p-values can be used to rank the models. The model with p-value equals 1 is the best model, or the model
that remains in all confidence sets.
Brazilian Consumer Price Index - 24 Rolling Windows
Forecast Horizons
t+1  t+2  t+3  t+4  t+5  t+6  t+7  t+8  t+9  t+10 t+11  t+12 Acc
RW 0.00 0.00 0.00 0.00 0.02 0.03 001 001 0.06 0.44 0.50 0.64 0.12
AR 0.00 0.08 0.23 0.39 0.04 003 014 0.72 0.26 0.27 0.43 0.43 0.03
Factors 0.09 0.10 0.56 0.75 0.35 0.67 0.33 0.60 1.00 1.00 1.00 1.00 0.06
LASSO 1.00 0.40 0.43 0.63 0.60 0.38 0.44 0.59 0.54 0.27 0.63 0.17 0.03
F.alLL. 0.86 1.00 0.50 0.34 0.55 0.57 0.58 0.55 0.26 0.44 0.63 0.20 0.05
P.OLS 0.91 0.60 0.50 0.75 0.45 0.67 0.44 0.59 0.28 0.35 0.33 0.45 0.06
RF 0.34 0.53 0.48 0.69 0.67 0.38 0.58 0.72 0.54 0.35 0.33 0.45 0.05
CSR 091 0.29 1.00 1.00 1.00 1.00 1.00 1.00 0.71 0.66 0.59 0.78 1.00
FOCUS 0.79 0.40 0.41 0.63 0.67 0.23 0.19 0.23 0.49 0.19 0.50 0.29 0.02
Top 5 0.79 0.53 0.56 0.59 0.39 0.38 0.37 0.55 0.51 0.19 0.19 0.64 0.12

Table 5.7: Model Confidence Set - 24 Rolling Windows

and second, a large Bayesian Vector Autorregressive (BVAR) using all variables
in the dataset ad with priors defined as in (10).

5.4.5.1
Unobserved Component Stochastic Volatility Model

The UC-SV model is described by the following equations:

Ty =Tt + 6ht/2€t,
Ty =Ti—1 + Uy, (5-11)

hy =hi—1 + vy,

where {e;} is a sequence of independent and normally distributed random
variables with zero mean and unit variance, &, ~ N(0,1), u; and v; are
also normal with zero mean and variance given by inverse-gamma priors.
71 ~ N(0,V;) and h; ~ N(0,V}), where V, = V,, = 0.12. The model is
estimated by Markov Chain Monte Carlo (MCMC) methods. The h-steps-
ahead forecast is computed as 7, = 7;;. We computed forecasts for the
same forecasting horizons as the models from the previous sections and the

forecasting errors are calculated for 48 months out-of-sample as before.

5.4.5.2
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Bayesian Vector Autoregressive Model

Let Y = (Y14, Y21, - - - Ynt) be described as the following VAR model:

Yt = C+A1Yt_1 + .- +Ath—p+ut7 (5—12)

where ¢ is a n-dimensional vector of constants, A;, i = 1...p are (n X n)
matrices of coefficients and u; is the n—dimensional error vector. The same

model may be written as a system of equations:
Y=XB+U (5-13)

where Y = (Y,...,Y ) isa (T'xn) matrix, X = (X1,..., Xr) isa (T xk)
matrix with £k = np+1 and X; = (1,Y,—1,....Y,), U = (uy,...,ur),
and B = (¢, Ay,..., A,)".

The model is estimated using dummy observations Y,; and X, of
dimensions T, x n and T} x k respectively (for details on creating the dummy
observations see (10)). Using these dummies is equivalent to imposing the
normal inverted Whishart prior on the covariance matrix of B. The dummy
observations are used to create Y* = (Y, Y)) and X* = (X', X!))". The
posterior mean of B is the same as the ordinary least-squares (OLS) estimates
of the regression of Y* on X* and also the same as the Minnesota prior.
Additionally, by using the dummies we ensure that for each regression of the
VAR the number of observations is larger than the number of variables, which
makes the OLS estimation of B feasible. Another important issue is the choice
of the expected value of the priors for the diagonal of the A; matrix. We choose
the value of 0.5 for all elements.

5.4.5.3
Results

The results for the UC-SV and the large BVAR are in Table 5.8. The
forecasting errors are calculated for the last 48 observations of the dataset

using a rolling window scheme. The UC-SV does not use any information other
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than the past inflation. Therefore, its forecasting errors are larger than the
multivariate models that use the FOCUS and other macroeconomic variables
as regressors. Nevertheless, the UC-SV is comparable to the other univariate
models even though it cannot beat the AR model. The BVAR is much more
accurate than the UC-SV and it competes directly with the high-dimensional
models, especially for small forecasting horizons. However, it is not the best
model in any horizon. Note that a h-steps-ahead for the BVAR is iterated, while
the models in Table 5.1 are estimated directly for the horizon of interest. Table
5.9 shows the (42) (GW) test p-values, the null hypothesis is that both models
have the same forecasting accuracy. The null is rejected in most cases for the
UC-SV except when it is compared to the random walk and the AR models.
It has the same forecasting ability as the random walk for small horizons
and it is similar to the AR model for long horizons. Note that these models
are all univariate and very simple. Therefore, it is natural that with only 48
rolling widows the test fails to detect significant differences between them.
The Bayesian VAR (second panel of Table 5.9) is just as accurate as any
other multivariate model five days before the CPI is published (h = 1). The
reason is that all models have specialist’s forecasts, which are very accurate
right before the CPI is published, therefore, the forecasting errors are small
for all multivariate models and any difference between them is not detected by
the GW test. For larger forecasting horizons, the performance of the BVAR is
clearly inferior. The CSR, which is the best models in most cases, is statistically

different from the BVAR for all horizons larger than one.

The table shows the root mean squared error and the mean absolute deviation, in parenthesis, of the forecasts. The values in bold
represent the best model in each measure of error and each forecasting horizon. All values are multiplied by 1000. The column Acc.
shows the errors of the 12 month accumulated forecasts. The order of the BVAR is 4 and the UCSV is estimated by MCMC.

Brazilian Consumer Price Index

RMSE x 1000 Forecast Horizon
(MAE x 1000) t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12 Acc.
UCSV 256 3.17 3.54 3.86 4.06 4.09 3.95 3.51 3.08 2.79 2.59 2.61 27.74
(2.14)  (2.66) (2.91) (3.11) (3.19) (3.24) (3.06) (2.75) (2.47) (2.28) (2.10) (2.00) (21.79)
BVAR 1.19 2.14 2.53 2.73 2.88 2.98 3.05 3.09 3.11 3.12 3.13 3.14 19.27
(0.92) (1.66) (1.91) (2.04) (2.20) (2.28) (2.33) (2.37) (2.39) (2.39) (241) (2.41) (14.6)

Table 5.8: Forecasts Mean Absolute Errors and Root Mean Squared Errors for
BVAR and UCSV
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The table shows the Giacomini and White test p-values for all models compared to the UCSV (first block) and the
Bayesian VAR (second block).

Brazilian Consumer Price Index - GW p-values
Forecast Horizon - All models against UCSV

t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+4+11 t+12 Acc.
RW 0423 0.763 0.515 0.255 0.075 0.020 0.001 0.001 0.000 0.001 0.010 0.358 0.183
AR 0.020 0.107 0.275 0.079 0.037 0.017 0.024 0.053 0.124 0.683 0.566 0.854 0.178
Factors  0.000 0.003 0.000 0.001 0.001 0.000 0.001 0.005 0.004 0.183 0.082 0.282 0.073
LASSO 0.000 0.000 0.029 0.203 0.001 0.002 0.001 0.668 0.250 0.061 0.004 0.004 0.043
F.al. 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.106 0.006 0.185 0.841 0.532 0.079
P. OLS 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.342 0.043 0.553 0.940 0.577 0.083
RF 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.004 0.023 0.447 0.794 0.503 0.059
CSR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.042 0.064 0.025
BVAR 0.000 0.000 0.000 0.000 0.001 0.000 0.002 0.085 0.912 0.223 0.059 0.042 0.002

Forecast Horizon - All models against BVAR
t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 ¢t+10 t+11 t+4+12 Acc.
RF 0.000 0.001 0.000 0.000 0.001 0.001 0.000 0.003 0.013 0.378 0.770 0.231 0.001
AR 0.000 0.001 0.001 0.001 0.045 0.232 0.968 0.18 0.051 0.035 0.023 0.008 0.003
Factors 0.518 0.810 0.453 0.311 0.061 0.043 0.027 0.014 0.009 0.035 0.010 0.025 0.092
LASSO 0.165 0.027 0.118 0.317 0.462 0.378 0.045 0.491 0.184 0.474 0.291  0.505 0.021
F.aL. 0.200 0.019 0.070 0.123 0.024 0.012 0.032 0.516 0.011 0.020 0.058 0.011 0.041
P.OLS 0.210 0.031 0.127 0.330 0.128 0.057 0.049 0.987 0.051 0.100 0.205 0.021 0.042
RF 0.202 0.065 0.737 0.116 0.095 0.432 0.089 0.068 0.016 0.018 0.012 0.004 0.002
CSR 0.399 0.027 0.018 0.011 0.005 0.003 0.002 0.001 0.001 0.001 0.001 0.001 0.145
UCSV  0.000 0.000 0.000 0.000 0.001 0.000 0.002 0.085 0.912 0.223 0.059 0.042 0.002

Table 5.9: Giacomini and White test p-values comparing the UCSV and the
Bayesian VAR to all other models

The main conclusion from the above results is that the two Bayesian
alternatives considered in the paper have a performance inferior than the one
from the machine learning methods.

5.4.6
Density Forecasts

So far we analyzed only point forecasts for several models. In this section
we turn our attention to density forecasts. The point forecasts in a rolling
window scheme provide good information on which model is more accurate
on average. However, it does not tell us anything about the forecasting
uncertainty. We obtain the predictive densities by bootstrapping the in-sample
residuals. For each model, in each rolling window, we randomly selected
100,000 observations of the in-sample residuals and added it to the point
forecast, resulting on an empirical predictive density*.

The predictive densities are used to estimate average log-scores following

4The procedure for the BVAR and the UCSV is slightly different because in these models
we did not estimate direct forecasts. The ¢ 4+ 1 densities were obtained in the same way as
all other models. We used these densities to estimate bootstrap point forecasts, which were
used to obtain the t+2 densities. We kept iterating the bootstrap point forecasts until t+12.
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(60). Suppose we estimate predictive densities f (+) for a given model. Let Y be
the observed value of the variable on the period we aim to forecast. The log-
scores are calculated as S( 1, Y) =log f (Y). The log-scores will be larger when
the probability of the observed Y is high. For each model, in each forecasting
horizon, we compute average log-scores across all the rolling windows. The
best model in each case is the one with the highest average log-score. (60) also
propose a test to check whether the predictive densities are statistically equal
for two models, which will be referred as AG test from here on. If we reject
the null, then the two models have different densities.

The average log-scores and the AW test p-values are presented in Tables
(5.10) and (5.11). The first interesting result in Table (5.10) is that although
the LASSO and the Flex-adalLASSO provide similar point forecasts, the Flex-
adalLASSO densities have larger log-scores, especially for long forecasting
horizons. The CSR, which is the best model on the point forecast for most
forecasting horizons, is also the one with the largest log-scores. However, for
t+ 1 and t + 2 the POLS and the Flex-adaLASSO are the best models even
though the CSR has a good performance on these horizons too. The BVAR
worked well for ¢ + 1 but its performance deteriorates very fast for longer
horizons. Note that for the BVAR, forecasts for horizons larger than one are
calculated by iterating previous forecasts. As a result, point forecasts and
variances converge fast to their respective unconditional values. Table (5.11)
shows that when there is a large difference between the average log-scores of
two models we, in general, reject the null and obtain statistically different

models.
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The table shows the average log-scores as described by (60). The log-scores were calculated on the
empirical densities generated using bootstrap. Each bootstrap forecast is the sum of the point forecast and
a random observation of the in-sample residuals. Each empirical density was constructed using 100000
bootstrap forecasts.

Brazilian Consumer Price Index

Forecast Horizon - Average log-scores
t+1 t+2 t4+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12
Rw -0.01 -099 -127 -1.79 -1.79 -1.74 -190 -1.78 -1.51 -1.17 -0.62 -0.61
AR -0.05 -0.34 -0.50 -0.57 -0.48 -0.50 -0.49 -0.33 -0.28 -0.23 -0.18 -0.20
Factor 0.33 -0.01 -0.17 -0.29 -0.23 -0.21 -0.28 -0.18 -0.05 -0.18 -0.14 -0.16
LASSO 087 020 -0.79 -1.00 -0.44 -048 -0.33 -0.85 -0.47 -1.14 -1.62 -1.87
F.aL. 090 042 0.03 -0.02 -0.08 -0.06 -0.15 -0.46 -0.10 -0.30 -0.23 -0.04
P.OLS 093 039 0.02 -0.11 -0.15 -0.20 -0.30 -0.62 -0.06 -043 -0.35 -0.08
RF 0.14 -0.07 -0.24 -0.22 -0.20 -0.22 -0.18 -0.26 -0.28 -0.16 -0.20 -0.29
CSR 0.8 0.38 0.16 -0.04 -0.09 -0.10 -0.07 0.00 -0.02 0.00 -0.01  -0.02
Ucsv  -0.85 -0.83 -0.83 -0.82 -0.80 -0.80 -0.80 -0.79 -0.78 -0.76 -0.76  -0.75
BVAR 062 -0.20 -040 -0.68 -0.69 -0.71 -0.81 -0.79 -0.82 -0.85 -0.99 -0.94

Table 5.10: Average log-scores for all models and all forecasting horizons
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5.5
Conclusion

We have tested several high-dimensional econometric models to forecast
inflation in real-time and with a large number of predictors. We have also
considered a forecasting combination mechanism based on the Model
Confidence Sets. We have evaluated the methods discussed here with
Brazilian inflation data (IPCA). The results can summarized as follows.

For five-day-ahead, the LASSO and the FOCUS (expert forecast) are
virtually the same and deliver the best forecasts. For the second horizon,
the adaptive LASSO is superior than any other model considered. For the
remaining horizons, the Complete Subset Regression dominates all other
alternatives. The results are the same if we either use the root mean squared
error or the mean absolute error. In terms of accumulated inflation, the
Complete Subset Regression is the best model. However, most of the forecasts
from different models are not statistically different according the Model
Confidence Set. We construct the final forecast as the average of the models
included in the confidence set. This approach delivers the best forecasts among
all the competing alternatives. The Bayesian VAR also produced accurate
forecasts for shorter horizons but not as good as some of the high-dimensional
models.

Finally, we computed predictive densities for all individual models using
bootstrap and estimated log-scores to compare the models. The results are
coherent with the point forecasts. Models from the LASSO family are better
for t +1 and ¢t 4+ 2 and the C'SR is the best model for longer horizons.

5.6
Data Apendix

The dataset and the computer codes are available from
https://github.com/gabrielrvsc/hdeconometrics. The “HD econometrics”

repository is an R package with implementations of the models used in this
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paper and the data in a .rda file. The package contains a number of functions
used in the paper such as a function that selects the best LASSO model
using the BIC, a function for the complete subset regression with several
arguments to control for pre-testing and a function for the Bayesian VAR
model. Documentation is available in markdown and follows the same format
as traditional R documentation. It can also be viewed in R if the package is
installed. Every function comes with an example in the documentation.

All the variables included in the models are listed in Tables 5.12 and
5.13. The first table shows the macroeconomic variables. They are all obtained
on Bloomberg®. The second table shows the variables from the expectations
database of the Brazilian Central Bank.

Most variables in our data are published for month ¢ before the Brazilian
CPI, which is made public around the 10th day of month ¢+ 1. Some variables
have some delay or may be available only after the CPI is published. In that
case, we use the last available observation of such variables.

The first group of Table 5.12 covers prices and money. The CPI IPCA is
the variable of interest and the CPI IPCA-15 is another index, which is released
earlier and used as an indicator to the final CPI IPCA. These two indexes
are officially adopted by the government. The FGV indexes are calculated
by the Getilio Vargas Foundation (FGV). They are also important measures
of inflation. The second group of the table covers employment variables, the
third group is for exchange rates, financial variables, savings and interest
rates. IBOVESPA is the Brazilian most important stock index, BNDES is
the national bank of investment, which lends money at lower rates and have
significant impact on the national investment. The Selic is the target interest
rate published by the Central Bank. The last group of variables in Table 5.12
covers government and international transactions.

All variables in Table 5.13 are obtained in the Brazilian Central Bank

5The names of the variables in Table 5.12 are the same names as in the Bloomberg
database.
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expectations database. Recall that the forecasts for h = 1 are made five days
before the CPI was published, therefore ¢ + 13 forecasts are for horizons of
12 months plus five days. Our data have the FOCUS and the Top 5 median
forecasts for h = 1 to h = 13. We also include the average forecasts, the squared

average and median forecasts and their standard deviation for horizons equal

1 and 2.
Prices and Money Goverment and Intenational Transactions
1 Brazil CPIIPCA 32 Brazil National Treasury Revenue Total
2 FGV Brazil General Prices IGP-M 33 Brazil Social Contribution over Net Profit Tax Income
3 FGV Brazil General Prices IGP-DI 34 Brazil PIS & PASEP Tax Income
4 FGV Brazil General Prices IGP-10 35 Brazil Central Government Net Revenue
5  Brazil CPI IPCA-15 36 Brazil Central Government Revenue from the Central Bank
55  Brazil Monetary Base 37 Brazil Central Government Total Expenditures
56 Brazil Money Supply M1 Brazil 38 Brazil National Treasury Gross Revenue
57 Brazil Money Supply M2 Brazil 39 Brazil Importing Tax Income
58 Brazil Money Supply M3 Brazil 40 BNDES Brazil Income Taxes
59 Brazil Money Supply M4 Brazil 41 Brazil National Treasury Revenue from Industrialized Products
42 Brazil National Treasury Revenues from Other Taxes
Employment 43  Brazil Central Government Revenue from the Social Security
14 IBGE Brazil Unemployment Rate 44 Brazil National Treasury Revenue from Import Tax
15 Brazil Unemployment Statistic Male 45 Brazil Current Account
16 Brazil Unemployment Statistic Total 46 Brazil Trade Balance FOB
17 IMF Brazil Unemployment Rate 47 Brazil Public Net Fiscal Debt % of GDP
18 CNI Brazil Manufacture Industry Employment 48 Brazil Public Net Fiscal Debt
19 Brazil Industry Working Hours 49 Brazilian Federal Government Domestic Debt
50 Brazil Public Net Government & Central Bank Domestic Debt
Exchange Rates & Finance 51 Brazilian States Debt Total Consolidated Net Debt
22 USD-BRL X-RATE 52 Brazilian States Debt to Foreigners
23 USD-BRL X-RATE Tourism 53 Brazilian Cities Debt
24 EUR-BRL X-RATE 54 Brazilian Cities Debt to Foreigners

25 BRAZIL IBOVESPA INDEX

26 Brazil Savings Accounts Deposits

27 Brazil Total Savings Deposits

28 Brazil BNDES Long Term Interest Rate
29 Brazil Selic Target Rate

30 Brazil Cetip DI Interbank Deposits

Table 5.12: Macroeconomic Variables
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60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
5
76

t+1 median

t+2 median

t+3 median

t+4 median

t+5 median

t+6 median

t+7 median

t+8 median

t+9 median

t+10 median
t+11 median
t+12 median
t+13 median

Top 5 t+1 median
Top 5 t+2 median
Top 5 t+3 median
Top 5 t+4 median

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

Top 5 t+5 median
Top 5 t+6 median
Top 5 t+7 median
Top 5 t+8 median
Top 5 t4+9 median
Top 5 t+10 median
Top 5 t+11 median
Top 5 t+12 median
Top 5 t+13 median
t+1 median”2

t+1 mean

t+1 mean”2

t+1 Std

t+12 median™2
t+2 mean

t+2 mean” 2

t+2 Std

Table 5.13: Focus Expectation Variables

96
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Forecasting Inflation in a Data-Rich Environment: The
Benefits of Machine Learning Methods

JEL: 22, E31.

Keywords: Big data, inflation forecasting, LASSO, random forests, machine

learning.

Abstract: Inflation forecasting is an important but difficult task. We explore
the advances in machine learning (ML) methods and the availability of new
datasets to forecast US inflation. Despite the skepticism in the previous
literature, we show that ML models with a large number of covariates are
systematically more accurate than the benchmarks. The ML method that
deserves more attention is the random forest, which dominated all other
models. Its good performance is due not only to its specific method of
variable selection but also the potential nonlinearities between past key
macroeconomic variables and inflation.

6.1
Introduction

It is difficult to overemphasize the importance of forecasting inflation in
rational economic decision-making. Many contracts concerning employment,
sales, tenancy, and debt are set in nominal terms. Therefore, inflation
forecasting is of great value to households, businesses and policymakers. In
addition, central banks rely on inflation forecasts not only to inform
monetary policy but also to anchor inflation expectations and thus enhance

policy efficacy. Indeed, as part of an effort to improve economic
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decision-making, many central banks release their inflation forecasts on a
regular basis.

Despite the great benefits of forecasting inflation accurately, improving
simple benchmark models has been proven to be a major challenge for both
academics and practitioners. As (61) emphasize, “it is exceedingly difficult
to improve systematically upon simple univariate forecasting models, such as
the (34) random walk model [...] or the time-varying unobserved components
model in (52).” This conclusion is supported by a large literature; see (62)
for a recent survey. Nonetheless, this literature has so far largely ignored the
recent machine learning (ML) and “big data” boom in economics.! Moreover,
previous works either focused on a restrictive set of variables or were based on
a small set of factors computed from a larger number of potential predictors
known as “diffusion indexes”; see, for example, (65).

“Big data” and ML methods are not passing fads, and investigating
whether the combination of these two methods is able to provide more accurate
forecasts is of paramount importance. (66), for example, show recently that
machine learning methods coupled with hundreds of potential predictors
improve substantially out-of-sample stock return predictions. In a similar
spirit, and despite the previous skepticism, we argue that these methods lead
to more accurate inflation forecasts. Moreover, this new set of models can also
help to uncover the main predictors for future inflation, possibly shedding light
on the drivers of price dynamics.

In this paper, we contribute to the literature in a number of ways. First,
we robustly show that it is possible to beat the usual univariate benchmarks
for inflation forecasting, namely, random walk (RW), autoregressive (AR)
and unobserved components stochastic volatility (UCSV) models. We consider

several ML models in a data-rich environment with hundreds of variables from

1See (63) and (64) for discussions of ML methods and big data in economics. In this
paper, we call ML models any statistical model that is able to either handle a large set
of covariates and/or describe nonlinear mappings nonparametrically. Some of the methods
have been around even before the “machines”.
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the FRED-MD, a monthly database put together by (67), to forecast the US
consumer price index (CPI) inflation during more than twenty years of out-
of-sample observations and we show that the gains can be as large as 30% in
terms of mean squared errors.?

Second, we highlight the main set of variables responsible for these
forecast improvements. Our results indicate that such set of variables is not
sparse, which corroborates the findings of (68) warning against the use of sparse
predictive models. Indeed, we find that ML models that do not impose sparsity
are the best performing ones. In contrast, the high level of aggregation of factor
models, which has been one of the most popular models for macroeconomic
forecasting, is not adequate.

Finally, we aim to give a guidance for the choice of which class of ML
methods should be used for inflation forecasting. Throughout the paper, we
pay special attention to a particular ML model, the random forest (RF) of
(9), which systematically outperforms the benchmarks, factor models and ten
additional ML methods covering a wide class of specifications: the least
absolute shrinkage and selection operator (LASSO) family, which includes
LASSO, adaptive LASSO, elastic net and the adaptive elastic net; ridge
regression (RR); Bayesian vector autoregressions (BVAR); and linear
ensemble methods such as bagging, boosting, complete subset regressions
(CSR) and jackknife model averaging (JMA). RF models are highly
nonlinear nonparametric models that have a tradition in statistics but have
only recently attracted attention in economics. This late success is partly due
to the new theoretical results developed by (69) and (70). Notably, (66) also
find that RF, by allowing for nonlinearities, substantially improves stock

return predictions.

6.1.1

2In the appendix, we show similar results for both the personal consumption expenditures
(PCE) inflation and the core CPI inflation.
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Main takeaways

First, as mentioned before, and contrary to the previous evidence in
(33, 52), (34), and many others, our results show that consistently beating the
benchmark specifications is possible. The ML models outperform the univariate
alternatives, especially if we consider the 2001-2015 period, when the US
inflation was more volatile compared to the 1990s. This is a robust finding
for both individual horizons and the accumulated twelve-month forecasts.
Second, although there is strong evidence of the existence of a small number
of factors that drive the joint dynamics of the potential predictors, factor
models deliver inferior forecasts compared to ML alternatives and are inferior
to the RW method for the accumulated twelve-month horizon. Furthermore,
either replacing standard principal component factors with target factors,
as advocated by (6), or using boosting to select factors as discussed in (6),
improves the results only marginally. Third, RR has a superior performance
once compared to the other linear ML methods, especially for short horizons.
However, the RF model delivers the smallest errors for most of the forecasting
horizons for the CPI inflation. The gains, in terms of mean squared error
reduction, can be, on average, of the order of 30%. This is a robust finding
that is independent of the sample considered, the state of the economy or
the level of either macroeconomic, financial uncertainty or real uncertainty.
The RF model is an ensemble of fully grown regression trees estimated on
different bootstrap subsamples of the original data. Therefore, the RF model
is a nonsparse, highly nonlinear specification that aims to reduce the high
variance of a single regression tree.

To open the black box of ML methods, we compare the variables selected
by the adaptive LASSO method, RR, and the RF alternative. Following (67),
we classify variables into eight different groups: (i) output and income; (ii) labor
market; (iii) housing; (iv) consumption, orders and inventories; (v) money and

credit; (vi) interest and exchange rates; (vii) prices; and (viii) stock market. In
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addition, we also consider autoregressive terms and the principal component
factors computed from the full set of potential predictors. The most important
variables for RR and RF models are stable across forecasting horizons but are
quite different between the two specifications. While for RR, autoregressive
terms, prices and employment are the most important predictors, resembling
a sort of backward-looking Phillips curve, RF models give more importance
to prices, interest-exchange rates, employment and housing. LASSO selection
is quite different across forecasting horizons and is, by construction and in
opposition to RF and RR models, sparse. Only AR terms retain their relative
importance independent of the horizon and prices gradually lose their relevance
until up to six months ahead but partially recover for longer horizons. Output-
income variables are more important for medium-term forecasts. Finally, none
of the three classes of models selects either factors or stocks. Not even RR or
RF which produce nonsparse variable selection. This result may indicate that
the high level of cross-section aggregation of the factors is one possible cause
for the poor performance of the factor models.

To disentangle the effects of variable selection from nonlinearity, we also
consider alternative models. In the first method, we use the variables selected
by the RF model and estimate a linear specification by OLS. In the second
method, we estimate an RF specification with only the regressors selected by
the adaptive LASSO method. Both models outperform the RF only for one-
month-ahead forecasting. For longer horizons, the RF model is still the winner,
which provides evidence that both nonlinearity and variable selection play a
key role in the superiority of the RF model.

There are many sources of nonlinearities relating the variables selected
and inflation that could justify the superiority of the RF model. For instance,
the relationship between inflation and employment is nonlinear to the extent
that it depends on the degree of slackness in the economy. Another source

of nonlinearities is economic uncertainty as this uncertainty increases the
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option value of economic decision delays if they have an irreversible component
(71). For example, if it is expensive to dismiss workers, hiring should be
nonlinear on uncertainty. In addition, this real option argument also makes
households and businesses less sensitive to changes in economic conditions
when uncertainty is high. Hence, the responses of employment and inflation
to interest rate decisions are arguably nonlinear on uncertainty. The presence
of a zero lower bound on nominal interest rates and the implications of this
bound for unconventional monetary policy is another source of nonlinearity
among inflation, employment and interest rate variables (72, 73). Finally, to
the extent that houses serve as collateral for loans, it interacts with monetary
policy (74) and financial intermediation (75, 76). As in the Great Recession, a
housing bubble can form, resulting in a deep credit crash (77, 78). Needless to
say, these interactions are highly nonlinear and arguably have nonlinear effects
on inflation, employment and interest rates.

6.1.2
A brief comparison of the recent literature

The literature on inflation forecasting is vast, and there is substantial
evidence that models based on the Phillips curve do not provide good inflation
forecasts. Although (33) showed that many production-related variables are
potential predictors of US inflation, (34) showed that in many cases, the
Phillips curve fails to beat even simple naive models. These results inspired
researchers to look for different models and variables to improve inflation
forecasts. Among the variables used are financial variables (36), commodity
prices (35) and expectation variables (37). However, there is no systematic
evidence that these models outperform the benchmarks.

More recently, due to the advancements in computational power,
theoretical developments in ML, and availability of large datasets, researchers
have started to consider the usage of high-dimensional models on top of the

well-established (dynamic) factor models of (65), (4, 5), and (79, 80).
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However, most of these studies have either focused only on a very small
subset of ML models or presented a restrictive analysis. For example, (44)
considered bagging, factor models and other linear shrinkage estimators in an
exercise to forecast US inflation with a small set of real economic activity
indicators. Their study is more limited than ours both in terms of the pool of
models considered and richness of the set of predictors. Nevertheless, the
authors were among the few voices that suggested that ML techniques can
deliver nontrivial gains over univariate benchmarks. (17) provided evidence
that LASSO-based models outperform both factor and AR benchmarks in
forecasting US CPI. However, the analysis in the paper is restricted to a
single MLL method for just one-month-ahead inflation forecasting.

Most of the previous papers in the inflation forecasting literature have
explored only linear ML models but ignored nonlinear alternatives. One
possible explanation for this limitation is that most of the papers in the early
days considered only univariate nonlinear models that were, in most cases,
outperformed by simple benchmarks; see (81) for an example.> The message
of our paper is that the combination of a rich dataset with modern ML tools
is responsible for the nontrivial forecasting gains over traditional univariate
benchmarks.*

Finally, we do not apply ML methods as pure black-boxes specifications.
In fact, this paper is different from many “horse-races” in the literature, as we
not only compare a large number of different models, but we also try to clarify

the mechanisms why a given class of models is superior than others.

6.2

3An exception is (82), who show that neural networks outperform univariate
autoregressive models for short horizons.

“More recently, (12) applied a large number of ML methods, including RFs, to real-
time inflation forecasting in Brazil. The results were very promising and indicated a clear
superiority of the CSR method of (45, 20). However, an important question is whether this
is a particular result for Brazil or if similar findings can be replicated for the US economy.
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Data

Our data consist of variables from the FRED-MD database, which is a
large monthly macroeconomic dataset designed for empirical analysis in data-
rich environments. The dataset is updated in real-time through the FRED
database and is available from Michael McCraken’s webpage.® For further
details, we refer to (67).

In this paper, we use the vintage as of January 2016. Our sample goes
from January 1960 to December 2015 (672 observations), and only variables
with all observations in the defined sample period are used (122 variables).
In addition, we include as potential predictors the four principal component
factors computed from this set of variables. We consider four lags of all
variables, as well as four autoregressive terms for inflation, so the analysis
contemplates 508 potential predictors. The out-of-sample window is from
January 1990 to December 2015. All variables are transformed as described in
Appendix 6.5. The price indexes are log-differenced only one time. Therefore,
7 is the inflation in month ¢ computed as m, = log(P;) — log(P;_1), and P,
is a given price index in period t. The baseline price index is the CPI, but in
Appendix 6.5, we also report results considering both the PCE and the core
CPI. Figure 6.1 displays the evolution of these inflation measures during the
full sample period.

We compare performances not only across models in the out-of-sample
window but also in two subsample periods, namely, 1990 to 2000 (132
out-of-sample observations) and 2001 to 2015 (180 out-of-sample
observations). In Table 6.1, we report the mean, standard deviation (Sd),
median, maximum, minimum, first-order autocorrelation (AC1), and sum of
the first 36 autocorrelations (AC36) for several macroeconomics variables.
These variables include CPI monthly inflation (), CPI twelve-month
inflation (7)), monthly growth of the industrial production (AIP;) and

Shttps://research.stlouisfed.org/econ/mccracken /fred-databases, .
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twelve-month growth of industrial production (Aq2lP;). We also report these
statistics for measures of macroeconomic, financial and real uncertainty
computed as in (46), which are the conditional volatility of the
unforecastable part of macroeconomic, financial and firm-level variables,
respectively. In particular, the authors consider forecasting horizons of one,
three and twelve months ahead.%

The statistics in Table 6.1 give an overview of the economic scenario
in each subsample. The first sample corresponds to a period of low inflation
volatility (o = 0.17%), while in the second sample, inflation is much more
volatile (o = 0.32%). However, on average, inflation is higher during 1990-2000
than 2001-2015 and much more persistent as well. Relative to the 1990-2000
period, inflation was more volatile near the recession in the early 1990s. The
monthly growth in industrial production is on average higher and less volatile
during the first subsample. Finally, uncertainty measures are uniformly higher

during 2001-2015, mainly due to the Great Recession.

6.3
Methodology
Consider the following model:
7Tt+h:Th(a:t)+ut+h7 ,h:].,...,H, t:].,...,T, (6-1)
where 745, is the inflation in month ¢ + h; @y = (21, ..., 2,)" is a n-vector

of covariates, possibly containing lags of 7, and/or common factors as well
as a large set of potential predictors; Ty,(+) is the mapping between covariates
and future inflation; and u; is a zero-mean random error. The target function
Ty (x;) can be a single model or an ensemble of different specifications. There
is a different mapping for each forecasting horizon.

The direct forecasting equation is given by

6These uncertainty measures are available at Sydney C. Ludvigson’s webpage
(https://www.sydneyludvigson.com/).
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7ATt+h|t = fh7t—Rh+1:t(wt)> (6‘2)

where ’fh,t_ R,+1:+ 1S the estimated target function based on data from time
t — Ry, + 1 up tot and R, is the window size, which varies according to
the forecasting horizon and the number of lagged variables in the model.
We consider direct forecasts as we do not make any attempt to predict the
covariates. The only exception is the case of the BVAR model, where joint
forecasts for all predictors are computed in a straightforward manner following
the procedure described in (10).

The forecasts are based on a rolling window framework of fixed length.
However, as mentioned before, the actual in-sample number of observations
depends on the forecasting horizon. For example, for the 1990-2000 period,
the number of observations is R, = 360 — h — p — 1, where p is the number of
lags in the model. For 2001-2015, R, =492 —h —p — 1.

In addition to three benchmark specifications (RW, AR and UCSV
models), we consider factor-augmented AR models, sparsity-inducing
shrinkage estimators (LASSO, adaptive LASSO, elastic net and adaptive
elastic net), other shrinkage methods that do not induce sparsity (RR and
BVAR with Minnesota priors), averaging (ensemble) methods (bagging, CSR
and JMA)” and RF. With respect to the factor-augmented AR models, we
consider in addition to the standard factors computed with principal
component analysis a set of target factors as advocated by Bai and Ng (6)
and boosted factors as in Bai and Ng (7). A detailed discussion of the models
implemented in this paper can be found in Appendix 6.5. Finally, we also
include in the comparison three different model combination schemes,
namely, simple average, trimmed average and the median of the forecasts.

We find that the RF, a highly nonlinear method, robustly outperforms
other methods. To disentangle the role of variable selection from nonlinearity,

we also consider a linear model where the regressors are selected by the RFs

"Bagging and CSR can also be viewed as nonsparsity-inducing shrinkage estimators.
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(RF /ordinary least squares, OLS) and an RF model with regressors preselected
by adaptive LASSO (adaLASSO/RF).

Forecasts for the accumulated inflation over the following twelve months
is computed, with the exception of the RW and UCSV models, by aggregating
the individual forecasts for each horizon. In the case of the RW and UCSV
models, a different specification described in Appendix 6.5 is used to construct
the forecast of the 12-month inflation.

6.4
Results

In this section, we describe our main results for the CPI. More detailed
results, robustness checks and a similar set of results for the PCE and the
CPlI-core can be all found in Appendix 6.5.

The models are compared according to three different statistics, namely,
the root mean squared error (RMSE), the mean absolute error (MAE) and
the median absolute deviation from the median (MAD), which are defined for

each model and forecasting horizon as follows:

1 T
RMSE, ) = — S &
h = T _ TO +1 ZT t,m,h
T
MAE,, t,m
R A YR To +1 XT: als

MAD,,, , = median [|é; ., — median (€:m.1)|] ,

where €, 5, = T — Tym,n and Ty, is the inflation forecast for month ¢ made
by model m with information up to ¢t — h. The first two performance measures
above are the usual ones in the forecasting literature. MAD, which is less
commonly used in empirical papers, is robust to outliers.

To test whether the forecasts from different models are different, we
consider a number of tests, namely, the model confidence sets (MCS) as
proposed in (55), the superior predictive ability (SPA) tests of (83), and the

multi-horizon uniform SPA test of (84).
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6.4.1
Overview

In this section, we report an overview of the main findings of the paper.

Tables 6.2-6.4 report a number of statistics for each model across all
the forecasting horizons, including the accumulated twelve-month horizon.
The first three columns report the average RMSE, the average MAE and
the average MAD. Columns (4), (5) and (6) report the number of times (out
of thirteen possible horizons)® each model achieved the lowest RMSE, MAE,
and MAD, respectively. Columns (7)—(10) present, for square and absolute
losses, the average p-values of the MCS based either on the range or the tmax
statistics. Columns (11) and (12) show the average p-values of the SPA test for
the squared and absolute errors, respectively. Finally, columns (13) and (14)
display the p-value of the uniform multi-horizon test for superior predictive
ability and the p-value of the MCS based on the multi-horizon comparison of
the models, respectively. The uniform SPA test is designed to check for superior
performance at each individual horizon. Table 6.2 shows the results for the
full out-of-sample period (1990-2015), whereas Tables 6.3 and 6.4 present the
results for the subsample periods 1990-2000 and 2001-2015, respectively. The
bold figures highlight the best-performing model. The following facts emerge

from the tables:

1. Machine learning models and the use of a large set of predictors are
able to systematically improve the quality of inflation forecasts over
traditional benchmarks in the literature. This is a robust and statistically

significant result.

2. The RF model outperforms all the other alternatives in terms of point
statistics. The superiority of RF is due both to the variable selection
mechanism induced by the method as well as the presence of

nonlinearities in the relation between inflation and its predictors. RF

8To be precise, monthly inflation from one month up to twelve months ahead and yearly
inflation accumulated over the following twelve months.
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has the lowest RMSEs, MAEs, and MADs across the horizons and the
highest MCS p-values. The RF model also has the highest p-values in
the SPA test, multi-horizon SPA test and multi-horizon MCS. The
improvements over the RW in terms of RMSE, MAE and MAD are
almost 30% and are more pronounced during the second subsample,

where inflation volatility is much higher.

3. Shrinkage methods also produce more precise forecasts than the
benchmarks. Sparsity-inducing methods are slightly worse than
nonsparsity-inducing shrinkage methods. Overall, the forecasting
performance among shrinkage methods is very similar, and ranking

them is difficult.

4. Factor models are strongly outperformed by other methods. The
adoption of boosting and target factors improves the quality of the
forecasts produced by factor models only marginally. The poor
performance of factor models is more pronounced during the first

subsample (low volatility period).

5. CSR and JMA do not perform well either and are comparable to the

factor models.

6. Forecast ensembles do not bring any significant improvements in any of

the performance criteria considered.

7. Among the benchmark models, both AR and UCSV outperform the RW
alternative. Furthermore, the UCSV model is slightly superior to the AR

specification.

6.4.2
Results: Random Forests versus Benchmarks

Tables 6.5-6.7 show the results of the comparison between the RF and

the benchmark models. Table 6.5 presents the RMSE, MAE and MAD ratios
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of the AR, UCSV and RF models with respect to the RW alternative for all
the forecasting horizons as well as for the accumulated forecasts over twelve
months. The models with the smallest ratios are highlighted in bold. It is clear
from the table that the RF model has the smallest ratios for all forecasting
horizons.

To check whether this is a robust finding across the full out-of-sample
period, we also compute rolling RMSEs;, MAEs, and MADs over windows of
48 observations. Table 6.6 reports the results. The table shows the frequency
with which each model achieved the lowest RMSEs, MAEs and MADs as well
as the frequency with which each model was the worst-performing alternative
among the four competitors. The RF model is the winning specification and
is superior to the competitors for the majority of time periods, including the
Great Recession. In contrast, the RW model delivers the worst forecasts most of
the time. Figures 6.2, 6.3, and 6.4 show the rolling RMSEs, MAEs, and MADs,
respectively, over the out-of-sample period. As expected, the performance
of the RW deteriorates as the forecasting horizon increases. However, the
accomplishments of the RFs seem rather robust.

Finally, Table 6.7 reports the p-values of the unconditional Giacomini and
White (2000) test for superior predictive ability for squared (panel (a)) and
absolute errors (panel (b)). Rejections of the null mean that the forecasts are
significantly different. It is evident from the table that the RF has forecasts that
are significantly different from and superior to the three benchmark models.

6.4.3
Results: The Full Picture

In this section, we compare all models. The main results are shown
in Tables 6.8-6.10. Table 6.8 presents the results for the full out-of-sample
period, whereas Tables 6.9 and 6.10 present the results for the 1990-2000 and
2000-2015 periods, respectively. The tables report the RMSEs and, between

parenthesis, the MAEs for all models relative to the RW specification. The
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error measures were calculated from 132 rolling windows covering the 1990-
2000 period and 180 rolling windows covering the 2001-2015 period. Values in
bold denote the most accurate model in each horizon. Cells in gray (blue) show
the models included in the 50% MCS using the squared error (absolute error)
as the loss function. The MCSs were constructed based on the maximum ¢
statistic. The last column in the table reports the number of forecast horizons
in which the model was included in the MCS for the square (absolute) loss.
The last two rows in the table report the number of models included in the
MCS for the square and absolute losses.

Several conclusions come out from the tables and we start by analyzing
the full out-of-sample period. Apart from a few short horizons, where either
the RF/OLS or the adaLASSO/RF alternatives are the winning models, the
RF alternative delivers the smallest ratios in most of the cases. The RF is
followed closely by shrinkage models, where RR seems be superior to the
other alternatives. RR, RF and the hybrid linear-RF models are the only
specifications included in the MCS for all forecasting horizons. Neither RF
nor RR impose sparsity, which may corroborate the conclusions of (68), who
provide evidence against sparsity in several applications. Factor models have
very poor results and are almost never included in the MCS. When factors are
combined with boosting, there is a small gain, but the results are still greatly
inferior to those from RF and shrinkage models. This is particularly curious
as there is a correspondence between factor models and RR: RR predictions
are weighed combinations of all principal component factors of the set of
predictors. Several reasons might explain the difference. Firstly, lack of clear
factor structure in the regressors. This is not the case as shown in Figure 6.5,
where we display the eigenvalues of the covariance matrix of regressors over
the forecasting period. As can be seen, there is a small number of dominating
factors. Secondly, there might be factors which explain only a small portion

of the total variance of the regressors but have a high predictive power on
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inflation. Again, we do not think this is the case as target factors as well as
boosting are specifically designed to enhance the quality of the predictions
but, in this case, do not bring any visible improvement. Furthermore, we
allow the ML methods to select factors as well and, as we are going to
show latter, they are never selected. Lastly, we believe the most probable
explanation is that although sparsity can be questioned, factor models are a
too aggregated representation of the potential predictors. The results of JMA
are not encouraging either. Nevertheless, all the competing models outperform
the RW for almost all horizons. Finally, forecast combination does not provide
any significant gain, which can be explained by the empirical fact that most
of the forecasts are positively correlated, as depicted in Figure 6.6.

Focusing now on the two subsamples, the following conclusions stand
out from the tables. The superiority of RF is more pronounced during the
2000-2015 period, when inflation is much more volatile. During this period,
RF achieves the smallest RMSE and MAE ratios for almost all horizons. From
1990-2000, the linear shrinkage methods slightly outperform the RF for short
horizons. However, RF dominates for long horizons and for the twelve-month
forecasts. Among the shrinkage models and during the first period, there is no
clear evidence of a single winner. Depending on the horizon, different models
perform the best. Another salient fact is that there are fewer models included
in the MSC during the first subsample.

Finally, we test whether the superiority of the RF model with respect
to alternative models depends on the state of the economy. We consider two
cases, namely, recessions versus expansions and high versus low macroeconomic
uncertainty.” The results of the test proposed by (42) for squared loss functions
are presented in Tables 6.11 and 6.12. The tables report the value of the test
statistic as well as the respective p-values. As usual, one, two and three asterisks

represent rejection of the null hypothesis at 10%, 5%, and 1% significance

9Since results barely change if we consider either financial or real, rather than
macroeconomic, uncertainty, we do not report them for brevity. They are available upon
request.
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levels, respectively. In Table 6.11, the results for expansion periods versus
recessions are presented, whereas in Table 6.12, we consider periods of high
macroeconomic uncertainty versus periods of low macroeconomic uncertainty:.
Periods of high (low) macroeconomic uncertainty are those where uncertainty
is higher (lower) than the historical average. For conciseness, we display only
the results for the most relevant models.

Inspecting the tables, it is clear that the majority of the statistics are
negative, meaning that the RF model is superior than its competitors. For
instance, out of 72 entries in each table, the values of the statistics are
positive only in four and seven cases in Tables 6.11 and 6.12, respectively.
However, the differences are not statistically significant during recessions.
This result is not surprising as only 34 of the 312 out-of-sample observations
are labeled as recessions. Nevertheless, the magnitudes of the differences are
much higher during recessions. Turning attention now to periods of low and
high macroeconomic uncertainty, it is evident from Table 6.12 that the RF
model is statistically superior to the benchmark models for both periods,
and as in the previous case, the differences are higher in periods of greater
uncertainty. As argued above, both the degrees of slackness and uncertainty
might be sources of nonlinearities in the economy. The fact that the RF model
outperforms competitors in these states of the economy suggests that allowing
for nonlinearities is key to improving macroeconomic forecasts.

6.4.4
Opening the Black Box: Variable Selection

In this section, we compare the predictors selected by some of the ML
methods, namely, adaptive LASSO (adaLASSO), ridge regression (RR) and
random forest (RF). We select these three models for two reasons. First,
they are generally the three best-performing models. Second, they have quite
different characteristics. While adaLASSO is a true sparsity-inducing method,

RR and RF models are only approximately sparse. In addition, RR is a linear
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model, whereas RF is a highly nonlinear specification.

In principle, this analysis is straightforward with sparsity-inducing
shrinkage methods such as the adalLASSO, as the coefficients of potentially
irrelevant variables are automatically set to zero.! For the other ML
methods, the analysis is more complex. To keep the results among models
comparable, we adopt the following strategy. For RR and adalLASSO, the
relative importance measure is computed as the average coefficient size
(divided by the respective standard deviations of the regressors). To measure
the importance of each variable for the RF models, we use out-of-bag (OOB)
samples.’! When the bth tree is grown, the OOB samples are passed down
the tree and the prediction accuracy is recorded. Then, the values of the jth
variable are randomly permuted in the OOB sample, and the accuracy is
again computed. The decrease in accuracy due to the permutation is
averaged over all trees and is the measure of the importance of the jth
variable in the RF.

Due to space constraints, we cannot show the relative importance for
each variable, each lag, each horizon or each estimation window. Therefore,
as described in Appendix 6.5, and following (67), we categorize the variables,
including lags, into the following nine groups: (i) output and income; (ii) labor
market; (iii) housing; (iv) consumption, orders and inventories; (v) money and
credit; (vi) interest and exchange rates; (vii) prices; and (viii) stock market. We
also consider two additional groups, namely, the principal component factors
computed from the full set of potential predictors and autoregressive terms.
Furthermore, the results are averaged across all estimation windows.

Figure 6.7 shows the importance of each variable group for the
adalLASSO, RR and RF methods for all the twelve forecasting horizons. For

all different methods, the values in the plots are re-scaled to sum one.

10(17) showed, for example, that under sparsity conditions, the adaLASSO model selection
is consistent for high-dimensional time series models in very general settings, i.e., the method
correctly selects the “true” set of regressors.

HFor a given data point (y;, ), the OOB sample is the collection of all bootstrap samples
that do not include (y;, x}).


DBD
PUC-Rio - Certificação Digital Nº 1421640/CA


PUC-Rio- CertificagaoDigital N° 1421640/CA

Chapter 6. Forecasting Inflation in a Data-Rich Environment: The Benefits of
Machine Learning Methods 115

The set of the most relevant variables for RR and RF models is quite
stable across forecasting horizons but is remarkably different between the two
specifications. While for RR, autoregressive terms, prices and employment are
the most important predictors, RF models give more importance to prices,
interest-exchange rates, employment and housing. For adalLASSO, selection is
quite different across forecasting horizons, and only autoregressive terms retain
their relative importance independent of the horizon. Prices gradually lose their
relevance until up to six-months-ahead and partially recover relevance when
longer horizons are considered. Output-income variables are more important
for medium-term forecasts. Finally, none of the three classes of models selects
either factors or stocks. This result may indicate that the high level of cross-
section aggregation of the factors is causing the poor performance of factor
models.

To compare the degree of sparsity of each model, we report word clouds
of the selected variables in Appendix 6.5.

6.5
Conclusions

We show that with the recent advances in ML methods and the
availability of new and rich datasets, it is possible to improve inflation
forecasts. Models such as LASSO, bagging, RF and others are able to
produce more accurate forecasts than the standard benchmarks. These
results highlight the benefits of ML methods and rich datasets for
macroeconomic forecasting. Although our paper focuses on inflation
forecasting in the US, one can easily apply ML methods to forecast other
macroeconomic series in a variety of countries. We leave for further research
the question as to whether ML methods can systematically outperform
standard methods when other macroeconomic series, such as industrial
production, and other countries are considered.

The RF method deserves special attention as it delivers the smallest
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errors for most forecasting horizons in the two out-of-sample periods (1990
1999 and 2001-2015). The good performance of the RF is due both to potential
nonlinearities in the relationship between inflation and its predictors and the
variable selection mechanism of such a model.

The selection of variables for RF models is quite stable across forecasting
horizons. These variables are mostly selected from the following four groups
of variables: prices, exchange and interest rates, housing and labor market.
Although it is difficult to disentangle the precise sources of nonlinearities
that the RF method uncovers, this variable selection may shed light on
them. In fact, there are many theoretical reasons that nonlinearities may be
induced among inflation, interest rate, labor market outcomes and housing. For
example, the relationship between inflation and employment depends on the
degree of slackness in the economy. In addition, as we argued above, uncertainty
might induce nonlinearities among these variables. Finally, part of the out-of-
sample window encompasses quarters when the zero lower bound on nominal
interest rates is binding, which is another source of nonlinearity. This out-of-
sample window also encompasses a period in which a housing bubble led to a
credit crunch, which are events with highly nonlinear consequences.

The RF is the winning method not only in the full sample but also in
the periods of expansion and recession as well as low uncertainty and high
uncertainty. Relative to other methods, the RF performs particularly well
in periods of high uncertainty. In addition, the RF also outperforms other
methods during and after the Great Recession, when uncertainty skyrocketed
and when the zero lower bound was binding. Altogether, these results suggest
that the relationships among key macroeconomic variables might be highly
nonlinear. If this is the case, the various linear methods widely applied in the
profession not only to forecast variables but also to achieve other objectives
such as approximate DSGE models might lead to inaccurate results.

Finally, in this paper, we focus on the RF model due to its flexibility
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and scalability for very large datasets. Nevertheless, alternative nonlinear
methods such as deep learning and other semiparametric models should also

be considered in future work.
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TABLES AND FIGURES

The figure shows the time evolution of the consumer price index (CPI), the personal
consumption expenditures (PCE) and the core CPI inflation measures from January 1960 to
December 2015 (672 observations). Inflation is computed as m; = log(p:) — log(p:—1), where
p¢ represents each one of the price measures considered in this paper. Shaded areas represent
recession periods.

Legend
Expansion

Recession

Inflation %
°
0d

o
3400IdD

1963 1969 1975 1981 1987 1993 1999 2005 2011 2017
Time

Figure 6.1: Inflation rate (CPI, PCE and CPI core) from 1960 to 2015.
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The table reports the root mean squared error (RMSE), mean absolute error (MAE) and
median absolute deviation from the median (MAD) ratios with respect to the random walk
model for the full out-of-sample period (1990-2015). The statistics for the best-performing
model are highlighted in bold.

Panel (a): RMSE Ratio
Forecasting Horizon
Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.
AR 0902 0.809 0.790 0.805 0.786 0.791 0.783 0.764 0.779 0.824 0.837 0.753 1.218
UCSV 0954 0.816 0.797 0.813 0.783 0.777 0.784 0.776 0.770 0.804 0.832 0.781 0.908
RF 0.844 0.731 0.706 0.738 0.711 0.715 0.718 0.712 0.722 0.763 0.773 0.685 0.766

Panel (b): MAE Ratio
Forecasting Horizon
Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.
AR 0874 0.791 0.782 0.805 0.802 0.806 0.777 0.760 0.807 0.847 0.861 0.764 1.220
UuCsv 0911 0817 0.786 0.803 0.801 0.795 0.796 0.787 0.784 0.799 0.851 0.777 0.894
RF 0.811 0.721 0.711 0.749 0.727 0.728 0.699 0.681 0.717 0.747 0.767 0.668 0.774

Panel (c¢): MAD Ratio
Forecasting Horizon
Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.
AR 0.738 0.703 0.815 0.822 0.828 0.755 0.664 0.685 0.767 0.697 0.769 0.600 0.889
UCSvV 0876 0.770 0.832 0.906 0.878 0.790 0.761 0.835 0.857 0.829 0.884 0.777 0.876
RF 0.698 0.633 0.772 0.841 0.750 0.728 0.653 0.639 0.728 0.685 0.706 0.575 0.587

Table 6.5: Forecasting Results: RMSE, MAE and MAD Ratios (1990-2015)


DBD
PUC-Rio - Certificação Digital Nº 1421640/CA


PUC-Rio- CertificagaoDigital N° 1421640/CA

Chapter 6. Forecasting Inflation in a Data-Rich Environment: The Benefits of
Machine Learning Methods 124

The table reports the frequency with which each model achieved the best (worst)

performance statistics over a rolling window period of four years (48 observations).

Panel (a): Lowest Rolling RMSE
Forecasting Horizon

Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.

RW 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.038 0.000 0.083
AR 0.083 0.049 0.000 0.158 0.011 0.011 0.098 0.177 0.117 0.128 0.113 0.000 0.000
UCsv 0.023 0.049 0.211 0.098 0.181 0.109 0.004 0.030 0.192 0.109 0.094 0.000 0.236
RF 0.894 0.902 0.789 0.743 0.808 0.879 0.898 0.792 0.691 0.762 0.755 1.000 0.681

Panel (b): Lowest Rolling MAE

Forecasting Horizon

Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.

RW 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.094 0.000 0.039
AR 0.166 0.034 0.000 0.049 0.000 0.023 0.098 0.136 0.132 0.064 0.049 0.023 0.000
UCSvV  0.151  0.177 0.257 0.226  0.151  0.155 0.000 0.072 0.242 0.226 0.094 0.023 0.201
RF 0.683 0.789 0.743 0.725 0.849 0.823 0.902 0.792 0.626 0.709 0.762 0.955 0.760

Panel (c): Lowest Rolling MAD
Forecasting Horizon

Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.

RW 0.136  0.000 0.034 0.000 0.091 0.045 0.004 0.000 0.034 0.053 0.026 0.045 0.020
AR 0234 0.162 0234 0230 0.121 0.234 0.264 0.321 0.109 0.147 0423 0.234 0.039
UCSV  0.038 0.192 0.268 0.328 0.094 0.117 0.034 0.008 0.219 0.087 0.034 0.019 0.051
RF 0.592 0.645 0.464 0.442 0.694 0.604 0.698 0.672 0.638 0.713 0.517 0.702 0.890

Panel (d): Highest Rolling RMSE
Forecasting Horizon

Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.

RW 0.823 0.985 0.936 0.992 0.977 0.996 1.000 1.000 0.864 0.804 0.713 0.849 0.000
AR 0.000 0.004 0.057 0.008 0.023 0.004 0.000 0.000 0.136 0.189 0.287 0.151 0.969
UCSV  0.177  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.031
RF 0.000 0.011 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.000

Panel (e): Highest Rolling MAE

Forecasting Horizon

Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.

RW 0.898 0.943 0.864 1.000 0.992 0.966 1.000 0.943 0.819 0.728 0.687 0.770 0.031
AR 0.083 0.034 0.128 0.000 0.008 0.034 0.000 0.057 0.181 0.272 0.283 0.230 0.862
Ucsv  0.019  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.106
RF 0.000 0.023 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.030 0.000 0.000

Panel (f): Highest Rolling MAD

Forecasting Horizon

Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.

RW 0.683 0.940 0.853 0.804 0.796 0.657 0.811 0.943 0.774 0.804 0.789 0.921 0.315
AR 0.053 0.026 0.117 0.098 0.102 0.068 0.042 0.019 0.098 0.034 0.019 0.008 0.512
UCSV 0215 0.034 0.026 0.098 0.042 0.260 0.140 0.038 0.106 0.143 0.192 0.072 0.173
RF 0.049 0.000 0.004 0.000 0.060 0.015 0.008 0.000 0.023 0.019 0.000 0.000 0.000

Table 6.6: Forecasting Results: Ranking of Models (1990-2015)
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The table reports the p-values of the unconditional Giacomini-White test for superior
predictive ability between the random forest models and each of the benchmark models.
The test is based on the full out-of-sample period. Panel (a) presents the results for squared

errors, while panel (b) shows the results for absolute errors.
Panel (a): Giacomini-White Test (Sq. Errors)
Forecasting Horizon
Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.
RW 0.003 0.000 0.000 0.001 0.006 0.012 0.010 0.003 0.003 0.027 0.024 0.001 0.049
AR 0.002 0.010 0.023 0.045 0.024 0.024 0.056 0.075 0.047 0.062 0.008 0.000 0.021
UCSV 0.003 0.003 0.013 0.055 0.055 0.024 0.001 0.000 0.003 0.038 0.002 0.000 0.072

Panel (b): Giacomini-White Test (Abs. Errors)
Forecasting Horizon
Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.
RW 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023
AR 0.000 0.000 0.001 0.012 0.002 0.005 0.009 0.017 0.007 0.004 0.000 0.000 0.000
UCSV  0.000 0.000 0.010 0.029 0.003 0.007 0.000 0.000 0.007 0.054 0.008 0.000 0.078

Table 6.7: Forecasting Results: Superior Predictive Ability Test (1990-2015)

The figure displays the root mean squared errors (RMSE) computed over rolling windows of
48 observations. Panel (a) displays the results for one-month-ahead forecasts (h = 1), panel
(b) displays the results for six-months-ahead forecasts (h = 6), panel (c) displays the results
for twelve-months-ahead forecasts (h = 12), and finally, Panel (d) displays the results for

the accumulated twelve month forecasts.

%10 Rolling RMSE - h=1 %10 Rolling RMSE - h=6

RMSE

1995-01 2000-01 2005-01 2010-01 2015-01 1995-01 2000-01 2005-01 2010-01 2015-01

date date
6.3(a): 6.3(b):
x10°° Rolling RMSE - h=12 Rolling RMSE - Acc

1995-01 2000-01 2005-01 2010-01 2015-01 1995-01 2000-01 2005-01 2010-01
date date

6.3(c): 6.3(d):

Figure 6.2: Rolling RMSE.
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The figure displays the mean absolute errors (MAE) computed over rolling windows of 48
observations. Panel (a) displays the results for one-month-ahead forecasts (h = 1), panel (b)
displays the results for six-months-ahead forecasts (h = 6), panel (c) displays the results for
twelve-months-ahead forecasts (h = 12), and finally, panel (d) displays the results for the
accumulated twelve month forecasts.

%10 Rolling MAE - h=1 %1078 Rolling MAE - h=6
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Figure 6.3: Rolling MAE.
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The figure displays the mean absolute deviation from the median (MAD) computed over
rolling windows of 48 observations. Panel (a) displays the results for one-month-ahead
forecasts (h = 1), panel (b) displays the results for six-months-ahead forecasts (h = 6),
Panel (c) displays the results for twelve-months-ahead forecasts (h = 12), and finally, panel

(d) displays the results for the accumulated twelve month forecasts.

%107 Rolling MAD - h=1 %10 Rolling MAD - h=6

251

151

1995-01 2000-01 2005-01 2010-01 2015-01 1995-01 2000-01 2005-01 2010-01 2015-01

date date
6.5(a): 6.5(b):

%107 Rolling MAD - h=12 Rolling MAD - Acc
L 0.025

0.005

1995-01 2000-01 2005-01 2010-01 2015-01 1995-01 2000-01 2005-01 2010-01

date date
6.5(c): 6.5(d):

Figure 6.4: Rolling MAD.
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The table shows the root mean squared error (RMSE) and, between parenthesis, the mean
absolute errors (MAE) for all models relative to the random walk (RW). The error measures
were calculated from 132 rolling windows covering the 1990-2000 period and 180 rolling
windows covering the 2001-2015 period. Values in bold show the most accurate model in
each horizon. Cells in gray (blue) show the models included in the 50% model confidence set
(MCS) using the squared error (absolute error) as loss function. The MCSs were constructed
based on the maximum t-statistic. The last column in the table reports in how many horizons
the row model was included in the MCS for square (absolute) loss. The last two rows in the

table report how many models were included in the MCS for square and absolute losses.
Consumer Price Index 1990-2015
Forecasting Horizon
RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc.  RMSE count

(MAE count)
RW 100 100 100 100 100 100 100 100 100 100 100  1.00 | 100 1
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1
AR 090 081 [ 079 081 079 079 078 076 078 08 08 075 1.2 9
(0.87)  (0.79) (0.78) (0.81) (0.80) (0.81) (0.78) (0.76) (0.81) (0.85) (0.86) (0.76) (1.22) (0)
UCsv 095 08 080 [ 081 078 078 078 078 [ 077 08 08 078 [ 001 8

0.91)  (0.82) (0.79) (0.80) (0.80) (0.79) (0.80) (0.79) (0.78) | (0.80) (0.85) (0.78)  (0.89) (3)

LASSO 08 075 073 076 074 075 075 073 075 080 08 073 098 11
0.82) (0.74) (0.73) (0.78) (0.77) | (0.75) (0.74) (0.71) (0.76) (0.81) (0.84) (0.74) (1.04) )
adaLASSO 084 076 074 077 075 075 076 075 076 080 08 072 096 1
(0.81)  (0.75) (0.72) (0.77) (0.75) (0.74) (0.73) (0.71) (0.75) (0.79) (0.84) (0.73)  (0.96) (11)
EINet 083 075 073 076 075 074 075 074 076 081 08 073 098 1
(082) (0.74) (0.73) (0.78) (0.78) | (0.76) (0.75) (0.71) (0.77) | (0.81) (0.85) (0.75) (1.05) (9)
adaFElnet 084 075 073 077 075 075 075 074 076 080 081 073 096 1
(082) (0.74) (0.72) (0.76) (0.75) (0.74) (0.73) (0.71) (0.75) (0.79) (0.83) (0.75)  (0.97) (11)
Ridge 085 073 072 075 074 075 075 073 074 077 078 070 089 13
(083) (0.72) (0.72) (0.77) (0.76) (0.76) (0.73) (0.71) (0.74) (0.77) (0.79) (0.71)  (0.93) (13)
BVAR 08 076 075 077 074 076 077 076 077 08 08 074 107 11
(0.87) | (0.73) (0.75) (0.79) (0.78) (0.78) (0.76) (0.76) (0.81) | (0.83) (0.85) (0.76) (1.09) (8)
Bagging 08 076 076 080 078 079 083 08 078 08 08 074 082 1
(084) (0.78) (0.79) (0.87) (0.86) (0.85) (0.83) (0.80) (0.80) | (0.84) (0.86) (0.78) | (0.88) (4)
CSR 08 077 076 079 077 079 079 077 079 08 08 076 113 1n

JMA 0.99 0.82

(0.99)  (0.85) (0.89) (0.94) (0.96) (0.90) (0.91) (0.87) (0.93) (0.96) (0.96) (0.83)  (0.91) (1)
Factor 087 078 078 079 [[078 078 080 081 082 084 | 08 078 117 4
(0.88) (0.80) (0.80) (0.82) (0.82) (0.80) (0.78) (0.80) (0.87) (0.87) (0.87) (0.82) (1.21) (0)
T. Factor 088 079 078 080 [[077 | 079 079 080 080 [ 08 08 078 117 3
(0.87)  (0.82) (0.81) (0.84) (0.83) (0.84) (0.80) (0.80) (0.84) (0.87) (0.86) (0.80) (1.23) (0)
Boosting 095 077 076 078 077 079 079 078 079 083 08 074 117 10
(0.96) (0.80) (0.81) (0.85) (0.84) (0.86) (0.84) (0.82) (0.85) (0.86) | (0.86) (0.75) (1.32) (1
RF 084 073 071 074 071 072 072 071 072 076 0.77 0.68  0.77 13

Mean 083 075 073 076 074 074 075 074 075 077 078 071 095 12
(0.81) (0.74) (0.73) (0.76) (0.76) (0.75) (0.73) (0.71) (0.75) (0.76) (0.78) (0.70)  (0.97) (12)
T Mean 084 074 073 075 074 074 075 073 074 078 079 071 095 12
(0.81) (0.74) (0.72) (0.76) (0.75) (0.74) (0.72) (0.70) (0.74) (0.77) (0.79) (0.70)  (0.96) (12)
Median 08 075 072 076 074 074 075 073 074 078 079 071 094 12

RF/OLS 0.81 073 072 075 074 075 075 074 074 078 079 071 094 13
(0.79) (0.73) (0.72) (0.76) (0.76) (0.76) (0.73) (0.72) (0.75) (0.78) (0.81) (0.72) (0.97) (13)
adaLASSO/RF 085 076 072 073 073 072 072 071 072 079 082 070  0.80 13

082) (073) (0.72) (0.74) (074) (0.73) (071) (068) (0.72) (0.79) (082) (0.68) (0.82) (13)

RMSE count 14 15 16 17 19 19 17 15 17 18 19 8 8
MAE count 12 @11y (12) (1) (1) (12) (13 @11 (1) (15 16 (7 (9)

Table 6.8: Forecasting Errors for the CPI from 1990 to 2015
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Figure 6.5: Eigenvalues of the matrix of contemporaneous regressor.
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Figure 6.6: Correlation of the Forecasts for the CPI from 1990 to 2015
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The table shows the root mean squared error (RMSE), and between parenthesis, the mean
absolute errors (MAE) for all models relative to the random walk (RW). The error measures
were calculated from 132 rolling windows covering the 1990-2000 period and 180 rolling
windows covering the 2001-2015 period. Values in bold show the most accurate model in
each horizon. Cells in gray (blue) show the models included in the 50% model confidence set
(MCS) using the squared error (absolute error) as loss functions. The MCSs were constructed
based on the maximum t-statistic. The last column in the table reports in how many horizons
the row model was included in the MCS for square (absolute) loss. The last two rows in the

table report how many models were included in the MCS for square and absolute losses.
Consumer Price Index 1990—2000
Forecasting Horizon
RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc.  RMSE count

(MAE count)

RW 100 100 100 100 100 100 1.00 100 1.00 | 100 100 1.00 | 100 3

(1.00)  (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) [(1:00)" (1.00) (1.00) (1.00) (1.00) ()
AR 081 082 088 08 078 079 079 080 087 08 095 08 1.2 10

(0.88) | (0.83) (0.92) (0.83) (0.81) | (0.84) (0.84) (0.80) (0.94) (0.98) (1.04) (0.94) (1.38) (6)
UCsv 086 08 087 087 | 085 08 086 | 085 086 080 094 083 | 1.00

(0.88) (0.85) (0.88) (0.87) (0.86) (0.86) (0.87) (0.84) (0.8%) (0.91) (0.96) (0.89) (1.02) (11)
LASSO 083 08 08 083 | 079 078 080 | 081 088 092 097 085 124

(0.83) | (0.84) (0.92) (0.84) (0.83) | (0.84) (0.88) | (0.83) (0.96) (1.02) (1.08) (0.96) (1.41) (5)

adaLASSO 081 08 08 083 075 075 077 077 085 087 092 082  1.03 13
(0.84) (0.82) (0.86) (0.80) (0.73) (0.77) (0.81) (0.77) (0.90) (0.92) (1.00) (0.89) (1.08) (13)
EINet 081 08 08 083 080 | 079 082 | 081 092 | 092 100 089 126 7
(0.86) (0.84) (0.92) (0.86) (0.86) | (0.85) (0.92) | (0.83) (1.02) (1.02) (1.14) (1.02) (1.47) (4)
adaFElnet 081 08 08 080 074 075 077 078 087 087 092 087  1.06 12
(0.85) (0.83) (0.86) (0.77) (0.73) (0.78) (0.81) (0.78) (0.92) (0.93) (1.00) (0.95) (1.13) (12)
Ridge 079 0.77 086 080 076 080 080 080 08 08 08 076  0.99 12
(0.83) (0.78) (0.90) (0.81) (0.78) (0.84) (0.85) (0.79) (0.90) (0.92) (0.96) (0.82) (1.15) (12)
BVAR 097 = 080 092 083 077 084 087 090 100 | 098 102 08 143 6
(1.00) [ (0.77) (0.96) (0.8%) (0.84) (0.93) (0.98) (0.95) (1.12) (1.10) (1.16) (1.01) (1.56) ©)
Bagging 08 08 102 092 090 091 090 | 08 091 091 093 079 102 8
(0.86) (0.87) (1.04) (0.95) (0.93) (0.95) (0.92)  (0.82) (0.94) (0.95) (0.99) (0.87) (1.15) (8)
CSR 083 08 089 081 077 076 076 0.76 085 08 091 081 111 10
(0.89)  (0.89) (0.92)  (0.82) (0.79)  (0.81) (0.82) (0.76) (0.91) (0.95) (0.97) (0.89) (1.25) ©)
IMA 094 101 117 099 103 101 106 103 121 113 113 093 | 1.00 1
(1.00) (1.02) (119) (1.01) (L.07) (1.05) (1.06) (1.01) (1.29) (1.19) (1.20) [(0:98) (1.08) )
Factor 087 [ 08 | 098 090 089 08 08 090 1.02 097 104 098 151 1
0.96) (0.92) (1.05) (0.97) (0.92) (0.90) [(088) (0.91) (1.14) (1.09) (1.15) (1.14) (L.72) ©)
T. Factor 087 091 101 098 092 094 08 091 104 102 102 095 162 0
(0.93)  (0.98) (113) (1.07) (1.02) (1.05) (0.94) (0.93) (1.16) (1.18) (1.15) (1.10) (1.91) (0)
Boosting 096 090 105 [ 091 088 095 095 097 102 [ 096 097 08 166 5
(1.09)  (0.98) (1.16) (0.98) (0.97) (1.06) (1.06) (1.03) (1.12) | (1.06) (1.07) (0.89) (1.92) 3)
RF 079 078 085 047 073 076 076 077 082 0.82 0.85 0.72 0.87 13

(082) (078) (0.88) (077) (0.76) (0.19) (0.78) (0.75) (0.86) (0.86) (0.89) (0.76) (0.04) (1)

Mean 080 079 08 079 076 077 077 077 084 084 087 078  1.02 13
(0.83) (0.81) (0.87) (0.80) (0.79) (0.81) (0.81) (0.76) (0.90) (0.91) (0.94) (0.85) (1.11) (12)
T Mean 08 080 0.85 079 075 076 077 077 085 084 08 079  1.04 13
(0.84) (0.82) (0.87) (0.79) (0.77) (0.80) (0.81) (0.78) (0.91) (0.91) (0.97) (0.87) (1.15) (12)
Median 08 080 08 079 075 0.7 077 077 08 08 08 079 105 13

084) (083) (0.88) (079) (0.78) (0.80) (0.82) (0.77) (0.91) (091) (0.97) (0.87) (L16)  (12)

RF/OLS 080 08 08 078 074 077 077 078 085 08 08 076 1.0l 13
(0.82) (0.82) (0.89) (0.79) (0.76) (0.81) (0.82) (0.78) (0.90) (0.92) (0.96) (0.83) (1.14) (12)
adaLASSO/RF | 0.79 081 091 077 072 077 077 077 0.82 089 090 072 089 12

081) (0.81) (0.0 (0.77) (073) (081) (081) (0.77) (0.86) (0.94) (0.99) (0.76) (0.95)  (12)

RMSE count 12 18 14 16 1 14 10 15 14 18 16 1 13
MAE count 12 @15 (9 (100 (3 (14 (13 (15 (15 (16 (14 (13) (13

Table 6.9: Forecasting Errors for the CPI from 1990 to 2000
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The table shows the root mean squared error (RMSE), and between parenthesis, the mean
absolute errors (MAE) for all models relative to the random walk (RW). The error measures
were calculated from 132 rolling windows covering the 1990-2000 period and 180 rolling
windows covering the 2001-2015 period. Values in bold show the most accurate model in
each horizon. Cells in gray (blue) show the models included in the 50% model confidence set
(MCS) using the squared error (absolute error) as loss functions. The MCSs were constructed
based on the maximum t-statistic. The last column in the table reports in how many horizons
the row model was included in the MCS for square (absolute) loss. The last two rows in the

table report how many models were included in the MCS for square and absolute losses.
Consumer Price Index 2001-2015
Forecasting Horizon
RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc.  RMSE count

(MAE count)
RW 100 100 100 100 100 100 100 100 100 100 100  1.00 | 100 1
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (0)
AR 092 08 078 [080 | 079 079 [ 078 076 077 08 08 073 121 7
(0.87)  (0.78) (0.74) (0.79) (0.80) (0.80) (0.75) (0.75) (0.76) (0.80) (0.79) (0.70) (1.17) (0)
UCsv 098 08 079 [ 080 077 077 077 076 076 079 08 076 | 0.89 9
(0.93)  (0.81) (0.76) | (0.77) (0.78) (0.77) (0.77) (0.77) (0.75) | (0.76)  (0.81) (0.73) | (0.85) (5)
LASSO 084 074 071 075 074 074 075 072 074 078 079 070 091 13
(0.79) (0.71) (0.67) (0.75) (0.74) (0.72) (0.69) (0.67) (0.69) (0.73) (0.75) (0.65) (0.91) (12)
adaLASSO 08 075 072 076 075 075 076 074 075 079 08 070 093 13
(0.80) (0.72) (0.68) (0.76) (0.76) (0.73) (0.71) (0.69) (0.71) (0.75) (0.78) (0.67) (0.92) (11)
ElNet 084 074 071 074 073 074 074 073 073 079 079 070 091 13
(0.80) (0.70) (0.67) (0.74) (0.74) (0.72) (0.69) (0.67) (0.69) (0.73) (0.74) (0.64) (0.92) (12)
adaFElnet 085 074 072 076 075 075 075 074 074 079 080 070  0.93 12
(081) (0.71) (0.68) (0.76) (0.76) (0.73) (0.70) (0.68) (0.70) (0.74) (0.76) (0.67) (0.92) (11)
Ridge 086 072 070 075 073 074 074 072 072 076 077 069 086 12
(0.83)  (0.70) (0.67) (0.75) (0.75) (0.74) (0.69) (0.68) (0.69) (0.71) (0.73) (0.67) (0.86) (12)
BVAR 083 075 072 075 074 074 075 074 074 079 079 072 099 13
(0.81) (0.72) (0.68) (0.75) (0.75) (0.73) (0.69) (0.69) (0.70) (0.73) (0.74) (0.67) (0.93) (12)
Bagging 08 074 072 078 076 077 081 080 076 080 08 073 077 1
(0.84) (0.74) (0.71) (0.83) (0.84) (0.82) (0.80) (0.79) (0.76) (0.80) (0.82) (0.74) | (0.80) (4)
CSR 086 075 074 078 078 079 080 077 078 082 08 075 112 10
(082) (0.71) (0.69) (0.78) (0.79) (0.78) ~ (0.74)  (0.73) (0.75) | (0.78)  (0.80) (0.73) (1.07) (5)
IMA .00 | 078 079 08 080 [ 077 089 08 079 091 [ 088 077 084 5
0.99)  (0.78) (0.79) (0.92) (0.91) (0.84) (0.85) (0.82) (0.81) (0.88) (0.87) (0.78) | (0.85) (1)
Factor 087 077 075 [ 077 076 077 079 080 079 081 08 074 110 9
(0.84)  (0.76) (0.72)  (0.77) (0.78) (0.76) (0.74) (0.76) (0.78) (0.79) | (0.77) (0.69) (1.04) (5)
T. Factor 088 076 074 = 076 074 076 078 078 [ 076 078 080 074 1.05 9
(0.85)  (0.75) [(071) (0.74) (0.75) (0.76) (0.75) (0.75) (0.74) | (0.76) (0.76) (0.69) (1.00) (6)
Boosting 095 075 072 076 074 076 077 075 076 081 08 073  1.03 12
(0.91) | (0.72) (0.70) (0.79) (0.78) (0.79) (0.76) (0.75) (0.76) | (0.79) (0.79) (0.69) (1.13) (8)
RF 086 072 069 073 071 071 071 070 071 075 0.76 0.68 0.74 13

(081) (0.70) (0.66) (0.74) (0.71) (0.70) (0.67) (0.66) (0.67) (0.70) (0.72) (0.63) (0.72)  (13)

Mean 084 074 072 075 074 074 075 074 073 076 077 069 093 13
(0.80) (0.71) (0.69) (0.74) (0.75) (0.73) (0.70) (0.70) (0.70) (0.71) (0.72) (0.65) (0.92) (11)
T Mean 08 073 071 075 073 074 074 073 073 077 078 070 092 13
(0.80) (0.71) (0.67) (0.74) (0.74) (0.72) (0.69) (0.68) (0.69) (0.72) (0.72) (0.64) (0.90) (12)
Median 08 073 071 075 073 074 074 073 073 077 078 070 092 13

RF/OLS 0.81 072 071 075 074 075 075 073 073 077 078 070 092 13
0.78) (0.70) (0.67) (0.75) (0.76) (0.74) (0.70) (0.69) (0.70) (0.73) (0.76) (0.68) (0.91) (12)
adaLASSO/RF 087 075 069 072 074 071 072 070 071 077 080 070 0.7 13
(081) (0.70) (0.66) (0.73) (0.74) (0.71) (0.68) (0.65) (0.67) (0.73) (0.75) (0.66) (0.77) (13)

RMSE count 1 17 15 19 18 18 18 17 19 19 20 19 17
MAE count ) (5 (16)  (16)  (16) (16) (1) (1) (120 (16  (13)  (12)  (6)

Table 6.10: Forecasting Errors for the CPI from 2001 to 2015
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Figure 6.7: Variable importance

Data Appendix

In this section, we present a description of the dataset used in this paper.
Tables 6.13-6.20 describe the data and the transformations that were applied
to each variable. Each table considers one of the eight different sectors in
which the variables are grouped. The column tcode denotes the following data
transformation for a series x: (1) no transformation; (2) Azy; (3) 2A%z; (4)
log(x:); (5) Alog(z:); (6) A?log(z;); and (7) A(xy/xs—1—1). The FRED column
gives mnemonics in FRED followed by a short description. The comparable

series in global insight is given in the column GS.
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The column tcode denotes the following data transformation for a series x: (1) no

transformation; (2) Axy; (3) 2A%z4; (4) log(x); (5) Alog(zy); (6) A2 log(xy); (7) A(wy/x4—1—

1). The FRED column gives mnemonics in FRED followed by a short description. The

comparable series in Global Insight is given in the column GS.

Group 1: Output and income

id tcode fred description gsi gsi:description
1 1 5 RPI Real Personal Income M_ 14386177 PI
2 2 5 W8T75RX1 Real personal income ex transfer receipts M 145256755 PI less transfers
3 6 5 INDPRO IP Index M_ 116460980 IP: total
4 7 5 IPFPNSS IP: Final Products and Nonindustrial Supplies M _ 116460981 IP: products
5 8 5 IPFINAL IP: Final Products (Market Group) M_ 116461268 IP: final prod
6 9 5 IPCONGD IP: Consumer Goods M_ 116460982 IP: cons gds
7 10 5 IPDCONGD IP: Durable Consumer Goods M 116460983 IP: cons dble
8 11 5 IPNCONGD IP: Nondurable Consumer Goods M 116460988 IP: cons nondble
9 12 5 IPBUSEQ IP: Business Equipment M 116460995 IP: bus eqpt
10 13 5 IPMAT IP: Materials M 116461002 IP: matls
11 14 5 IPDMAT IP: Durable Materials M_ 116461004 1IP: dble matls
12 15 5 IPNMAT IP: Nondurable Materials M_ 116461008 IP: nondble matls
13 16 5 IPMANSICS IP: Manufacturing (SIC) M 116461013 IP: mfg
14 17 5 IPB51222s IP: Residential Utilities M_ 116461276 IP: res util
15 18 5 IPFUELS IP: Fuels M_ 116461275 1IP: fuels
16 19 1 NAPMPI ISM Manufacturing: Production Index M_ 110157212 NAPM prodn
17 20 2 CUMFNS Capacity Utilization: Manufacturing M_ 116461602 Cap uti

Table 6.13: Data Description: Output and Income


DBD
PUC-Rio - Certificação Digital Nº 1421640/CA


PUC-Rio- CertificagaoDigital N° 1421640/CA

Chapter 6. Forecasting Inflation in a Data-Rich Environment: The Benefits of
Machine Learning Methods 137

The column tcode denotes the following data transformation for a series x: (1) no
transformation; (2) Axy; (3) 2A%z4; (4) log(x); (5) Alog(zy); (6) A2 log(xy); (7) A(wy/x4—1—
1). The FRED column gives mnemonics in FRED followed by a short description. The

comparable series in Global Insight is given in the column GS.

Group 2: Labor market

id  tcode fred description gsi gsi:description
1 21% 2 HWI Help-Wanted Index for United States Help wanted indx
2 22% 2 HWIURATIO  Ratio of Help Wanted/No. Unemployed M 110156531 Help wanted/unemp
3 23 5 CLF160V Civilian Labor Force M 110156467 Emp CPS total
4 24 5 CE160V Civilian Employment M_ 110156498 Emp CPS nonag
5 26 2 UNRATE Civilian Unemployment Rate M 110156541 U: all
6 26 2 UEMPMEAN Average Duration of Unemployment (Weeks) M_ 110156528 U: mean duration
T 2T 5 UEMPLT5 Civilians Unemployed - Less Than 5 Weeks M 110156527 U < 5 wks
8 28 5 UEMP5TO14 Civilians Unemployed for 5-14 Weeks M_ 110156523 U 5-14 wks
9 29 5 UEMP150V Civilians Unemployed - 15 Weeks & Over M 110156524 U 15+ wks
10 30 5 UEMP15T26 Civilians Unemployed for 15-26 Weeks M_ 110156525 U 15-26 wks
11 31 5 UEMP270V Civilians Unemployed for 27 Weeks and Over M 110156526 U 27+ wks
12 32% 5 CLAIMSx Initial Claims M_ 15186204  UI claims
13 33 5 PAYEMS All Employees: Total nonfarm M 123109146 Emp: total
14 34 5 USGOOD All Employees: Goods-Producing Industries M 123109172 Emp: gds prod
15 35 5 CES1021000001  All Employees: Mining and Logging: Mining M_ 123109244 Emp: mining
16 36 5 USCONS All Employees: Construction M 123109331 Emp: const
17 37 5 MANEMP All Employees: Manufacturing M_ 123109542 Emp: mfg
18 38 5 DMANEMP All Employees: Durable goods M 123109573 Emp: dble gds
19 39 5 NDMANEMP All Employees: Nondurable goods M_ 123110741 Emp: nondbles
20 40 5 SRVPRD All Employees: Service-Providing Industries M 123109193 Emp: services
21 41 5 USTPU All Employees: Trade, Transportation & Utilities M_ 123111543 Emp: TTU
22 42 5 USWTRADE All Employees: Wholesale Trade M 123111563 Emp: wholesale
23 43 5 USTRADE All Employees: Retail Trade M_123111867 Emp: retail
24 44 5 USFIRE All Employees: Financial Activities M 123112777 Emp: FIRE
25 45 5 USGOVT All Employees: Government M_ 123114411 Emp: Govt
26 46 1 CES0600000007 Avg Weekly Hours : Goods-Producing M 140687274 Avg hrs
27 47 2 AWOTMAN Avg Weekly Overtime Hours : Manufacturing M_ 123109554 Overtime: mfg
28 48 1 AWHMAN Avg Weekly Hours : Manufacturing M_ 14386098  Avg hrs: mfg
29 49 1 NAPMEI ISM Manufacturing: Employment Index M 110157206 NAPM empl
30 127 6 CES0600000008  Avg Hourly Earnings : Goods-Producing M_ 123109182 AHE: goods
31 128 6 CES2000000008  Avg Hourly Earnings : Construction M 123109341 AHE: const
32 129 6 CES3000000008 Avg Hourly Earnings : Manufacturing M_ 123109552 AHE: mfg

Table 6.14: Data Description: Labor Market
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The column tcode denotes the following data transformation for a series x: (1) no
transformation; (2) Axy; (3) 2A%z4; (4) log(x); (5) Alog(zy); (6) A2 log(xy); (7) A(wy/x4—1—
1). The FRED column gives mnemonics in FRED followed by a short description. The

comparable series in Global Insight is given in the column GS.

Group 3: Housing

id tcode fred description gsi gsi:description
1 50 4 HOUST Housing Starts: Total New Privately Owned M 110155536 Starts: nonfarm
2 51 4 HOUSTNE Housing Starts, Northeast M 110155538 Starts: NE

52 4 HOUSTMW  Housing Starts, Midwest M 110155537 Starts: MW
4 53 4 HOUSTS Housing Starts, South M 110155543 Starts: South
5 54 4 HOUSTW Housing Starts, West M 110155544 Starts: West
6 55 4 PERMIT New Private Housing Permits (SAAR) M 110155532 BP: total
7 56 4 PERMITNE  New Private Housing Permits, Northeast (SAAR) M_ 110155531 BP: NE
8 57 4 PERMITMW  New Private Housing Permits, Midwest (SAAR)  M_ 110155530 BP: MW
9 58 4 PERMITS New Private Housing Permits, South (SAAR) M 110155533 BP: South
10 59 4 PERMITW New Private Housing Permits, West (SAAR) M 110155534 BP: West

Table 6.15: Data Description: Housing

The column tcode denotes the following data transformation for a series x: (1) no
transformation; (2) Axy; (3) 2A%z4; (4) log(z); (5) Alog(z¢); (6) A2 log(xy); (7) A(wy/xi—1—
1). The FRED column gives mnemonics in FRED followed by a short description. The

comparable series in Global Insight is given in the column GS.

Group 4: Consumption, orders, and inventories

id tcode  fred description gsi gsi:description
1 3 5 DPCERA3MO86SBEA  Real personal consumption expenditures M_ 123008274 Real Consumption
2 4% 5 CMRMTSPLx Real Manu. and Trade Industries Sales M 110156998 M&T sales
3 5% 5 RETAILx Retail and Food Services Sales M__ 130439509 Retail sales
4 60 1 NAPM ISM : PMI Composite Index M_ 110157208 PMI
5 61 1 NAPMNOI ISM : New Orders Index M_ 110157210 NAPM new ordrs
6 62 1 NAPMSDI ISM : Supplier Deliveries Index M_110157205 NAPM vendor del
7 63 1 NAPMII ISM : Inventories Index M 110157211 NAPM Invent
8 64 5 ACOGNO New Orders for Consumer Goods M_ 14385863  Orders: cons gds
9 65* 5 AMDMNOx New Orders for Durable Goods M 14386110  Orders: dble gds
10 66* 5 ANDENOx New Orders for Nondefense Capital Goods M_ 178554409 Orders: cap gds
11 67% 5 AMDMUOx Unfilled Orders for Durable Goods M_ 14385946  Unf orders: dble
12 68* 5 BUSINVx Total Business Inventories M 15192014 M&T invent
13 69* 2 ISRATIOx Total Business: Inventories to Sales Ratio ~ M_ 15191529  M&T invent/sales
14 130% 2 UMCSENTx Consumer Sentiment Index hhsntn Consumer expect

Table 6.16: Data Description: Consumption, Orders and Inventories
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The column tcode denotes the following data transformation for a series x: (1) no

transformation; (2) Axy; (3) 2A%z4; (4) log(x); (5) Alog(zy); (6) A2 log(xy); (7) A(wy/x4—1—

1). The FRED column gives mnemonics in FRED followed by a short description. The

comparable series in Global Insight is given in the column GS.

tcode

fred

Group 5: Money and credit

description gsi gsi:description
1 70 6 MI1SL M1 Money Stock M 110154984 M1
2 71 6 M2SL M2 Money Stock M 110154985 M2
3 72 5 M2REAL Real M2 Money Stock M_ 110154985 M2 (real)
4 73 6 AMBSL St. Louis Adjusted Monetary Base M 110154995 MB
5 74 6 TOTRESNS Total Reserves of Depository Institutions M_ 110155011 Reserves tot
6 7 7 NONBORRES Reserves Of Depository Institutions M_ 110155009 Reserves nonbor
7 7 6 BUSLOANS Commercial and Industrial Loans BUSLOANS  C&I loan plus
8 77 6 REALLN Real Estate Loans at All Commercial Banks BUSLOANS  DC&I loans
9 78 6 NONREVSL Total Nonrevolving Credit M 110154564 Cons credit
10 79% 2 CONSPI Nonrevolving consumer credit to Personal Income M_ 110154569 Inst cred/PI
11 131 6 MZMSL MZM Money Stock N.A. N.A.
12 132 6 DTCOLNVHFEFNM  Consumer Motor Vehicle Loans Outstanding N.A. N.A.
13 133 6 DTCTHFNM Total Consumer Loans and Leases Outstanding N.A. N.A.
14 134 6 INVEST Securities in Bank Credit at All Commercial Banks N.A. N.A.

Table 6.17: Data Description: Money and Credit
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The column tcode denotes the following data transformation for a series x: (1) no
transformation; (2) Axy; (3) 2A%z4; (4) log(x); (5) Alog(zy); (6) A2 log(xy); (7) A(wy/x4—1—

1). The FRED column gives mnemonics in FRED followed by a short description. The

PUC-Rio- CertificagaoDigital N° 1421640/CA

comparable series in Global Insight is given in the column GS.

Group 6: Interest and exchange rates

id  tcode fred description gsi gsi:description
1 8 2 FEDFUNDS Effective Federal Funds Rate M_ 110155157 Fed Funds
2 85% 2 CP3Mx 3-Month AA Financial Commercial Paper Rate CPF3M Comm paper
3 8 2 TB3MS 3-Month Treasury Bill: M_ 110155165 3 mo T-bill
4 87 2 TB6MS 6-Month Treasury Bill: M_ 110155166 6 mo T-bill
5 8 2 GS1 1-Year Treasury Rate M 110155168 1 yr T-bond
6 8 2 GS5 5-Year Treasury Rate M 110155174 5 yr T-bond
7 9 2 GS10 10-Year Treasury Rate M 110155169 10 yr T-bond
8 91 2 AAA Moody’s Seasoned Aaa Corporate Bond Yield Aaa bond
9 92 2 BAA Moody’s Seasoned Baa Corporate Bond Yield Baa bond
10 93* 1 COMPAPFFx  3-Month Commercial Paper Minus FEDFUNDS CP-FF spread
11 94 1 TB3SMFFM 3-Month Treasury C Minus FEDFUNDS 3 mo-FF spread
12 95 1 TB6SMFFM 6-Month Treasury C Minus FEDFUNDS 6 mo-FF spread
13 9% 1 T1YFFM 1-Year Treasury C Minus FEDFUNDS 1 yr-FF spread
14 97 1 T5YFFM 5-Year Treasury C Minus FEDFUNDS 5 yr-FF spread
15 98 1 T10YFFM 10-Year Treasury C Minus FEDFUNDS 10 yr-FF spread
16 99 1 AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS Aaa-FF spread
17 100 1 BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS Baa-FF spread
18 101 5 TWEXMMTH Trade Weighted U.S. Dollar Index: Major Currencies Ex rate: avg
19 102 *5 EXSZUSx Switzerland / U.S. Foreign Exchange Rate M 110154768 Ex rate: Switz
20 103 *5 EXJPUSx Japan / U.S. Foreign Exchange Rate M 110154755 Ex rate: Japan
21 104 *5 EXUSUKx U.S. / UK. Foreign Exchange Rate M 110154772 Ex rate: UK
22 105 *5 EXCAUSx Canada / U.S. Foreign Exchange Rate M 110154744 Ex rate: Canada

Table 6.18: Data Description: Interest and Exchange Rates
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The column tcode denotes the following data transformation for a series x: (1) no

transformation; (2) Axy; (3) 2A%z4; (4) log(x); (5) Alog(zy); (6) A2 log(xy); (7) A(wy/x4—1—

1). The FRED column gives mnemonics in FRED followed by a short description. The

comparable series in Global Insight is given in the column GS.

Group 7: Prices

id tcode fred description gsi gsi:description
1 106 6 WPSFED49207 PPI: Finished Goods M110157517  PPI: fin gds
2 107 6 WPSFD49502 PPI: Finished Consumer Goods M110157508  PPI: cons gds
3 108 6 WPSID61 PPI: Intermediate Materials M_ 110157527 PPI: int matls
4 109 6 WPSID62 PPI: Crude Materials M 110157500 PPI: crude matls
5 110% 6 OILPRICEx Crude Oil, spliced WTT and Cushing M_ 110157273 Spot market price
6 111 6 PPICMM PPI: Metals and metal products M_ 110157335 PPI: nonferrous
7112 1 NAPMPRI ISM Manufacturing: Prices Index M 110157204 NAPM com price
8§ 113 6 CPIAUCSL CPI : All Ttems M 110157323 CPI-U: all
9 114 6 CPIAPPSL CPI : Apparel M 110157299 CPI-U: apparel
10 115 6 CPITRNSL CPI : Transportation M_ 110157302 CPI-U: transp
11 116 6 CPIMEDSL CPI : Medical Care M 110157304 CPI-U: medical
12 117 6 CUSRO0000SAC CPI : Commodities M_ 110157314 CPI-U: comm.
13 118 6 CUURO0000SAD CPI : Durables M 110157315 CPI-U: dbles
14 119 6 CUSRO000SAS CPI : Services M 110157325 CPI-U: services
15 120 6 CPIULFSL CPT : All Items Less Food M 110157328 CPI-U: ex food
16 121 6 CUURO0000SAOL2 CPI : All items less shelter M_ 110157329 CPI-U: ex shelter
17 122 6 CUSRO0000SAOL5 CPI : All items less medical care M_ 110157330 CPI-U: ex med
18 123 6 PCEPI Personal Cons. Expend.: Chain Index  gmdc PCE defl
19 124 6 DDURRG3MO086SBEA  Personal Cons. Exp: Durable goods gmded PCE defl: dlbes
20 125 6 DNDGRG3MO86SBEA  Personal Cons. Exp: Nondurable goods gmdcn PCE defl: nondble
21 126 6 DSERRG3MO86SBEA  Personal Cons. Exp: Services gmdcs PCE defl: service

Table 6.19: Data Description: Prices

The column tcode denotes the following data transformation for a series x: (1) no

transformation; (2) Axy; (3) 2A%z4; (4) log(z); (5) Alog(z:); (6) A2 log(xy); (7) A(wy/x4—1—

1). The FRED column gives mnemonics in FRED followed by a short description. The

comparable series in Global Insight is given in the column GS.

Group 8: Stock Market

id tcode fred description gsi gsi:description
1 80*% 5 S&P 500 S&P’s Common Stock Price Index: Composite M 110155044 S&P 500
2 81* 5 S&P: indust S&P’s Common Stock Price Index: Industrials M_ 110155047 S&P: indust
3 82% 2 S&P div yield S&P’s Composite Common Stock: Dividend Yield S&P div yield
4 83 5 S&P PE ratio S&P’s Composite Common Stock: Price-Earnings Ratio S&P PE ratio
5 135% 1 VXOCLSx VXO

Table 6.20: Data Description: Stock Market
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Appendix Models

For all models, with the exception of the RW and UCSV specifications, we
include a dummy for the November 2008, when a huge deflation was observed.
This appendix was removed because all the information concerning models was

discussed in chapter 2.

Appendix Additional Results

Variable Selection: Word Clouds

This Appendix presents the variable selection for several models as word
clouds. In the present context, a word cloud is an image composed of the
names of variables selected by a specific model across the estimation windows
in which the size of each word indicates its frequency or importance. The names
displayed in the clouds are as defined in the third column of Tables 6.13-6.20.
These names represent FRED mnemonics. The clouds also indicate the degree
of sparsity of each model. For instance, the smaller the cloud is, the more
sparse the model is.

Figures 6.8 and 6.9 display the word clouds for the linear model estimated
with the adaLASSO method for the first and second subsamples, respectively.
In each figure, panel (a) shows the cloud for one-month-ahead models (h = 1),
panel (b) presents the results for the three-month horizon (h = 3), and
panels (c¢) and (d) consider the cases for h = 6 and h = 12, respectively.
A number of findings emerge from the word clouds. First, as expected, the
adalLASSO method delivers very sparse methods, and this did not change
much according to the subsample considered. Second, the models across
different horizons, as shown before, are quite different. For example, in the
first subsample and for h = 1, the three variables that stand out from the

cloud are CUSRO000SAOLS5 (CPI: all items less medical care), WPSFD49207
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(PPI: finished goods), and DSERRG3MO086SBEA (PCE: Services). However,
for h = 12, the most important variables are AMDMUOx (unfilled orders for
durable goods) and HOUSTMW (Housing starts, Midwest). Finally, the pool
of selected variables also changes from the first to the second sample, specially
for h = 1. In this case, oil prices turn out to be one of the most relevant
variables.

Figures 6.10 and 6.11 shows the word clouds for the RF model. From the
pictures it is clear that the number of important variables are much higher. As
in the adaLASSO case, the variable composition changes from the first to the

second subsample.

RG3MO86SBEA

6.9(a): h=1 6.9(b): h=3

anexos/art4/wordclouds/19

DSERRG3MO86SBEA

6.9(c): h=6 6.9(d): h=12

Figure 6.8: Word clouds for the adal,LASSO method (1990-2000).
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Figure 6.9: Word clouds for the adaLASSO method (2001-2015).

6.10(d): h=12
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Figure 6.10: Word clouds for the Random Forest model (1990-2000).
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Figure 6.11: Word clouds for the Random Forest model (2001—2015).

Additional Results: Personal Consumption Expenditure (PCE)

In this section, we report forecasting results for PCE. The main message
is similar to the one described in the main text: RF models outperform
traditional benchmarks as well as other linear ML methods.

In Tables 6.21-6.23, we report for each model a number of different
summary statistics across all the forecasting horizons, including the
accumulated twelve-month horizon for the full out-of-sample period
(1990-2015) as well as for the two subsamples considered, namely, 1990-2000
and 2001-2015. Columns (1), (2) and (3) report the RMSE, the MAE and

the MAD, respectively. In columns (4), (5) and (6) we report the number of
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times (across horizons) each model achieved the lowest RMSE, MAE, and
MAD, respectively. Columns (7)—(10) present, for square and absolute losses,
the average p-values based either on the range or the t... statistics as
described in (55). Columns (11) and (12) show the average p-values of the
SPA test proposed by (83). Finally, columns (13) and (14) display the p-value
of the multi-horizon test for superior predictive ability proposed by (84). The
superiority of the RF models is clear from the tables.

Tables 6.24-6.26 show the RMSE and, in parenthesis, the MAE for all
models relative to the RW. The error measures were calculated from 132 rolling
windows covering the 1990-2015 period and 180 rolling windows covering the
2001-2015 period. Values in bold show the most accurate model in each horizon.
Cells in gray (blue) show the models included in the 50% MCS using the
squared error (absolute error) as loss function. The MCSs were constructed
based on the maximum ¢ statistic. The last column in the table reports in how
many horizons the row model was included in the MCS for square (absolute)
loss. The last two rows in the table report how many models were included
in the MCS for square and absolute losses. Again, the performance of the RF

model is remarkable.
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Additional Results: CPI-Core

In this section, we report forecasting results for the Core of the Consumer
Price Index. The CPI-Core series exhibits a dynamics quite different from the
other two inflation indexes reported before. More specifically there is a clear
seasonal patern in the series.

In Tables 6.27-6.29, we report for each model a number of different
summary statistics across all the forecasting horizons, including the
accumulated twelve-month horizon for the full out-of-sample period
(1990-2015) as well as for the two subsamples considered, namely, 1990-2000
and 2001-2015. Columns (1), (2) and (3) report the RMSE, the MAE and
the MAD, respectively. In columns (4), (5) and (6) we report the number of
times (across horizons) each model achieved the lowest RMSE, MAE, and
MAD, respectively. Columns (7)—(10) present, for square and absolute losses,
the average p-values based either on the range or the t... statistics as
described in (55). Columns (11) and (12) show the average p-values of the
SPA test proposed by (83). Finally, columns (13) and (14) display the p-value
of the multi-horizon test for superior predictive ability proposed by (84).

Tables 6.30-6.32 show the RMSE and, in parenthesis, the MAE for all
models relative to the RW. The error measures were calculated from 132 rolling
windows covering the 1990-2015 period and 180 rolling windows covering the
2001-2015 period. Values in bold show the most accurate model in each horizon.
Cells in gray (blue) show the models included in the 50% MCS using the
squared error (absolute error) as loss function. The MCSs were constructed
based on the maximum ¢ statistic. The last column in the table reports in how
many horizons the row model was included in the MCS for square (absolute)
loss. The last two rows in the table report how many models were included in

the MCS for square and absolute losses.
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The table shows the root mean squared error (RMSE) and, between parenthesis, the mean
absolute errors (MAE) for all models relative to the Random Walk (RW). The error measures
were calculated from 132 rolling windows covering the 1990-2015 period and 180 rolling
windows covering the 2001-2015 period. Values in bold show the most accurate model in
each horizon. Cells in gray (blue) show the models included in the 50% model confidence set
(MCS) using the squared error (absolute error) as loss function. The MCSs were constructed
based on the maximum ¢-statistic. The last column in the table reports in how many horizons
the row model was included in the MCS for square (absolute) loss. The last two rows in the

table reports how many models were included in the MCS for square and absolute losses.

Personal Consumer Expenditure 1990-2015
Forecasting Horizon

RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc.  RMSBeom
RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0
(1.00)  (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (0)
AR 0.89 0.83 0.82 0.84 0.82 0.80 0.79 0.78 0.82 0.84 0.87 0.80 0.96 7
0.87) | (0.81)  (0.79)  (0.83) (0.82) (0.81) (0.79) (0.75) (0.82) (0.84) (0.89) (0.82)  (0.91) (3)
Ucsv 0.94 0.86 0.84 0.86 0.84 0.83 0.83 0.82 0.83 0.84 0.86 0.83 0.85 5
0.92) (0.86) (0.82) (0.85) (0.84) (0.83) (0.84) (0.82) (0.84) (0.84) (0.90) (0.83)  (0.90) (0)
LASSO 0.83 0.78 0.75 0.79 0.78 0.78 0.78 0.77 0.81 0.82 0.84 0.76 0.79 9
(0.80) (0.77) (0.73) (0.80) (0.81) (0.79) (0.78) (0.73) (0.80) (0.81) (0.86) (0.77) | (0.77) @)
adaLASSO 0.84 0.79 0.77 0.80 0.79 0.78 0.78 0.79 0.82 0.82 0.84 0.76 0.83 9
(0.82) (0.78) (0.74) (0.80) (0.79) (0.77) (0.77) (0.74) (0.80) (0.80) (0.85) (0.77)  (0.82) (6)
EINet 0.83 0.78 0.75 0.79 0.78 0.78 0.77 0.77 0.81 0.82 0.85 0.76 0.79 9
(0.80) (0.77) (0.73) (0.81) (0.81) (0.80) (0.78) (0.74) (0.81) (0.81) (0.87) (0.78) | (0.78) (6)
adaElnet 0.84 0.79 0.76 0.80 0.79 0.78 0.78 0.78 0.82 0.82 0.84 0.76 0.83 9
(0.83)  (0.79) (0.74) (0.80) (0.80) (0.78) (0.77) (0.74) (0.80) (0.81) (0.86) (0.77)  (0.81) (5)
Ridge 0.85 0.76 0.76 0.79 0.76 0.77 0.76 0.75 0.79 0.78 0.81 0.74 0.77 13
(0.83)  (0.75) (0.73) (0.78) (0.79) (0.78) (0.75) (0.72) (0.79) (0.78) (0.83) | (0.75) (0.77) (9)
BVAR 0.90 0.80 0.79 0.81 0.79 0.80 0.81 0.82 0.86 0.87 0.90 0.83 0.90 5
(0.89) | (0.78) (0.79) = (0.83) (0.83) (0.84) (0.83) (0.82) (0.89) (0.89) (0.94) (0.87) (0.89) (3)
Bagging 0.87 0.78 0.78 0.83 0.82 0.81 0.82 0.80 0.83 0.81 0.84 0.76 0.76 8
(0.86) | (0.76) (0.76) (0.86) (0.90) (0.86) (0.83) (0.80) (0.86) (0.83) (0.88) | (0.78) (0.82) (4)
CSR 0.85 0.78 0.77 0.80 0.78 0.79 0.79 0.78 0.82 0.84 0.87 0.81 0.90 11
(0.82) (0.78) (0.74) (0.80) (0.79) (0.78) (0.76) (0.73) (0.80) (0.82) (0.87) (0.81) (0.87) (8)
JMA 0.95 0.88 0.84 0.89 0.87 0.84 0.88 0.85 0.92 0.87 0.91 0.82 0.79 2
0.94)  (0.91) (0.85) (0.97) (0.97) (0.91) (0.91) (0.86) (0.97) (0.92) (0.95) (0.88) | (0.83) (1)
Factor 0.89 0.84 0.83 0.84 0.83 0.84 0.83 0.83 0.87 0.87 0.89 0.85 0.95 0
(0.87)  (0.84) (0.83) (0.84) (0.85) (0.85) (0.84) (0.81) (0.89) (0.88) (0.90) (0.88) (0.92) (0)
T. Factor 0.90 0.83 0.81 0.81 0.81 0.81 0.80 0.80 0.83 0.84 0.85 0.82 0.92 2
(091) (0.85) (0.82)  (0.80) (0.83) (0.83) (0.81) (0.77) (0.84) (0.86) (0.87) (0.84)  (0.90) (1)
Boosting 0.99 0.83 0.82 0.84 0.82 0.84 0.84 0.84 0.87 0.86 0.88 0.81 0.91 7
(1.00) | (0.83) (0.83) (0.89) (0.89) (0.89) (0.88) (0.85) (0.91) (0.88) (0.92) (0.83) (1.02) (1)
RF 0.86 0.76 0.74 0.76 0.73 0.73 0.72 0.72 0.75 0.75 0.78 0.71 0.67 13
(0.82) (0.74) (0.73) (0.77) (0.77) (0.75) (0.72) (0.68) (0.73) (0.74) (0.78) (0.70) (0.63)  (13)
Mean 0.84 0.77 0.76 0.78 0.77 0.77 0.76 0.75 0.78 0.78 0.80 0.75 0.80 13
081) (0.77) (0.73) (0.78) (0.78) (0.77) (0.76) | (0.71) (0.77) | (0.77) (0.81) | (0.75) (0.77)  (10)
T.Mean 0.84 0.77 0.75 0.78 0.77 0.76 0.76 0.75 0.78 0.79 0.81 0.75 0.80 13
(081) (0.76) (0.73) (0.78) (0.78) (0.77) (0.75) (0.71) (0.77) (0.77) (0.82) | (0.75) (0.77)  (10)
Median 0.83 0.77 0.75 0.78 0.77 0.77 0.76 0.76 0.78 0.79 0.81 0.75 0.79 13
(081) (0.76) (0.73) (0.78) (0.78) (0.77) (0.75) (0.71) (0.77) (0.77) (0.82) | (0.75) (0.77)  (10)
RF/OLS 0.82 0.76 0.75 0.78 0.76 0.76 0.76 0.76 0.79 0.79 0.82 0.76 0.82 13
(0.80) (0.76) (0.73) (0.78) (0.78) (0.78) (0.75) (0.72) (0.79) (0.79) (0.85) | (0.78)  (0.82) 9)
adaLASSO/RF = 0.85 0.79 0.75 0.76 0.74 0.74 0.72 0.72 0.76 0.76 0.80 0.74 0.70 13
(0.81) (0.78) (0.73) (0.78) (0.77) (0.75) (0.72) (0.68) (0.74) (0.76) (0.81) (0.73) (0.68) (1)
RMSE count 13 16 13 16 16 17 8 8 16 18 7 8 18
MAE count ) (6 (13 (15 (149 (1) (D (8) 1) (3) 1) ®) (10
Table 6.24: Forecasting Errors for the PCE from 1990 to 2015
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The table shows the root mean squared error (RMSE) and, between parenthesis, the mean
absolute errors (MAE) for all models relative to the Random Walk (RW). The error measures
were calculated from 132 rolling windows covering the 1990-2015 period and 180 rolling
windows covering the 2001-2015 period. Values in bold show the most accurate model in
each horizon. Cells in gray (blue) show the models included in the 50% model confidence set
(MCS) using the squared error (absolute error) as loss function. The MCSs were constructed
based on the maximum ¢-statistic. The last column in the table reports in how many horizons
the row model was included in the MCS for square (absolute) loss. The last two rows in the

table reports how many models were included in the MCS for square and absolute losses.

Personal Consumer Expenditure 1990—-2000
Forecasting Horizon

RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Ace, HMSEcomt
RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 3
(1.00)  (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) | (1.00) (1.00) = (1.00) @)
AR 0.84 0.80 0.86 0.82 0.79 0.80 0.83 0.84 0.90 0.86 0.95 0.92 0.82 12
(0.86) (0.79) (0.88) (0.85) (0.79) (0.84) (0.89) (0.80) (0.89) (0.90) (1.00) (0.98) (0.84) (11)
UCsv 0.89 0.85 0.86 0.88 0.85 0.84 0.86 0.87 0.89 0.87 0.90 0.89 1.04 12
(0.00) (0.84) (0.87) (0.88) (0.84) (0.85) (0.89) (0.86) (0.86) (0.87) (0.93) (0.89) (1.15) (11)
LASSO 0.83 0.83 0.86 0.89 0.85 0.88 0.89 0.89 0.96 0.88 0.95 0.88 0.78 8
(0.83) (0.82) (0.87) (0.94) (0.89) (0.93) (1.00) (0.86) (0.96) = (0.91) (1.02) (0.95) = (0.81) (6)
adaLASSO 0.84 0.84 0.86 0.85 0.81 0.83 0.86 0.88 0.93 0.83 0.90 0.87 0.82 10
(0.84) (0.83) (0.87) (0.87) (0.82) (0.85) (0.92) (0.83) (0.91) (0.85) (0.94) (0.92) (0.85) (11)
EINet 0.80 0.83 0.87 0.90 0.86 0.89 0.92 0.91 0.95 0.88 1.00 0.91 0.80 7
(0.81) | (0.83) (0.89) (0.97) (0.92) (0.96) (1.02) (0.88) (0.96) (0.92) (1.08) (0.98) & (0.83) @)
adaElnet 0.85 0.84 0.86 0.86 0.80 0.84 0.86 0.88 0.95 0.84 0.92 0.88 0.80 8
(0.86) (0.84) | (0.87) (0.90) | (0.82) (0.87) (0.93) (0.84) (0.93)  (0.87) (0.97) (0.94)  (0.83) (6)
Ridge 0.82 0.77 0.85 0.83 0.78 0.82 0.83 0.84 0.90 0.83 0.91 0.84 0.76 13
(0.82) (0.75) (0.86) (0.85) (0.82) (0.87) (0.90) (0.80) (0.90) (0.87) (0.96) (0.87) (0.80) (13)
BVAR 0.99 0.83 0.95 0.91 0.87 0.94 1.02 1.07 1.15 1.05 1.16 1.10 1.11 6
(1.00) | (0.80) (1.00) (0.99) (0.95) (1.05) (1.14) (1.08) (1.22) (1.15) (1.29) (1.22)  (1.17) )
Bagging 0.85 0.82 0.94 0.90 0.86 0.86 0.84 0.83 0.91 0.86 0.97 0.89 1.09 12
(0.85) (0.80) (0.95) (0.94) (0.93) | (0.92) (0.91) (0.80) (0.90) (0.88) (1.00) (0.91) (1.19) (9)
CSR 0.83 0.83 0.86 0.81 0.76 0.78 0.80 0.81 0.87 0.83 0.90 0.85 0.81 13
(0.83) (0.81) (0.87) (0.83) (0.78) (0.80) (0.85) (0.76) (0.86) (0.86) (0.93) (0.89) (0.87) (13)
JMA 0.94 1.00 1.06 1.04 1.00 0.92 1.02 1.01 1.17 1.00 1.08 1.00 1.09 4
0.97)  (1.03) (1.10) (1.06) (1.06) (0.95) (L.11) (0.92) (1.15) (1.03) | (1.06) (0.99) (1.16) ®)
Factor 0.89 0.89 0.96 0.88 0.86 0.92 0.91 0.92 1.05 0.98 1.05 1.04 0.96 3
(0.91) (0.89) (1.01) = (0.89) (0.87) (0.95) (0.98) (0.89) (1.09) (1.04) (1.10) (1.13) (1.04) (1)
T. Factor 0.95 0.91 1.01 0.84 0.83 0.88 0.89 0.88 1.00 0.96 0.99 0.97 0.94 6
(0.96) (0.91) (1.07) | (0.85) (0.84) (0.91) (0.98) (0.86) (1.01) (1.01) | (1.03) (1.02) (1.02) 3)
Boosting 0.99 0.90 1.01 0.96 0.91 0.98 1.00 1.04 1.06 0.94 0.99 0.92 1.09 6
(1.03) | (0.91)  (1.09) (1.02) (0.97) (1.05) (1.09) (1.01) (1.06) [ (0:96)" (1.03) (0.94) (1.30) (4)
RF 0.82 0.77 0.86 0.83 0.78 0.80 0.80 0.81 0.84 0.78 0.85 0.79 0.67 13
(0.82) (0.77)  (0.90) (0.87) (0.81) (0.85) (0.85) (0.76) (0.82) (0.80) (0.90) (0.82) (0.63) (12
Mean 0.82 0.79 0.84 0.82 0.78 0.80 0.81 0.81 0.88 0.82 0.87 0.84 0.74 13
(0.83) (0.79) (0.85) (0.84) (0.79) (0.83) (0.88) (0.77) (0.86) (0.84) (0.92) (0.88) (0.74) (13)
T.Mean 0.82 0.80 0.85 0.82 0.79 0.80 0.82 0.83 0.90 0.82 0.89 0.85 0.75 13
(0.83) (0.79) (0.86) (0.84) (0.80) (0.83) (0.89) (0.79) (0.88) (0.85) (0.94) (0.90) (0.76) (13)
Median 0.82 0.80 0.84 0.82 0.79 0.81 0.83 0.84 0.90 0.82 0.89 0.85 0.75 13
(0.83) (0.79) (0.85) (0.85) (0.81) (0.83) (0.89) (0.79) (0.89) (0.85) (0.94) (0.90) (0.76) (13)
RF/OLS 0.81 0.77 0.83 0.80 0.76 0.79 0.80 0.83 0.87 0.80 0.87 0.83 0.81 13
(0.81) (0.76) (0.84) (0.82) (0.79) (0.84) (0.87) (0.78) (0.86) (0.84) (0.93) (0.87) (0.89) (13)
adaLASSO/RF = 0.81 0.89 0.91 0.87 0.81 0.82 0.84 0.81 0.85 0.79 0.90 0.84 0.71 11
0.82)  (0.87) (0.91) (0.90) (0.83) (0.87) (0.89) (0.77) (0.84) (0.83) (0.94) (0.87) (0.71) (10)
RMSE count 13 15 14 16 17 20 11 12 11 15 18 16 21
MAE count (12 (4) (1 @y (13 (13 (11 (11 (12) (15 (18  (13)  (16)
Table 6.25: Forecasting Errors for the PCE from 1990 to 2000
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The table shows the root mean squared error (RMSE) and, between parenthesis, the mean
absolute errors (MAE) for all models relative to the Random Walk (RW). The error measures
were calculated from 132 rolling windows covering the 2001-2015 period and 180 rolling

windows covering the 2001-2015 period. Values in bold show the most accurate model in

each horizon. Cells in gray (blue) show the models included in the 50% model confidence set

(MCS) using the squared error (absolute error) as loss function. The MCSs were constructed

based on the maximum ¢-statistic. The last column in the table reports in how many horizons

the row model was included in the MCS for square (absolute) loss. The last two rows in the

table reports how many models were included in the MCS for square and absolute losses.

Personal Consumer Expenditure 1990-2015

Forecasting Horizon

RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Ace, HMSEcomt
RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0
(1.00)  (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (0)
AR 0.91 0.84 0.81 0.84 0.82 0.80 0.79 0.77 0.80 0.83 0.85 0.77 0.99 8
(0.88) (0.82) (0.75) (0.82) (0.83) (0.79) (0.74) (0.72) (0.78) (0.81) (0.83) (0.74)  (0.93) (0)
UCsv 0.96 0.86 0.84 0.86 0.83 0.83 0.82 0.81 0.82 0.83 0.85 0.81 0.81 3
0.94) (0.87) (0.81) (0.84) (0.84) (0.83) (0.82) (0.81) (0.83) (0.83) (0.88) (0.80) | (0.81) (1)
LASSO 0.83 0.77 0.73 0.77 0.76 0.76 0.75 0.75 0.78 0.80 0.81 0.73 0.79 13
0.79) (0.74) (0.67) (0.74) (0.77) (0.72) (0.69) (0.68) (0.73) (0.76) (0.78) (0.68) (0.76)  (11)
adaLASSO 0.84 0.77 0.74 0.78 0.78 0.77 0.76 0.77 0.79 0.81 0.83 0.73 0.83 13
(0.80) (0.76) (0.69) (0.77) | (0.78) (0.74) (0.71) (0.70) (0.74) (0.78) (0.81)  (0.70) (0.80)  (10)
EINet 0.84 0.76 0.72 0.76 0.76 0.75 0.74 0.74 0.78 0.80 0.81 0.72 0.78 13
(0.80) (0.74) (0.67) (0.73) (0.76) (0.72) (0.68) (0.67) (0.74) (0.76) (0.78) (0.68) (0.76) (12)
adaElnet 0.84 0.78 0.74 0.78 0.79 0.77 0.76 0.76 0.79 0.81 0.82 0.73 0.83 13
(0.81) (0.76) (0.68) (0.76) | (0.78) (0.74) (0.71) | (0.69) (0.75) | (0.78) (0.81) | (0.70) (0.80) (9)
Ridge 0.87 0.76 0.73 0.77 0.76 0.75 0.74 0.73 0.76 0.77 0.78 0.71 0.77 13
(0.84)  (0.74) (0.67) (0.75) (0.78) (0.75) (0.69) (0.68) (0.74) (0.74) (0.76) (0.70)  (0.76) (11)
BVAR 0.85 0.79 0.75 0.78 0.77 0.77 0.76 0.76 0.79 0.81 0.82 0.76 0.85 12
(0.83) (0.77) (0.70) (0.76) (0.77) (0.74) (0.69) (0.70) (0.75) (0.76) (0.78) (0.71) (0.80)  (12)
Bagging 0.88 0.76 0.74 0.81 0.81 0.79 0.82 0.79 0.81 0.80 0.81 0.73 0.68 11
(0.87) | (0.75) (0.69) (0.82) (0.88) (0.83) (0.80) (0.80) (0.84) & (0.80) (0.82) | (0.72) (0.70) (5)
CSR 0.86 0.77 0.75 0.79 0.79 0.79 0.79 0.77 0.81 0.84 0.86 0.80 0.92 10
(0.81) (0.76) (0.68) (0.79) (0.80) (0.77)  (0.73) (0.71) (0.77) | (0.81) (0.84) (0.77) (0.87) (6)
JMA 0.96 0.84 0.78 0.85 0.83 0.82 0.84 0.82 0.86 0.83 0.86 0.77 0.72 6
0.92) (0.84) (0.75) (0.92) (0.93) (0.89) (0.82) (0.83) (0.89) (0.87) (0.91) (0.83) | (0.73) (1)
Factor 0.89 0.83 0.80 0.83 0.82 0.81 0.81 0.81 0.83 0.83 0.84 0.80 0.95 4
(0.85)  (0.82) (0.75) (0.82) (0.83) (0.80) (0.78) (0.77) (0.80) | (0.80) (0.81) (0.77)  (0.88) (1)
T. Factor 0.88 0.80 0.76 0.80 0.80 0.79 0.78 0.78 0.79 0.80 0.82 0.78 0.91 8
(0.88) (0.81) (0.72) (0.78) (0.82) (0.80) (0.74) (0.74) (0.77) | (0.78) (0.80) (0.76)  (0.86) @)
Boosting 1.00 0.80 0.77 0.81 0.79 0.80 0.80 0.79 0.82 0.84 0.85 0.79 0.87 11
0.98) | (0.79) (0.73) (0.82) (0.84) (0.82) (0.79) (0.78) (0.85) (0.84) (0.87) (0.78) & (0.93) 3)
RF 0.88 0.76 0.71 0.74 0.72 0.71 0.70 0.70 0.73 0.74 0.76 0.70 0.67 13
0.82) (0.73) (0.66) (0.73) (0.74) (0.71) (0.67) (0.65) (0.70) (0.71) (0.72) (0.64) (0.63)  (13)
Mean 0.85 0.76 0.74 0.77 0.77 0.76 0.75 0.74 0.76 0.77 0.78 0.72 0.81 13
(0.81) (0.75) (0.68) (0.75) (0.77) (0.74) (0.71)  (0.68) (0.73) (0.73) (0.76) (0.69) (0.78) 11)
T.Mean 0.84 0.76 0.73 0.77 0.76 0.75 0.74 0.74 0.76 0.78 0.79 0.72 0.80 13
(0.80) (0.75) (0.67) (0.75) (0.77) (0.73) (0.69) (0.67) (0.72) (0.74) (0.76) (0.68) (0.77) (12)
Median 0.84 0.76 0.73 0.77 0.76 0.76 0.74 0.74 0.76 0.78 0.79 0.72 0.80 13
(0.80) (0.75) (0.68) (0.75) (0.76) (0.74) (0.69) (0.67) (0.72) (0.74) (0.76) (0.68) (0.77) (13)
RF/OLS 0.83 0.76 0.74 0.78 0.76 0.76 0.75 0.74 0.77 0.78 0.81 0.74 0.82 13
(0.80) (0.75) (0.68) (0.76) (0.78) (0.75) (0.70) (0.69) (0.76) (0.77) (0.81) (0.74) (0.80)  (11)
adaLASSO/RF = 0.86 0.75 0.71 0.73 0.73 0.72 0.69 0.70 0.74 0.76 0.78 0.71 0.69 13
(0.81) (0.73) (0.65) (0.73) (0.74) (0.70) (0.66) (0.64) (0.70) (0.72) (0.75) (0.67) (0.67) (13)
RMSE count 15 16 18 17 20 16 15 15 18 20 17 13 16
MAE count 12 @5 (15 (9 (12 (12 a1y (13 (3 (16  (10) (13)  (16)
Table 6.26: Forecasting Errors for the PCE from 2001 to 2015
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The table shows the root mean squared error (RMSE) and, between parenthesis, the mean
absolute errors (MAE) for all models relative to the Random Walk (RW). The error measures
were calculated from 132 rolling windows covering the 1990-2015 period and 180 rolling
windows covering the 2001-2015 period. Values in bold show the most accurate model in
each horizon. Cells in gray (blue) show the models included in the 50% model confidence set
(MCS) using the squared error (absolute error) as loss function. The MCSs were constructed
based on the maximum t-statistic. The last column in the table reports in how many horizons
the row model was included in the MCS for square (absolute) loss. The last two rows in the

table reports how many models were included in the MCS for square and absolute losses.

Consumer Price Index (Core) 19902015
Forecasting Horizon

RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc. (Kb oot

RW 100 100 1.00 100 100 100 1.00 100 100 100 100 [ 1.00  1.00 2
(1.00)  (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)  (1.00) (1.00) @)
AR 087 069 059 [0.62 079 093 090 068 [ 047 | 049 [ 067 121  1.96 4
(0.92)  (0.70) (0.59) (0.62) (0.80) (0.91) (0.85) [(0:63)" (0.45) (0.49) (0.70) (1.27) (2.09) @)
ucsv 096 080 076 077 08 096 093 084 076 073 08 138 | 1.02 1
(1.03) (0.80) (0.74) (0.76) (0.87) (0.93) (0.90) (0.80) (0.74) (0.74) (0.84) (1.33) | (1.01) (1)
LASSO 085 0066 062 069 08 097 090 072 054 058 080 139  1.90 0
(0.92)  (0.66) (0.60) (0.68) (0.85) (0.93) (0.86) (0.68) (0.52) (0.57) (0.83) (1.43) (2.06) (0)
adaLASSO 084 065 059 066 084 094 08 073 051 052 072 124 164 0
(0:89) ] (0.65) (0.57) (0.65) (0.82) (0.90) (0.85) (0.68) (0.48) (0.51) (0.74) (1.27) (1.62) ©)
EINct 086 067 061 068 08 098 08 072 055 059 083 146  1.94 0
0.92)  (0.67) (0.60) (0.67) (0.85) (0.94) (0.85) (0.68) (0.53) (0.58) (0.85) (1.49) (2.12) (0)
adaElnet 085 066 060 068 083 094 090 072 050 052 073 126 166 0
(0.90) (0.66) (0.58) (0.67) (0.82) (0.90) (0.85) (0.68) (0.48) (0.52) (0.75) (1.30) (1.69) (0)
Ridge 092 066 061 067 085 095 08 068 059 062 087 156  1.63 0
(0.99) (0.67) (0.60) (0.66) (0.85) (0.93) (0.81) [(0:65)" (0.58) (0.63) (0.92) (1.62) (1.69) (1)
BVAR 091 071 070 079 101 113 101 083 075 080 110 193 297 0
0.97) (0.71) (0.67) (0.76) (0.99) (1.08) (0.96) (0.79) (0.73) (0.80) (1.15) (1.99) (3.26) (0)
Bagging 0.81 057 0.55 | 067 091 [ 096 08 065 048 | 050 071 128 133 7
(0.81) (0.56) (0.52) (0.65) (0.87)  (0.88) (0.77) (0.62) (0.46) (0.49) (0.73) (1.28) (1.31) @)
CSR 082 065 057 062 078 080 085 | 0.66 046 048 | 065 121 177 8
(0.86)  (0.65) (0.56)  (0.60) (0.77) (0.87) (0.82)  (0.61) (0.45) (0.47) | (0.68) (1.25) (1.78) ©)
IMA 091 068 068 075 105 106 096 074 057 055 08 145  1.50 0
0:92) ] (0.65) (0.65) (0.74) (0.98) (0.99) (0.91) [(0:68)" (0.53) (0.53) (0.81) (1.46) (1.48) @)
Factor 090 071 062 068 086 096 090 073 [ 047 | 052 073 126 207 1
(0.95)  (0.71) (0.61) (0.67) (0.87) (0.93) (0.86) (0.68)  (0.46) (0.51) (0.75) (1.29) (2.13) (1)
T. Factor 090 072 064 069 086 097 092 075 047 051 071 125 225 1
(0.94)  (0.72) (0.62) (0.68) (0.86) (0.95) (0.88) [(0:69)" (0.47) (0.51) (0.75) (1.31) (2.25) )
Boosting 094 070 069 079 102 110 098 077 064 072 099 167  3.03 0
(1.00) (0.70) (0.67) (0.78) (1.02) (1.07) (0.94) (0.75) (0.64) (0.73) (1.05) (L74) (3.19) (0)
RF 084 061 [ 056 062 078 0.87 0.80 0.64 0.43 045 063 114  1.36 9
(0.89)  (0.61) (0.54) (0.60) (0.78) (0.84) (0.77) (0.61) (0.42) (0.45) (0.66) (1.16) (1.45) (10)
Moean 081 064 058 064 | 079 088 081 066 050 052 069 L19  1.59 5
(0.86)  (0.63) (0.57) (0.63) (0.79) | (0.86) (0.78) (0.62) (0.49) (0.52) (0.72) (1.22) (1.66) (4)
T Mean 083 064 058 063 [ 079 08 08 067 049 051 070 121 164 2
(0:88) ] (0.65) (0.57) (0.63) (0.79) | (0.87) (0.80) [(0:63)" (0.47) (0.51) (0.72) (1.24) (L.73) (3)
Median 083 065 058 064 079 08 08 068 049 051 070 122 164 ;
(088) " (0.65) (0.57) (0.63) (0.79)  (0.87) (0.80) [(0:64) (0.47) (0.51) (0.72) (1.25) (1.73) (3)
RF/OLS 082 063 | 057 064 | 080 089 08 065 046 048 | 066 119 151

2
3

7
(088)" (0.63) (0.55) (0.62) (0.80) | (0.86) (0.77) (0.61) (0.44) (0.48) (0.69) (1.22) (1.48) (5)
adaLASSO/RF ~ 0.84 062 [ 056 061 078 091 089 069 045 046 065 | 116 140 7
9

(0.89) (0.62) (0.54) (0.60) (0:76) (0.86) (0.82) | (0.64) (0.43) (0.45) (0.66) (1.15) (1.43) (9)
RMSE count 3 1 5 4 8 8 4 5 8 2 5 1 2
MAE count (10) (1) (3) (3) (3) (8) (4) (12) (8) (2) (3) (1) (2)

Table 6.30: Forecasting Errors for the CPI-Core from 1990 to 2015
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The table shows the root mean squared error (RMSE) and, between parenthesis, the mean
absolute errors (MAE) for all models relative to the Random Walk (RW). The error measures
were calculated from 132 rolling windows covering the 1990-2015 period and 180 rolling
windows covering the 2001-2015 period. Values in bold show the most accurate model in
each horizon. Cells in gray (blue) show the models included in the 50% model confidence set
(MCS) using the squared error (absolute error) as loss function. The MCSs were constructed
based on the maximum t-statistic. The last column in the table reports in how many horizons
the row model was included in the MCS for square (absolute) loss. The last two rows in the

table reports how many models were included in the MCS for square and absolute losses.

Consumer Price Index (Core) 1990-2000
Forecasting Horizon

RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc. (Kb oot

RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2
(1.00)  (1.00) (1.00) (1.00) (L.00) (1.00) (1.00) (100) (100) (L00) (1.00) | (1.00) (1.00) @)
AR 0.88 0.69 0.59 0.62 0.79 0.96 0.91 0.71 0.50 0.54 0.71 1.26 2.16 5
(0.92)  (0.70) (0.58) | (0.62) (0.82) (0.96) (0.90) & (0.65) (0.48) (0.53) (0.76) (1.43) (2.38) (3)
Uucsv 0.91 0.68 0.64 0.72 0.90 1.04 0.91 0.75 0.66 0.68 0.90 1.61 1.06 1
(0.98) (0.67) (0.60) (0.69) (0.93) (1.02) (0.91) (0.70) (0.61) (0.70) (0.95) (1.75)  (1.03) (1)
LASSO 0.85 0.65 0.61 0.67 0.87 1.01 0.91 0.73 0.59 0.63 0.87 1.44 1.91 0
(0.91) | (0.64) (0.58) (0.65) (0.88) (0.98) (0.90) (0.68) (0.56) (0.63) (0.92) (1.59) (2.18) (1)
adaLASSO 0.85 0.63 0.56 0.63 0.83 0.97 0.90 0.75 0.56 0.56 0.77 1.27 1.39 3
(0.90) (0:63)" (0.53) (0.61) (0.83) (0.95) (0.90) (0.70) (0.53) (0.56) (0.80) (1.38) (1.47) (3)
ElINet 0.85 0.66 0.61 0.68 0.87 1.02 0.90 0.73 0.59 0.64 0.89 1.55 2.00 0
(0.91)  (0.65) (0.58) (0.66) (0.88) (0.99) (0.90) (0.67) (0.56) (0.65) (0.94) (1.70) (2.30) (0)
adaElnet 0.85 0.64 0.58 0.65 0.82 0.97 0.90 0.74 0.55 0.57 0.79 1.32 1.47 1
(0.91) ' (0.64) (0.54) (0.63) (0.83) (0.95) (0.90) (0.69) (0.52) (0.58) (0.83) (1.45) (1.61) (1)
Ridge 0.88 0.65 0.60 0.66 0.84 0.99 0.85 0.69 0.59 0.63 0.86 1.51 1.52 1
(0.95) | (0.65) (0.57) (0.63) (0.85) (0.97) (0.85) (0.65) (0.58) (0.65) (0.92) (1.62) (1.66) (1)
BVAR 0.91 0.72 0.72 0.84 1.09 1.28 1.10 0.90 0.81 0.88 1.19 2.04 3.73 0
(0.97)  (0.71)  (0.68) (0.80) (1.10) (1.26) (1.10) (0.85) (0.79) (0.90) (1.27) (2.26) (4.49) (0)
Bagging 0.77  0.57 0.55 0.65 0.82 0.93 0.79  0.65 0.52 0.56 0.74 1.19 1.22 8
(0.79) (0.55) (0.50) (0:62) (0.82) (0.87) (0.77) (0.59) (047) (0.54) (0.74) (1.25) (1.19) (9)
CSR 0.81 0.65 0.55 0.59 0.76  0.90 0.83 0.66 0.47 0.49 0.66 1.15 1.56 10
(0.85) (0.64) (0.53) (0.57) (0.77) (0.89) (0.82) (0.61) (0.45) (0.48) (0.67) (1.22) (1.68) (10)
JMA 0.85 0.72 0.62 0.73 1.00 1.11 0.96 0.70 0.58 0.57 0.78 1.44 1.40 2
(0.86) (0.68) (0.58) (0.71) (0.95) (1.04) (0.92) @ (0.63) (0.54) (0.56) (0.77) (1.54) (1.41) (3)
Factor 0.88 0.75 0.65 0.70 0.89 1.04 0.93 0.82 0.52 0.57 0.78 1.36 2.49 1
(0.91) (0.74) (0.61) (0.68) (0.91) (1.03) (0.92) (0.77) (0.50) (0.57) (0.82) (1.48) (2.63) (0)
T. Factor 0.92 0.81 0.72 0.74 0.91 1.07 0.99 0.86 0.52 0.58 0.78 1.35 2.91 1
(0.96) (0.80) (0.69) (0.72) (0.94) (1.08) (0.99) (0.81) (0.51) (0.59) (0.83) (1.53) (3.14) (0)
Boosting 0.92 0.69 0.68 0.80 1.03 1.15 0.97 0.77 0.63 0.73 0.96 1.55 2.96 0
0.98) (0.69) (0.66) (0.77) (1.05) (L13) (0.96) (0.72) (0.62) (0.74) (L.03) (L.70) (2.93) (0)
RF 0.83 0.61 0.56 0.62 0.79 0.92 0.82 0.67 0.46 048 0.64 1.14 1.40 10
(0.90) (0.61) (0.54) = (0.60) (0.79) (0.90) (0.81) (0.62) (0.43) (0.47) (0.67) (1.22) (1.57) (8)
Mean 0.81 0.64 0.58 0.63 0.80 0.93 0.83 0.69 0.53 0.56 0.74 1.24 1.65 4
(0.86) | (0.63) (0.55) (0.61) (0.82) (0.92) (0.83) = (0.64) (0.51) (0.56) (0.77) (1.35) (1.81) (2)
T.Mean 0.82 0.65 0.58 0.63 0.80 0.94 0.84 0.69 0.52 0.55 0.74 1.26 1.68 4
(0.87) | (0.64) (0.55) (0.62) (0.82) (0.93) (0.84) @ (0.64) (0.50) (0.56) (0.78) (1.38) (1.86) (2)
Median 0.83 0.65 0.58 0.63 0.80 0.93 0.85 0.69 0.52 0.56 0.74 1.26 1.66 4
(0.88)  (0.64) (0.56) (0.62) (0.81) (0.92) (0.84)  (0.64) (0.50) (0.56) (0.78) (1.39) (1.83) (2)
RF/OLS 0.83 0.63 0.56 0.62 0.79 0.93 0.83 0.68 0.49 0.50 0.68 1.18 1.35 7
(0.89) © (0.63) (0.53) (0.59) (0.80) (0.90) (0.83) & (0.64) (0.46) (0.50) (0.69) (1.24) (1.42) (7)
adaLASSO/RF  0.85 0.64 0.55 0.61 0.77 0.93 0.91 0.72 0.49 0.49 0.66 1.17 1.37 7
(0.93) ' (0.64) (0.51) (0.58) (0.77) (0.89) (0.87) (0.65)  (0.43) (0.47) (0.66) (1.21) (1.39) (8)
RMSE count 9 1 8 6 9 8 3 10 8 3 3 1 2
MAE count (3) (13) (5) (7) (5) (5) (1) (9) (6) (3) (3) (1) (2)

Table 6.31: Forecasting Errors for the CPI-Core from 1990 to 2000
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The table shows the root mean squared error (RMSE) and, between parenthesis, the mean
absolute errors (MAE) for all models relative to the Random Walk (RW). The error measures
were calculated from 132 rolling windows covering the 1990-2015 period and 180 rolling
windows covering the 2001-2015 period. Values in bold show the most accurate model in
each horizon. Cells in gray (blue) show the models included in the 50% model confidence set
(MCS) using the squared error (absolute error) as loss function. The MCSs were constructed
based on the maximum t-statistic. The last column in the table reports in how many horizons
the row model was included in the MCS for square (absolute) loss. The last two rows in the

table reports how many models were included in the MCS for square and absolute losses.

Consumer Price Index (Core) 19902015
Forecasting Horizon

RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc. (Kb oot
RW 100 100 100 1.00 100  1.00 100 1.00 100 100 100 | 1.00 100 2
(1.00)  (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) | (1.00) (1.00) )
AR 086 068 060 | 062 079 090 089 [ 066 043 045 062 116 1.0 8
(0.91)  (0.69) (0.59) | (0.63) (0.78) (0.87) (0.81) | (0.61) (0.43) (0.45) (0.66) (1.15) (1.90) ©)
ucsv 100 09 085 081 ~ 08 08 094 090 08 078 074 | 109  0.99 4
(1.07)  (0.91) (0.85) (0.82) | (0.82) (0.87) (0.90) (0.87) (0.84) (0.77) (0.75) | (1.09) (1.00) (4)
LASSO 086 066 062 071 08 094 089 071 049 053 073 134 18 0
(0.92) (0.68) (0.62) (0.71) (0.84) (0.90) (0.82) (0.69) (0.49) (0.52) (0.75) (1.31) (1.98) (0)
adaLASSO 084 066 060 069 08 [ 091 08 071 | 045 048 | 066 120 174 4
(0.88)  (0.66) (0.60) (0.69) [ (0:82) (0.87) (0.81) (0.67) | (0.44) (0.46) (0.69) (1.18) (1.72) (7)
ElNet 087 068 062 069 085 095 08 072 052 054 076 137 186 0
(0.94)  (0.69) (0.62) (0.69) (0.83) (0.91) (0.82) (0.68) (0.51) (0.52) (0.78) (1.32) (2.00) (0)
adaElnet 084 067 062 070 084 [ 091 08 071 045 048 | 0.67 120 174 3
(0.89) (0.68) (0.61) (0.70) [(0:81) (0.87) (0.81) (0.67) [ (0.44) (0.47) (0.69) (L17) (1.74) (6)
Ridge 0.95 068 062 068 08 092 08 068 058 061 087 161 167 0
(1.01) (0.68) (0.62) (0.68) (0.85) (0.90) [ (0.78)  (0.66) (0.58) (0.61) (0.92) (1.61) (1.70) (1)
BVAR 091 071 068 075 093 100 093 076 069 073 102 181 229 0
(0.97)  (0.70) (0.66) (0.73) (0.90) (0.95) (0.86) (0.74) (0.69) (0.73) (1.05) (L78) (2.49) (0)
Bagging 084 058 055 069 098 099 08 066 045 046 068 136 133 10
(0.83) (0.57) (0.54) (0.67) (0.92) (0.88) (0.77) (0.64) (0.44) (0.45) (0.71) (1.30) (1.39) (10)
CSR 082 065 059 | 064 08 0.8 087 | 066 045 047 065 127 184 8
(0.87)  (0.65) (0.59) | (0.63) (0.78) (0.85) (0.81) | (0.62) (0.44) (0.46) (0.68) (1.27) (1.85) ®)
IMA 097 1065 072 077 109 102 096 077 057 053 0.86 146 152 1
(0.97) | (0.63) (0.70) (0.77) (1.00) (0.95) (0.91) (0.72) (0.52) [ (0:50)  (0.85) (1.40) (1.53) )
Factor 091 0.68 060 [ 065 084 | 090 08 [ 065 043 048 = 0.68 L15 171 6
(0.98) (0.70) (0.60) | (0.66) (0.83)  (0.87) (0.82) | (0.60) (0.43) (0.47) (0.70) (L.14) (1.81) (7)
T. Factor 0.88  0.63 057 064 081 089 08 063 042 045 063 113 161 10
(0.92) (0.65) (0.57) (0.64) (0.80) (0.85) (0.80) (0.59) (0.43) (0.45) (0.67) (1.13) (1.70) (10)
Boosting 096 071 069 079 101 107 099 078 065 072 100 178 299 0
(1.01) (0.71) (0.68) (0.79) (1.00) (1.03) (0.93) (0.78) (0.66) (0.73) (1.07) (1.78) (3.35) (0)
RF 086 061 055 062 078 0.83 078 0.62 041 043 0.62 113 132 11
(0.88) (0.61) (0.54) (0.61) (0.76) (0.79) (0.73) (0.60) (0.41) (0.43) (0.65) (1.10) (1.38) (12)
Mean 081 063 058 | 064 078 084 080 064 047 049 | 0.65 L14 151 8
(0.86) (0.64) (0.58) | (0.64) (0.77) (0.81) (0.74) (0.61) (0.46) | (0.48) (0.67) (L.12) (1.56) (9)
T.Mean 083 064 058 = 064 078 086 082 | 066 046 048 = 0.65 116  1.58 7
(0.83) (0.65) (0.58) | (0.64) (0.77) (0.83) (0.76) (0.63) (0.45) | (0.47) (0.67) (L.13) (1.64) ®)
Median 083 064 058 | 064 079 08 083 066 046 048 | 065 116  1.60 5
(0.88) (0.66) (0.58)  (0.64) (0.77) (0.83) (0.77) (0.63) (0.45) [(0:47) (0.67) (1.14) (1.66) (8)
RF/OLS 082 063 057 065 08 08 079 063 044 046 065 120  L57 11
(0.86) (0.63) (0.57) (0.65) (0.80) (0.83) (0.73) (0.60) (0.42) (0.46) (0.68) (1.20) (1.51) (10)
adaLASSO/RF = 0.83 061 057 0.62 080 089 08 | 066 042 043 064 116 1.39 11
(0.86) (0.61) (0.56) (0.61) (0.76) (0.84) (0.79) (0.63) (0.42) (0.42) (0.66) (L.11) (1.45) (11)
RMSE count 9 6 5 11 10 14 4 10 9 7 13 9 2
MAE count (9) (4) (5) (1) (12) (19 (8) (9) (10) (14  (13) (12 2

Table 6.32: Forecasting Errors for the CPI-Core from 2001 to 2015
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