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Abstract

Filipe Rodrigues Vasconcelos, Gabriel; de Lima Veiga Filho,
Álvaro (Advisor); Cunha Medeiros, Marcelo (Co-Advisor).
Forecasting in high-dimension: Inflation and other
economic variables. Rio de Janeiro, 2018. 169p. Tese de
Doutorado – Departamento de Engenharia Elétrica, Pontifícia
Universidade Católica do Rio de Janeiro.

This thesis is made of four articles and an R package. The articles are
all focused on forecasting economic variables on high-dimension. The first
article shows that LASSO models are very accurate to forecast the Brazilian
inflation in small horizons. The second article uses several Machine Learning
models to forecast a set o US macroeconomic variables. The results show
that a small adaptation in the LASSO improves the forecasts but with high
computational costs. The third article is also on forecasting the Brazilian
inflation, but in real-time. The main results show that a combination of
Machine Learning models is more accurate than the FOCUS specialist
forecasts. Finally, the last article is about forecasting the US inflation using
a very large set of models. The winning model is the Random Forest, which
opens the discussion of nonlinearity in the US inflation. The results show
that both nonlinearity and variable selection are important features for the
Random Forest performance.

Keywords
Big data; High-dimension econometrics; LASSO; Factor models;

Forecasting;
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Resumo

Filipe Rodrigues Vasconcelos, Gabriel; de Lima Veiga Filho,
Álvaro; Cunha Medeiros, Marcelo. Previsão em alta dimensão:
Inflação e outras variáveis econômicas. Rio de Janeiro, 2018.
169p. Tese de Doutorado – Departamento de Engenharia Elétrica,
Pontifícia Universidade Católica do Rio de Janeiro.

Esta tese é composta de quatro artigos e um pacote de R. Todos os
artigos têm como foco previsão de variáveis econômicas em alta dimensão. O
primeiro artigo mostra que modelos LASSO são muito precisos para prever a
inflação brasileira em horizontes curtos de previsão. O segundo artigo utiliza
vários métodos de Machine Learning para prever um grupo de variáveis
macroeconomicas americanas. Os resultados mostram que uma adaptação
no LASSO melhora as previsões com um alto custo computacional. O
terceiro artigo também trata da previsão da inflação brasileira, mas
em tempo real. Os principais resultados mostram que uma combinação
de modelos de Machine Learning é mais precisa do que a previsão do
especialista (FOCUS). Finalmente, o último artigo trata da previsão da
inflação americana utilizando um grande conjunto de modelos. O modelo
vencedor é o Random Forest, que levanta a questão da não-linearidade
na inflação americana. Os resultados mostram que tanto a não-linearidade
quanto a seleção de variáveis são importantes para os bons resultados do
Random Forest.

Palavras-chave
Big data; Econometria em alta dimensão; LASSO; Modelos de

Fatores; Previsão;
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1
Introduction

In the dynamic world of today, forecasting important variables has
become a difficult challenge because of the infinite amount of data being
generated every day. The first problem is computational, it is not trivial to
work and visualize big datasets. In many cases, simple personal computers
might not be enough to deal with this data. The second problem concerns the
selection of the most suited method to construct the analysis and the forecasts.
New methods are published in a very high frequency and it is unclear for the
researcher if there is an overall superior method or which method is mode
adequate to each problem. To name some methods we have the LASSO family
(2, 3), factor models (4, 5, 6), boosting (7), bagging (8), regression trees (9)
and many more.

Sometimes the theory on these models helps the researcher to select the
best suited model. For example, LASSO and factor models are supposed to be
used on opposite situations. The first requires sparsity, i.e, only a small subset
of the potential variables are in fact useful. The second needs all variables to
have some common behavior that can be extracted, therefore, most variables
are important but the common behavior may be enough to describe them.
However, the situation that best fits the data is not always clear. For example,
if we are dealing with a large set of economic variables, it is reasonable to
assume that these variables are all linked though a common trend. But we
could also have only a few really important variables and all the rest with
coefficients very close to zero that could simply be ignored.

Another important issue to consider is whether to iterate forecasts or
to estimate them directly to the forecasting horizon of interest. For example,
if we want to forecast the inflation five months ahead we could regress the
inflation in t + 5 on potential variables in t. However, we could also use the
t + 1 inflation and iterate the forecast until t + 5. The second case creates
another complication on the covariates, because they would also need to be
predicted. Fortunately VAR models can deal with this situation, even on high-
dimension, if we estimate the equations by LASSO or using Bayesian VARs
such as (10).

This thesis is composed of four articles, and one R package with
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Chapter 1. Introduction 13

implementations. Three of these articles are already published the and other
two are working papers. The R package is available on GitHub1 and is yet to
be submitted to CRAN.

The first article is on the forecasting of the Brazilian inflation using high-
dimensional data (11). In this case we do not use real-time2 data. Instead, we
use variables in their corresponding period even when they are published with
delay. Additionally, we do not consider expectation variables. The results shows
that the LASSO are more accurate for small forecasting horizons (until four
months ahead), but on long horizons neither the LASSO nor factor models are
able to beat simple autorregressives.

The second article aims to forecast the Brazilian inflation using real-time
data in a much more sophisticated environment (12). We included several
models such as Bayesian VARs, expectation variables, density forecasting,
model confidence set and forecasting combinations. The expectation variables
improves the forecasting accuracy in a way that for all forecasting horizons (five
days to eleven months plus five days) there is at least one high-dimensional
model that beat the naive models such as ARs and Random Walks.

The third article uses a very large set of high-dimensional models to
forecast the US inflation (13). We also try to give an interpretation to the
selected variables and rank them using importance measures. Moreover, we
found evidence that nonlinear tree models such as Random Forests are very
accurate to forecast US inflation and we explored this feature proposing two
mixed linear models to understand if the Random Forest performance is due
to variable selection or nonlinearity.

Finally, the R package HDeconometrics has implementations of many
models used across the articles. Some models such as LASSO or Random
Forests already have very good implementations on R, therefore, we only
made small adjustments when required. However, to the best of our
knowledge models such as Bagging, Complete Subset Regressions, some types
of Bayesian VARs and others do not have implementations on CRAN or the
implementations do not meet our needs. Additionally, our package has the
advantage to combine many models in a single platform with a unifying use
and notation.

The reminder of this thesis is divided in five chapters besides this
introduction. Chapter two is a methodological survey and the remaining
chapters are one for each article.

1gabrielrvsc/HDeconometrics
2By real-time we mean only the data available to the econometrician in the day the

forecast is computed.
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2
Survey of Methods and Framework

Although all articles in this thesis are about forecasting economic
variables, the models and the notation are not exactly the same across all
articles. This goal of this chapter is to unify the notation, framework and
models used in all papers.

2.1
General Framework

Consider the following model:

yt+h = Th(xt) + ut+h, , h = 1, . . . , H, t = 1, . . . , T, (2-1)

where yt+h is the response variable at time t+h; xt = (x1t, . . . , xnt)′ is a n-vector
of covariates, possibly containing lags of yt and/or common factors as well as a
large set of potential predictors; Th(·) is the mapping between covariates and
future values of the response variable; and ut is a zero-mean random error.
The target function Th(xt) can be a single model or an ensemble of different
specifications. There is a different mapping for each forecasting horizon, h.

The direct forecasting equation is given by

ŷt+h|t = T̂h,t−Rh+1:t(xt), (2-2)

where T̂h,t−Rh+1:t is the estimated target function based on data from time
t − Rh + 1 up to t and Rh is the window size, which varies according to the
forecasting horizon and the number of lagged variables in the model.

The framework above is called direct forecast. This approach estimates
one different model for each forecasting horizon and it has the advantage that
we do not need to forecast the covariates for forecasting horizons larger than
1. The alternative way is called recursive forecast. In this case we only need
to estimate the model one time but the forecasts must be iterated until the
desired horizon, which requires forecasts of the covariates. I adopted direct
forecasts because most of machine learning models are built to estimate single
equations and forecasting the covariates would be a complicated problem. The
only exception is the Bayesian VAR, which estimates a system of equations for
all covariates at the same time.
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Chapter 2. Survey of Methods and Framework 15

The forecasts are based on a rolling window framework of fixed length.
Suppose that we have T observations, define t0 << T , as the number of
observations in each window , K as the number of windows, the rolling window
procedure follows the steps below:

– for k = 1, . . . , K

1. estimate the model in (2-1) using the observations k, . . . , t0 + k− 1,

2. compute the forecast in (2-2)

The alternative to the rolling window approach is the expanding
window, which follows the steps below:

– for k = 1, . . . , K

1. estimate the model in (2-1) using the observations 1, . . . , t0 + k− 1,

2. compute the forecast in (2-2)

The difference between the two methods is that the rolling window keeps
the window size fixed and the expanding window increases it as we move on
k. I adopted rolling windows because it is a requirement for some statistical
tests to compare the forecasts and also because economic variables may have
significant changes on their dynamics over long periods of time. Therefore,
if we grow the estimation sample in a expanding window framework we will
probably have multiple regimes in the sample and the forecasts would be less
accurate.

2.2
Models

I used the following classification for models:

– Benchmarks : Autorregressive model(AR), Random Walk (RW),
Unobserved Component Stochastic Volatility model (UCSV) (for
inflation only).

– Shrinkage: Ridge Regression (RR), LASSO, adaLASSO, Elastic-Net,
adaptive Elastic-Net.

– Ensemble: Bagging, Complete Subset Regression (CSR), Jackknife
model averaging (JMA).

– Factor based: Factor model, target factor model, boosting of factors.

– Nonlinear: Random Forest (RF)
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Chapter 2. Survey of Methods and Framework 16

– Bayesian: Large Bayesian VAR (LBVAR)

The objective in this section is to do a brief presentation of all the models
above. All the information contained here is also in the articles in the next
chapters. The objective here is to put the models and the framework together.
If the reader chooses to read this chapter he/she may skip all methodology
sections in the articles.

2.2.1
Benchmark Models

The first benchmark is the RW model, where for h = 1, . . . , 12, the
forecasts are computed as follows:

ŷt+h|t = yt. (2-3)

For the accumulated twelve-month forecast, we consider the following equation:

ŷt+1:t+12|t = yt−11:t, (2-4)
where yt−11:t is the accumulated inflation over the previous twelve months.

The second benchmark is the autoregressive (AR) model of order p,
where p is determined by the Bayesian information criterion (BIC) and the
parameters are estimated by Ordinary Least Squares (OLS). The forecast
equation is

ŷt+h|t = φ̂0,h + φ̂1,hyt + . . .+ φ̂p,hyt−p+1. (2-5)
There is a different model for each horizon. The accumulated forecasts are
computed by aggregating the individual forecasts.

Finally, the third benchmark is the UCSV model, which is described as
follows:

yt =τt + eht/2εt,

τt =τt−1 + ut,

ht =ht−1 + vt,

(2-6)

where {εt} is a sequence of independent and normally distributed random
variables with zero mean and unit variance and εt ∼ N(0, 1), ut and vt are
also normal with zero mean and variance given by inverse-gamma priors.
τ1 ∼ N(0, Vτ ) and h1 ∼ N(0, Vh), where Vτ = Vh = 0.12. The model is estimated
by Markov chain Monte Carlo (MCMC) methods. The h-steps-ahead forecast
is computed as ŷt+h = τ̂t|t.

For accumulated forecasts, the UCSV is estimated with the twelve-month
inflation as the dependent variable.
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2.2.2
Regularization and Shrinkage

This subsection shows a discussion of all models in the Shrinkage Sparse
group plus the Ridge from the Shrinkage Non-Sparse group. These are linear
models where Th(xt) = β′hxt and

β̂h = arg min
β

[
T−h∑
t=1

(yt+h − β′xt)2 + λ
n∑
i=1

p(βi;ωi, α)
]
, (2-7)

where p(βi;ωi, α) is a penalty function that depends on the penalty parameter λ
and on a weight ωi > 0. We consider different choices for the penalty functions
as described below.

2.2.2.1
Ridge Regression (RR):

RR shrinkage was proposed by (14, 15) and consists of the following
penalty function:

λ
n∑
i=1

p(βi;ωi, α) := λ
n∑
i=1

β2
i . (2-8)

RR has the advantage of having an analytical solution that is easy
to compute and shrinks the irrelevant variables to zero. However, given the
geometry of the penalty, the coefficients rarely reach exactly zero for any size
of λ. Therefore, RR is not an sparsity-inducing method.

One interesting fact about RR is its relation to principal component
(factor) models. Let X be the centered T × n predictor matrix and consider
its singular value decomposition X = USV ′ with S being a diagonal matrix
with diagonal elements si, i = 1, . . . , n.

The forecasts of the dependent variable are given by

yridge = Xβ̂ridge = X(X ′X + λI)−1X ′y = Udiag
(

s2
i

s2
i + λ

)
U ′y,

whereas for the factor model with k factors are given by

yPC = XPCβ̂PC = Udiag(1, . . . , 1︸ ︷︷ ︸
k ones

, 0, . . . , 0︸ ︷︷ ︸
n−k zeroes

)U ′y.

However, this parallel to factor models does not hold exactly in our
implementation as the variable set for the RR is larger than the one for the
principal component factor construction as it includes four lags of each variable,
autoregressive terms and the factors as well. Nevertheless, the comparison is
useful to understand the potential differences in performance between RR and
factor alternatives.
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2.2.2.2
Least Absolute Shrinkage and Selection Operator (LASSO):

LASSO was originally proposed by (2). LASSO is similar to RR but
penalizes the `1 norm of the coefficients as follows:

λ
n∑
i=1

p(βi;ωi, α) := λ
n∑
i=1
|βi|. (2-9)

LASSO shrinks the irrelevant variables to zero and has some good properties
both in variable selection and goodness of fit. In order to achieve consistent
variable selection, LASSO requires the irrepresentable condition1 (IRC) to be
satisfied (3). However, even if the IRC is not satisfied, LASSO still has the
variable screening property, i.e., LASSO selects the relevant variables with
high probability, but it may also select some extra variables.

2.2.2.3
Adaptive LASSO (adaLASSO):

adaLASSO was proposed by (16), who showed that the inclusion of
some additional information regarding the importance of each variable could
considerably improve the results. The adaLASSO does not need the IRC to
have variable selection consistency and also has oracle properties, i.e., it not
only selects the correct set of variables with high probability, but the coefficient
distribution of these variables is also the same as the OLS estimation using
only the correct set of variables. adaLASSO uses the same penalty as LASSO
with the inclusion of a weighting parameter that comes from a first-step model
that can be LASSO or even OLS:

λ
n∑
i=1

p(βi;ωi, α) := λ
n∑
i=1

ωi|βi|, (2-10)

where ωi = |β∗i |−1 and β∗i are the coefficients from the first-step model. Finally,
LASSO has some good properties for high-dimensional data. LASSO can
handle many more variables than observations and works well in nonGaussian
environments and under heteroskedasticity (17).

2.2.2.4
Elastic Net (ElNet)

Elastic net (ElNet) is a generalization that includes LASSO and RR as
special cases. ElNet is a convex combination of the `1 and the `2 norms (18).
ElNet also does regularization and selects the most relevant variables. Since

1The irrepresentable condition imposes some restrictions on the correlation structure
between the relevant and the irrelevant variables. In other words, the correlation between
the two groups is bounded and must be small.
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its penalty is between that of LASSO and RR, ElNet normally selects more
variables than LASSO, at least for the same value of λ. The ElNet penalty is
defined as follows:

λ
n∑
i=1

p(βi;ωi, α) := αλ
n∑
i=1

β2
i + (1− α)λ

n∑
i=1
|βi|; (2-11)

where α ∈ [0, 1]. We also consider an adaptive version of ElNet (adaElNet).
This version works in the same way as the adaptive LASSO, i.e., we estimate
a first-step model and use it to calculate the weights ωi.

2.2.3
Factor Models

Factor models using principal components are very popular approaches to
avoid the curse of dimensionality when the number of predictions is potentially
large. The idea is to extract common components from all variables, thus
reducing the model dimension.

Factors are computed as principal components of a large set of variables
zt such that F t = Azt, where A is a rotation matrix and F t is the vector of
the principal components. Consider equation (2-1). In this case, xt is given by
yt−j, j = 0, 1, 2, 3 plus f t−j, j = 0, 1, 2, 3, where f t is the vector with the first
four principal components of zt. The assumptions and the theory behind factor
models and when can we treat factors as observed variables can be found in
(4, 5, 6).

2.2.3.1
Target Factors

To improve the forecasting performance of factor models, (6) proposed
targeting the predictors. The idea is that if many variables in zt are irrelevant
predictors of yt+h, factor analysis using all variables may result in noisy factors
with poor forecasting ability. The target factors are regular factor models with
a pretesting procedure to select only relevant variables to be included in the
factor analysis. Let zi,t, i = 1, . . . , q be the candidate variables and wt a set of
fixed regressors that will be used as controls in the pretesting step. We follow
(6) and use wt as AR terms of yt. The procedure is described as follows.

1. For i = 1, . . . , q, regress yt+h on wt and zi,t and compute the t statistics
for the coefficient corresponding to zi,t.

2. Sort all t statistics calculated in step 1 in descending order.

3. Choose a significance level α and select all variables that are significant
using the computed t statistics.
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4. Let zt(α) be the selected variables from steps 1–3. Estimate the factors
F t from zt(α) by principal components.

5. Regress yt+h on wt and f t−j, j = 0, 1, 2, 3, where f t ⊂ F t. The number
of factors in f t is selected using the BIC. (6) also selected the number of
lagged factors using the BIC.

The same procedure was used by (13). The authors showed that in most
cases, target factors slightly reduce the forecasting errors compared to factor
models without targeting.

2.2.3.2
Factor Boosting

The optimal selection of factors for predictive regressions is an open
problem in the literature. Even if the factor structure is clear in the data,
it is not obvious that only the most relevant factors should be included in
the predictive regression. I adopt the boosting algorithm as proposed by (7)
to select the factors and the number of lags that must be considered in the
predictive regression. Define zt ∈ Rq, the set of all n factors computed from
the original n variables plus four lags of each factor. Therefore, q = 5n. Define
also SSR as the sum of the squared residuals.

The algorithm is defined as follows:

1. Let Φt,0 = ȳ for each t, where ȳ = 1
t

∑t
i=1 yi.

2. For m = 1, . . . ,M :

(a) Compute ût = yt − Φt−h,m−1.

(b) For each candidate variable i = 1, . . . , q, regress the current residual
on zi,t to obtain b̂i and compute êt,i = ût − zi,tb̂i. Calculate
SSRi = ê′iêi.

(c) Select i∗m as the index of the variable which delivers the smallest
SSR and define φ̂t,m = zi∗m,tb̂i∗m ,

(d) Update Φ̂t,m = Φ̂t,m−1 + vφt,m, where v is the step length. We set
v = 0.2.

3. Stop the algorithm after the Mth iteration or when the BIC of the last
residuals starts to increase.
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2.2.4
Ensemble Methods

Ensemble forecasts are constructed from a (weighted) average of the
predictions of an ensemble of methods. In this section, I describe the techniques
considered in this paper.

2.2.4.1
Bagging

The term “bagging” comes from bootstrap aggregation, which was
proposed by (8). The idea is to combine forecasts from several unstable
models. Normally, there is much more to gain from combinations of models if
they are very different. The first source of instability is generated by
re-estimating the model using bootstrap samples, and the second source
comes from a pretesting step prior to the estimation, which for each
bootstrap sample selects a subset of variables based on their statistical
significance. The bagging steps are as follows:

1. For each bootstrap sample b, run a regression with all candidate variables
and select those with |t| ≥ c, where c is a pre-defined critical value.

2. Estimate a new regression only with the variables selected in the previous
step.

3. The coefficients from the second regression are finally used to compute
the forecasts on the actual sample.

4. Repeat the first three steps for B bootstrap samples and compute the
final forecast as the average of the B forecasts.

We used B = 100. Note that in our case, the number of observations may
be smaller than the number of variables, which makes the regression in the first
step unfeasible. We solve this issue by introducing a new source of instability in
the pretesting step. For each bootstrap sample we randomly divide all variables
in groups and run the pretesting step for each one of the groups.

2.2.4.2
Complete Subset Regressions

CSR was developed by (19, 20). The motivation for developing CSR was
that selecting the optimal subset of xt to predict yt+h by testing all possible
combinations of regressors is computationally very demanding, and in most
cases, even unfeasible. Supposing that we have n candidate variables, the CSR
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selects a number q ≤ n and computes all combinations of regressions using
only q variables. The forecast of the model will be the average forecast of all
regressions in the subset.

CSR deals well with a small number of candidate variables. However,
for large sets, the number of regressions to be estimated increases very fast.
For example, with n = 25 and q = 4, we need to estimate 12, 650 regressions.
As the number of candidate variables is much larger, we adopt a pretesting
procedure similar to that used with the target factors. We start fitting a linear
regression of yt+h on each of the candidate variables (including lags) and save
the t-statistics of each variable2. The t-statistics are ranked by absolute value,
and we select the ñ variables that are more relevant in the ranking. The CSR
forecast is calculated on these variables. We used ñ = 25 and q = 4.

2.2.4.3
Jackknife Model Averaging

JMA is a different way to combine forecasts from several small models.
Instead of using the naive average of the forecasts, JMA uses leave-one-out
cross-validation to estimate optimal weights. The procedure I followed is that
of (21) with some adjustments for time series as discussed in (22).

Suppose we have M candidate models that we want to average from and
write the forecast of each model as ŷ(m)

t+h, m = 1, . . . ,M . Set the final forecast
as

ŷt+h =
M∑
m=1

ωmŷ
(m)
t+h,

where 0 ≤ ωm ≤ 1 for all m ∈ {1, . . . ,M} and ∑M
m=1 ωm = 1.

The JMA procedure is as follows:

1. For each observation of (xt, yt+h):

(a) Estimate all the candidate models leaving the selected observation
out of the estimation. Since we are in a time series framework with
k lags in the model, we also removed k observations before and k

observations after (xt, yt+h).

(b) Compute the forecasts from each model for the observations that
were removed in the previous step.

2. Choose the weights that minimize the cross-validation errors subject to
the constraints previously described.

2We did not use a fixed set of controls, wt, in the pretesting procedure like we did for
the target factors.
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The minimization problem above is quadratic and has the restriction that
w must be positive and sum to 1. The problem does not have a closed solution
but can be easily solved using the quadprog package in R. Given our set of
candidate variables, each candidate model in the JMA has four autoregressive
lags of the dependent variable and four lags of one candidate variable.

2.2.5
Regression Trees and Random Forests

The RF methodology was initially proposed by (9) as a solution to
reducing the variance of regression trees and is based on bootstrap aggregation
(bagging) of randomly constructed regression trees. In turn, regression trees are
flexible nonparametric predictive models that recursively partition the set of
explanatory variables, X, into subsets, each modeled using regression methods;
see (8).

To understand how a regression tree works, an example from (1) is useful.
Consider a regression problem in which X1 and X2 are explanatory variables,
each taking values in some given interval, and Y is the dependent variable. We
first split the space into two regions, at X1 = s1, and then, the region to the
left (right) of X1 = s1 is split at X2 = s2 (X1 = s3). Finally, the region to the
right of X1 = s3 is split at X2 = s4. As illustrated in the right plot of Figure
2.1, the end result is a partitioning of X into five regions: Rm, m = 1, . . . , 5.
In each region Rm, we assume that the model predicts Y with a constant cm,
which could be estimated, for example, as the sample average of realizations
of Y that “fall” within region Rm. A key advantage of this recursive binary
partition is that it can be represented as a single tree, as illustrated in the left
plot of Figure 2.1. Each region corresponds to a terminal node of the tree.

Figure 2.1: Example of a regression tree. Reproduction of part of Figure 9.2 in
(1).
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Now we turn to the question as to how to choose splitting variables and
split points, i.e., how to grow a tree, when there are p explanatory variables.
Let xt = (x1,t, x2,t, . . . , xp,t), for t = 1, . . . , T , where xi,t is the realization of
variable Xi in period t.

We proceed backwards. Suppose that after choosing the splitting
variables and split points, we reach M regions. If we adopt the sum of
squared errors as our minimization criterion, the prediction of Y at T , ĉm, is
simply the average of previous realizations yt such that xt belongs to Rm.
Algebraically, for m = 1, ...,M ,

ĉm = arg min
T∑
t=1

I(xt ∈ Rm)(yt − cm)2 =
∑T
t=1 I(xt ∈ Rm)yt∑T
i=1 I(xt ∈ Rm)

, (2-12)

where I is the indicator function.
The idea is to use the sum of squared errors to inform how to grow

the regression tree. To begin, consider a splitting variable j and a split point
s to partition X into two regions, namely, R1(j, s) = {X|Xj ≤ s} and
R2(j, s) = {X|Xj > s}. Then, seek the pair (j, s) that solves

min
j,s

[
min
c1

T∑
t=1

I(xt ∈ R1(j, s))(yt − c1)2 + min
c2

T∑
t=1

I(xt ∈ R2(j, s))(yt − c2)2
]
.

Once the best split is found, we proceed iteratively, repeating this process on
each of the resulting regions.

A natural question arises: when should we stop this process? A very
large tree might overfit the data, which would be highly unstable. However, a
tree that is too small might not capture a complex nonlinear relation between
variables in the data. One possibility to address this trade-off is the cost-
complexity pruning method described in Hastie et al (2009). Instead, we follow
the RF method, which applies the essential idea of bagging, i.e., RF reduces
the variance by averaging many noisy and unbiased models. The drawback is
the loss of interpretability.

An RF is a collection of regression trees, each specified in a
bootstrapped subsample of the original data. Suppose there are B

bootstrapped subsamples. For each subsample, obtain a prediction for Y by
applying a modified version of the aforementioned splitting iterative process
until a prespecified minimum number of observations, say five, is reached in
any resulting region. In particular, the modification is to select q variables at
random from the p explanatory variables at each step of the process. Finally,
simply average the predictions of Y across the B bootstrapped subsamples.
Since we are dealing with time series, bootstrapped samples are calculated
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using block bootstrapping.
The main advantages of the RF method are twofold: RF can handle

both a very large number of explanatory variables and complex nonlinear
relationships between variables.

2.2.6
Hybrid Linear-Random Forests Models

RF/OLS and adaLASSO/RF deserve some special attention because
these are adaptations made specifically to answer how important the variable
selection is and the nonlinearity in forecasting the US inflation. RF/OLS is
estimated using the following steps:

1. For each bootstrap sample b:

(a) Grow a single tree with k nodes (we used k = 20) and save the
N ≤ k split variables,

(b) Run an OLS on the selected splitting variables,

(c) Compute the forecast ŷbt+h.

2. The final forecast will be ŷt+h = B−1∑B
b=1 ŷ

b
t+h where B is the number

of bootstrap samples.

The main objective of the RF/OLS is to check the performance of a linear
model using variables selected from the RF. If the results are very close to the
full RF, we understand that nonlinearity is not an issue, and the RF is superior
solely because of variable selection. However, if we see some improvement on
accuracy compared to other linear models, especially bagging3, but if RF/OLS
is still less accurate than RF, we have evidence that both nonlinearity and
variables selection play an important role.

The second adapted model is LASSO/RF, where we use the adaptive
LASSO for variable selection and then estimate a fully grown RF with the
variables selected by adaptive LASSO. If LASSO/RF performs similarly to
RF, we understand that the variable selection in RF is irrelevant, and the
only thing that matters is the nonlinearity. LASSO/RF and RF/OLS together
create an ”if and only if” situation where we test the importance of variable
selection and nonlinearity from both sides. Our results point to the middle
case where nonlinearity and variable selection are both important. The two
adapted models perform very well compared to other linear specifications, but
RF is more accurate than both. In other words, the good performance of RF
is driven by both variable selection and nonlinearity.

3Bagging and RF are bootstrap-based models, the first of which is linear and the second
is nonlinear.
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2.2.7
Bayesian Vector Autoregressive Model

The Bayesian VAR that we used is capable of estimating large models
with many variables and lags with a small computational cost. The idea is to
set the priors of most coefficients in the VAR to zero 4. The trick is to inflate
the model with dummy observations as in (10) in a way that the coefficients
of the inflated model are estimated by OLS and the model replicates a VAR
estimated with the desired prior.

Let Y t = (y1,t, y2,t, . . . yn,t)′ be described as the following VAR model:

Y t = c+A1Y t−1 + · · ·+ApY t−p + ut, (2-13)
where c is a n-dimensional vector of constants, Ai, i = 1 . . . p are (n × n)
matrices of coefficients and ut is the n−dimensional error vector. The same
model may be written as a system of equations:

Y = XB +U (2-14)

where Y = (Y 1, . . . ,Y T )′ is a (T ×n) matrix,X = (X1, . . . ,XT )′ is a (T ×k)
matrix with k = np + 1 and X t = (1,Y t−1, . . . ,Y t−p)′, U = (u1, . . . ,uT )′,
and B = (c,A1, . . . ,Ap)′.

The model is estimated using dummy observations Y d and Xd of
dimensions Td × n and Td × k respectively (for details on creating the dummy
observations see (10)). Using these dummies is equivalent to imposing the
normal inverted Whishart prior on the covariance matrix of B. The dummy
observations are used to create Y ∗ = (Y ′,Y ′d)′ and X∗ = (X ′,X ′d)′. The
posterior mean of B is the same as the ordinary least-squares (OLS) estimates
of the regression of Y ∗ on X∗ and also the same as the Minnesota prior.
Additionally, by using the dummies we ensure that for each regression of the
VAR the number of observations is larger than the number of variables, which
makes the OLS estimation of B feasible. Another important issue is the choice
of the expected value of the priors for the diagonal of theA1 matrix. We choose
the value of 0.5 for all elements.

4These priors have a shrinkage interpretation in the model. The coefficients only deviate
from the prior if the data is informative.
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Forecasting Brazilian inflation with high-dimensional models

JEL: C22.
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Forecasting, LASSO, Shrinkage, Model selection.

Abstract: In this paper, we use high dimensional models, estimated by the
least absolute shrinkage and selection operator (LASSO) to forecast Brazilian
inflation. The models are compared to benchmark specifications such as
linear autoregressive (AR) and the factor models based on principal
components. Our results show that the LASSO-based specifications have the
smallest errors for short-horizon forecasts. However, for long horizons, the
AR benchmark is the best model with respect to point forecasts, even though
there is no significant difference between them. The factor model also
produces some good long-horizon forecasts in a few cases. We estimated all
the models for the two most important Brazilian inflation measures, the
IPCA and the IGP-M indexes. The results also show that there are
differences in the selected variables for both measures. Finally, the most
important variables selected by the LASSO-based models are, in general,
related to government debt and money. On the other hand, variables such as
unemployment and production are rarely selected by the LASSO. Therefore,
our evidence is against the Phillips curve as the driving mechanism of
Brazilian inflation.
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3.1
Introduction

Inflation is a hard-to-forecast economic variable. However, reliable

forecasts provide us with a more transparent economic environment. For

example, companies need to know the future inflation to make their

investment decisions; investors use inflation forecasts to know their real

gains; wages are adjusted based on future inflation; and contracts such as

rent and mortgages use it as an index to correct future prices. Furthermore,

Central Banks usually need reliable inflation forecasts in order to conduct

monetary policy (inflation targeting). For countries like Brazil, which had a

long and recent hyperinflation experience, it is even more important to

understand the components and future behavior of inflation.

In 1999, the Brazilian government adopted inflation-targeting policies to

make the economy more transparent and stable. This changed the dynamics

of inflation and created new challenges to keep it on the target. For example,

volatility in the exchange rate had to be controlled since it is directly connected

to inflation (23). (24) argues that inflation targets may be a good alternative

for monetary policies in emerging countries; however, they have to be handled

carefully. In the Brazilian case, they have brought lower inflation rates and

more stable prices (25, 26).

There is an extensive recent literature on the determinants of Brazilian

inflation, especially on the Phillips curve and its relation to unemployment

(27, 28, 29). But some of these results are controversial, especially when

different proxies and different periods of analysis are considered (29). The

literature on inflation forecast is smaller, but also rich. More recently, (30) used

several linear and nonlinear models and the Phillips curve to forecast inflation.

The authors showed that some nonlinear models and the simple autoregressive

(AR) model produce smaller forecast errors than the Phillips curve. (31) used

long-memory heteroskedastic models to show that Brazilian inflation has long-

range dependence both on the mean and on the variance. However, they do
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not exclude the importance of the short-term AR component. The relevance

of past inflation is also pointed out by (32).

Although the Phillips curve is the main theoretical framework to model

inflation, there is an increasing interest in finding other variables that may

describe its dynamics. (33) did an extensive work with a large list of

macroeconomic variables and showed that the best variables to forecast

inflation are, in general, linked to production. However, these variables can

be very different from what is expected in the traditional Phillips curve

unemployment framework. Additionally, (34) showed that the Phillips curve

cannot produce better forecasts when compared with simpler naive models.

These results led to the search for models and variables to forecast and

explain inflation, such as commodity prices (35), financial variables (36), and

several economic activity and expectation variables (37). In many cases,

these variables were relevant to inflation forecast.

The main goal of this paper is to forecast inflation considering a large

number of potential variables. We also analyze the selected variables and show

their possible interpretation in the model. We use three types of models. First,

the simple AR model, which uses only past inflation as a predictor. Second,

since our dataset has more than 100 variables, we also used factor models.

These models use principal components as explanatory variables. We selected

the number of components using (4) criterion1. The last class of models is

based on shrinkage, more precisely on the LASSO (least absolute shrinkage

and selection operator, (2)) and on the adaLASSO (adaptive least absolute

shrinkage and selection operator, (3)). These models try to select the relevant

variables using a penalty on the loss function. Although they may produce

estimates with in-sample bias, they significantly reduce out-of-sample forecast

errors and variance. The adaLASSO is an improved version that corrects some

of the problems with the LASSO.
1We adopted the BIC3 criterion, which selected five factors. The PCi and ICi selected

around eight factors. We selected the BIC3 for parsimony, since our data have a small T
and we are also using lagged factors and autorregressive components.
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Our research contributes to the literature in several ways. First, we use

high dimensional models to forecast Brazilian inflation in the same spirit as

in (13). Most of the previous works use only Phillips curve related variables

or simple univariate time-series models. Our results show that LASSO and

adaLASSO models produce reliable inflation forecasts for horizons up to four

months ahead. However, even with the inclusion of many candidate variables,

the best model for longer horizons is the simple AR model. Second, we

analyze and forecast the two most widely used Brazilian inflation measures

and we are able to point several differences between them, especially for short-

horizon models, where the selected candidate variables are different for both

measures. Third, although our main goal is to forecast inflation, we have

some new evidence on which variables are relevant to explain the Brazilian

inflation dynamics. We show that for the official inflation (IPCA), nearly all

the selected variables are related to government debt. Although we do not

establish any causality relationship, it is important to point out that these

variables were selected among more than 100 candidates. We also show that

for the alternative inflation measure (IGP-M), variables related to the amount

of money and credit in the economy are relevant predictors as well. These

findings are evidence against the Phillips curve as the driving mechanism of

Brazilian inflation. The IPCA is driven basically by an inertial component and

variations in government debt. The IGP-M has other driving factors; however,

they are mostly linked to debt through the issue of government bonds.

This chapter is organized as follows. Section 3.2 presents the LASSO and

the adaLASSO models and how they select the relevant variables amongst all

the candidates; in Section 3.3, we discuss the characteristics of the inflation

measures used and show the main results. Section 3.4 concludes.

3.2
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LASSO models

The least absolute shrinkage and selection operator (LASSO) was

initially proposed by (2). The idea behind the method is to shrink irrelevant

coefficients in a regression to zero. This is done by adding a penalty to the

loss function that penalizes directly the estimated parameters, excluding

those which are irrelevant. The LASSO estimator is defined as:

β̂ = arg min
β̂
||Y −Xβ||22 + λ

p∑
j=1
|βj|, (3-1)

where β is the n×1 vector of parameters, Y = (y1, ..., yn)′,X is the P×n data

matrix and λ is the shrinkage parameter. Figure 3.1 shows how the LASSO

works: on the x axis, we have the λ and on the y axis, the coefficients; each line

represents a different variable. The figure shows that the number of selected

variables and the size of the coefficients decrease as we increase the shrinkage

parameter. Moreover, the LASSO can be used when one is dealing with more

variables than observations (16, 38).

If we define β̂0 as the ordinary least squares (OLS) estimator without

any shrinkage and λols as the largest penalty parameter that delivers the

same result as the OLS (no shrinkage), there will be shrinkage for any

λ > λols. Additionally, let λc be the smallest penalty parameter that results in

a model only with a constant term. Then, we must choose λ from the interval

λols ≤ λ ≤ λc. The best λ is chosen using cross-validation or some information

criterion such as the Bayesian Information Criterion (BIC).

(16) and (3) showed that the LASSO does not have the oracle property

as defined by (39), i.e., the LASSO may fail to select the correct subset

of relevant variables and its parameters may not have the same asymptotic

distribution as the OLS estimator with only the relevant variables. To solve

these issues, (3) proposed the adaptive LASSO (adaLASSO). It consists of

a two-step estimation that uses a first model to generate different weights

for each candidate variable. These weights are then used in the LASSO as
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Figure 3.1: Shrinkage coefficients - LASSO

additional information. The adaLASSO estimator is defined as:

β̂ = arg min
β̂
||Y −Xβ||22 + λ

p∑
j=1

wj|βj|, (3-2)

where wj = |β̂∗j |−τ , β̂∗j is a first-step estimate and τ is a parameter chosen by

using the same criterion as λ.

In order to maximize the model’s predictive power, it is usual to select the

parameters λ and τ by using cross-validation. However, in a time-series case

when the data are not independent and identically distributed (i.i.d.), (40)

and (41) showed that the BIC is a reliable alternative since cross-validation

in a non-i.i.d. framework may be complicated. Moreover, (17) showed that

selecting the parameters λ and τ in a time-series environment by using the

BIC and the LASSO as the first step for the adaLASSO yields estimates that

have the oracle property even in adverse situations with heteroskedasticity

and t distributed errors. Moreover, the authors allow the number of candidate

variables to increase with the number of observations and show that, based

on these conditions, the adaLASSO has model selection consistency, i.e., it

chooses the most parsimonious model asymptotically. These are very strong

results since, by assuming that we have the oracle in our set of variables and
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asymptotic conditions are met, the adaLASSO will select the right variables

and their distribution will be the same as the OLS estimator with the correct

variables. Moreover, it will not select useless variables.

3.3
Main Results

In this section, we show the results for the two most important

Brazilian price indexes: the IPCA, calculated by the Brazilian Institute of

Geography and Statistics (IBGE); and the IGP-M, calculated by the Getúlio

Vargas Foundation (FGV). Figure 3.2 shows the inflation calculated by both

indexes. Our dataset consists of 102 monthly variables that cover production,

government debt, price indexes, financial markets, taxes, import and export

of goods and services, government accounts, savings, investment, wages,

international variables that may be related to the Brazilian economy, etc.

These variables came from the Brazilian Central Bank, the FGV, the IBGE,

the IPEADATA, and the Bloomberg database. The period of analysis spans

from January 2000 to December 2013. We selected these data because the

inflation-targeting policy in Brazil started only in July 1999, and before that,

the inflation-generating process was probably different. Additionally, the

Brazilian economy was still adapting to the new currency, implemented in

1994, and to the economic policy during the late 1990s.

We estimated simple AR models, factor models using (4) BIC3 criterion

to select the number of principal components, and the LASSO and adaLASSO

models using the BIC to choose the pair2 (λ, τ) and the LASSO as the first

step for the adaLASSO. All variables were tested for unit-root and first-

differentiated when necessary. Moreover, we used four lags of the candidate

variables and monthly dummies as possible predictors of inflation. The models

were estimated using a rolling window of 132 observations and the forecasts

were compared using the (42) test. The out-of-sample period goes from January
2The pair (λ, τ) is determined in-sample (See the Appendix for more information).
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2011 to December 2013. Finally, we estimated models and forecasts for 1 to 12

steps ahead. The estimated equation is defined in (3-3):

πt+h = α0 +
3∑
i=0

γiπt−i +
3∑
i=0
β′xt−i + ut+h, (3-3)

where, πt+h is the inflation calculated as (Pt+h−Pt+h−1)
Pt+h−1

, α0 is a constant term,

xt is the vector containing all candidate variables and ut is an error term.

Equation (3-3) states that the monthly inflation h periods ahead is a function

of today’s and of the previous 3 months’ inflation and of other control variables.
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Figure 3.2: IPCA and IGM-M time series

3.3.1
IPCA Inflation Index

The IPCA is the Brazilian official price index. It is calculated monthly by

IBGE using data from families that earn between 1 and 40 monthly minimum

wages and live in urban areas.

The first noteworthy result is that Brazilian inflation is highly

autocorrelated, which means that simple AR models tend to provide good

forecasts (30, 31). Figure 3.3 shows that the first-order autocorrelation of the

IPCA inflation exceeds 0.6 and remains high up to the fourth lag. Moreover,
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there is also a small seasonal behavior. We included the monthly dummies as

candidate variables to control for this seasonality. However, it is more likely

that the dummies will be excluded by the LASSO and the seasonality will be

captured by other candidate variables with a similar behavior. To

contextualize, the autocorrelation of US inflation, if we consider the CPI, is

also around 0.6 in the first lag for monthly data. However, it decreases

significantly slower than the Brazilian autocorrelation, which is less than 0.3

in the third lag and statistically zero in the fifth one. In the US case,

autocorrelation remains close to 0.6 up to the 10th lag and, in the 25th lag, it

gets close to 0.4.
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Figure 3.3: Autocorrelation function: IPCA

Figure 3.4 shows the root mean squared error (RMSE) and the mean

absolute error (MAE) for the AR, the factor model, the LASSO, and the

adaLASSO specifications for all the 12 forecast horizons. Regarding the RMSE

in (a), the adaLASSO has smaller error for short horizons (up to 4 months) and

the AR is the best model on most of the remaining horizons. The LASSO has

errors slightly bigger than the adaLASSO and the factor model performed

badly up to period 8, but it presented the smallest errors for 9 and 10

months ahead. The results for the MAE (panel (b)) are similar to those of the
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RMSE; the most important differences are that the AR has a slightly better

performance in the t + 2 forecasts and the LASSO and the adaLASSO have

basically the same error in t+ 6. The adaLASSO had a few large errors, which

are more penalized by the RMSE. The mean absolute error for the adaLASSO

in t + 1 is approximately 0.13%. If we consider all the forecast horizons, the

average MAE is approximately 0.166% and 0.167% for the adaLASSO and the

AR, respectively. If we consider the first four horizons, the errors are 0.151%

and 0.167%; on the last 8 horizons, they are 0.171% and 0.164%.
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Figure 3.4: RMSE and MAE of all models: IPCA

Figure 3.5 shows the average number of variables selected by the LASSO
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and the adaLASSO on all forecast horizons. The adaLASSO is, in general,

more parsimonious, which is natural, since its first step was the LASSO.

However, starting in t + 6, both models select basically the same variables;

and from t+8 to t+12, most models select zero variables, becoming constant-

only models. Considering that the adaLASSO has the oracle property, there

are three possible conclusions: 1) the Brazilian monthly inflation cannot be

predicted on long horizons using macroeconomic variables available today, i.e.,

no variable is relevant; 2) the relevant variables are not in our database, which

is very unlikely since we covered all types of variables; 3) many variables are

relevant for long horizons, but their coefficients are very small and the LASSO

forces them to be zero. The most plausible hypotheses are 1 and 3. To test the

third hypothesis, we re-estimated the adaLASSO using the ridge regression as

the first step, but the results were the same. The ridge regression is similar

to the LASSO; however, it penalizes the squared parameters instead of their

absolute value. The squared penalization never excludes variables, i.e., their

coefficients can be very small, but they do not reach zero. Using the ridge as

the first step gives more liberty for the adaLASSO to choose the variables,

since none of them were previously excluded.
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Figure 3.5: Number of selected variables: IPCA
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Table 3.1 shows the correlation between the forecasts and the Giacomini

and White (GW) test (42) p-values to check if the forecasts are statistically

equal. We show the results for t+1, t+3, t+6, and t+12. The results show that,

although some models perform better than others on different horizons, their

forecasts are indeed statistically equal even when their correlation is small.

Unfortunately, our dataset does not allow us to have more than 36 out-of-

sample periods to check the robustness of these results. However, since the

forecasts are statistically very similar, the adaLASSO forecasts are at least as

good as the best forecast. This evidence supports that the variables selected

by the model are indeed relevant to generate the dynamics of the IPCA.

Figure 3.6 shows the cumulative squared errors for the same horizons as

in Table 3.1. It shows that, even though some models have smaller errors, they

have a very similar behavior (excluding the factor model) especially on the

horizons t+ 6 and t+ 12. While the factor model forecasts are apparently very

different from the others, especially on t + 6, the GW test failed to capture

this difference in most cases.

t+ 1 AR(4) Factors LASSO adaLASSO t+ 3 AR(4) Factors LASSO adaLASSO

AR(4) 1 0.48 0.75 0.74 1 0.22 0.46 0.33
- (0.037) (0.268) (0.405) - (0.168) (0.161) (0.155)

Factors 0.48 1 0.36 0.41 0.22 1 0.35 0.41
(0.037) - (0.198) (0.390) (0.168) - (0.343) (0.286)

LASSO 0.75 0.36 1 0.96 0.46 0.35 1 0.89
(0.268) (0.198) - (0.380) (0.161) (0.343) - (0.245)

adaLASSO 0.74 0.41 0.96 1 0.33 0.41 0.89 1
(0.405) (0.390) (0.380) - (0.155) (0.286) (0.245) -

t+ 6 t+ 12

AR(4) 1 0.23 0.49 0.13 1 0.50 0.77 0.27
- (0.297) (0.172) (0.349) - (0.329) (0.458) (0.496)

Factor 0.23 1 0.14 0.30 0.50 1 0.20 0.12
(0.279) - (0.426) (0.459) (0.329) - (0.212) (0.151)

LASSO 0.49 0.14 1 0.68 0.77 0.20 1 0.37
(0.172) (0.426) - (0.185) (0.458) (0.212) - (0.340)

adaLASSO 0.13 0.30 0.68 1 0.27 0.12 0.37 1
(0.349) (0.459) (0.185) - (0.496) (0.151) (0.340) -

This table shows the correlation and the p-value of the Giacomini and White test for the forecasts
in Figure 3.4.
The p-values are shown in parentheses. The null hypothesis of the GW test is that the forecasts
are statistically equal.

Table 3.1: Forecast correlations and GW test p-values: IPCA

Figures 3.7 and 3.8 present the selected variables in the LASSO and
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Figure 3.6: Cumulative squared errors: IPCA

adaLASSO for several forecast horizons3. The t+ 1 forecast models have more

variables than the others and the only horizon with AR terms. Factors were not

selected, except for one period in the LASSO. Amongst the selected variables

in the adaLASSO case are other inflation indexes, such as the IGP-DI, the

federal government debt, the dollar exchange rate, state and municipal debt,

among others. Government debt variables are selected very often for the t+ 1

and occasionally for t + 3 models, especially state and municipal debt. Since

this type of variable is first differentiated, when the variation of the debt is

very big and positive, it probably means that the government is spending

more money and putting upward pressure on inflation. The results for t + 6

and t+12 show the same information as Figure 3.5, i.e., most of the models are

constant-only, with government debt variables and unemployment appearing a
3We do not have space to show exactly which variables were selected in each model in

the paper. The exact variables are available from the authors upon request.
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few times. Finally, there was an unusual result in the t+ 12 adaLASSO, which

selected 17 variables. This model in particular had a forecast error of nearly

40%.

Table 3.2 shows how the selected variables are distributed. The first

row displays the proportion of other inflation indexes, AR components, and

dummy variables. In many cases, the AR terms were replaced with other

indexes, especially with the IGP-DI. The second row shows the proportion

of the variables which are not included in the first row, i.e., variables that

are mostly unrelated to prices. We define this group as leading economic

variables. They are selected more often than those in the first row, meaning

that there is relevant information which is not the simple AR component of

the inflation. The second group of rows (3-7) shows how the economic variables

are distributed. In the t + 1 case, government debt (especially municipal and

state debt) accounts for nearly 70% of all the economic variables selected by the

model. Therefore, an increase in government debt is incorporated very fast into

inflation. If we consider all the horizons, money variables, exchange rates and

unemployment become more representative. However, these three categories

together are selected approximately in the same proportion as the government

debt variables alone. Money variables are mostly M3 and M4; in a very general

way, M3 considers all the paper money held by the population, demand and

time deposits, applications in investment funds and savings whereas M4 is M3

plus government bonds.

Brazil historically has a very interventionist government and our results

are evidence that government debt is the most important variable to forecast

inflation, excluding its AR component. This result may be related to the poor

performance of the Phillips curve in forecasting inflation in (30) and to the

ambiguous results in different studies of Brazilian inflation pointed out by

(29). Finally, our results suggest that government debt is incorporated very

fast into inflation. It is more expressive on the first forecast horizon than if we
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look at all the horizons together.

0
10

0
20

0
30

0
40

0

(t+1)

V
ar

ia
bl

e

2011, 01 2011, 07 2012, 01 2012, 07 2013, 01 2013, 07 2013, 12

0
10

0
20

0
30

0
40

0

(t+3)

2011, 01 2011, 07 2012, 01 2012, 07 2013, 01 2013, 07 2013, 12

0
10

0
20

0
30

0
40

0

(t+6)

time

V
ar

ia
bl

e

2011, 01 2011, 07 2012, 01 2012, 07 2013, 01 2013, 07 2013, 12

0
10

0
20

0
30

0
40

0

(t+12)

time

2011, 01 2011, 07 2012, 01 2012, 07 2013, 01 2013, 07 2013, 12

Autoregressive Factors Other Variables

Figure 3.7: Variables selected by the LASSO: IPCA

3.3.2
IGP-M Inflation Index

The IGP-M is also a very important index for measuring inflation in

Brazil. It is used in several contracts, such as energy prices and rent. Its

construction is basically the same as that of the IGP-DI; the only difference is

that the IGP-M refers to the 21st day of the previous month until the 20th day

of the current month, while the IGP-DI covers all days of the current month.

The IGP-M is more volatile than the IPCA. Its coefficient of variation is

1.24, much larger than that of the IPCA, which is 0.73. Moreover, the IGP-M

is also larger. In our sample, it has an average of 0.65% per month against
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Figure 3.8: Variables selected by the adaLASSO: IPCA

0.52% of the IPCA. Finally, the correlation between the two indexes is 0.73.

This is a low correlation considering that the two most important American

inflation measures, the CPI and the PCE, have a correlation of approximately

0.90. The IGP-M has an autocorrelation even bigger than that of the IPCA.

Figure 3.9 shows that the first-order autocorrelation is approximately 0.75.

Figure 3.10 shows the RMSE and the MAE for all IGP-M models on

all the 12 forecast horizons. The first important thing to point out is that

the factor model is more stable in the IGP-M than in the IPCA, even though

it still produces larger errors. The LASSO had a very bad performance on

the horizons t + 6 and t + 11. However, the adaLASSO successfully corrected

the big errors of the LASSO. The adaLASSO has smaller errors than the AR

only on t + 1, t + 3 and t + 7, and its performance starts to deteriorate on
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LASSO t+ 1 adaLASSO t+ 1 LASSO-all adaLASSO-all
P., AR, Dummy 0.46 0.35 0.29 0.31
Other Variables 0.54 0.65 0.71 0.69

G. debt 0.64 0.69 0.45 0.42
Unemployment 0.05 0.05 0.02 0.19

Exchange 0.17 0.16 0.16 0.02
Money 0.10 0.10 0.21 0.23
Others 0.04 0 0.16 0.14

The table shows how often a variable from each of the groups was selected.
The first row shows how often autorregressive terms, other inflation
measures, and dummy variables were selected. The second row shows the
proportion of the variables which are not considered in the first row.
Rows 3-7 show how the variables from row 2 are distributed.

Table 3.2: Most selected variables: IPCA
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Figure 3.9: Autocorrelation function: IGP-M

t+ 8. However, this time, the adaLASSO t+ 1 forecast is statistically different

from the AR and factor model forecasts (see Table 3.3). The average IGP-M

inflation is 0.50% in the out-of-sample periods and the average MAE for all

horizons is 0.37% for the AR and 0.40% for the adaLASSO. These are very

large errors compared to the IPCA and to the average out-of-sample inflation.

The average number of selected variables by the LASSO and the

adaLASSO on all forecast horizons is shown in Figure 3.11. The LASSO has

around five selected variables up to the t + 7 horizon, when it increases to 20

variables. Note that the poor performance of the LASSO was also on the

horizons t+ 6 and t+ 11, t+ 12. These are exactly the same forecast horizons
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Figure 3.10: RMSE and MAE of all models: IGP-M

whose number of variables is high.

Table 3.3 and Figure 3.12 show the correlations between the forecasts,

the GW p-values and the cumulative squared errors of all the models on the

horizon t + 1, t + 3, t + 6 and t + 12. The results here are very different from

the IPCA case. First, there are many statistically different forecasts, according

to the GW test, on t + 1, t + 6 and t + 12. Second, there are some negative

correlations between the forecasts. Third, the LASSO and adaLASSO large

errors are caused by one single out-of-sample period on t + 12. Finally, the

LASSO and the adaLASSO are statistically the best models to forecast the
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Figure 3.11: Number of selected variables: IGP-M

t+ 1 inflation.

Figures 3.13 and 3.14 show the LASSO and adaLASSO selected variables.

There were more unusual results with many selected variables for the IGP-M

than for the IPCA. The results were unfavorable in all cases except for the

t + 6 adaLASSO forecast, which had an RMSE slightly smaller than the AR.

Both the LASSO and the adaLASSO selected more variables on the t + 12

horizon and their errors for this horizon were very large. On t+1 and t+3, the

LASSO selected the IGP-DI instead of the AR component. Government debt

and exchange rates were also selected, but mostly in a smaller proportion than

in the IPCA case. Additionally, the models consistently selected M3 and M4

variables. The adaLASSO on t+1 uses basically only the IGP-DI as a predictor

for the inflation; the other two dots refer to government debt. On t+ 6 and on

some of the omitted horizons, we obtained the constant-only model. Finally,

in the IGP-M case, the government also plays an important role in inflation,

especially when M4 is included. However, its importance is smaller than it was

in the IPCA case.

Table 3.4 shows the proportion of the selected variables. As we mentioned

before, the most frequently selected variables are related to money. Government
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t+ 1 AR(4) Factors LASSO adaLASSO t+ 3 AR(4) Factors LASSO adaLASSO

AR(4) 1 0.58 0.92 0.93 1 0.28 0.40 0.69
- (0.044) (0.182) (0.023) - (0.320) (0.434) (0.453)

Factors 0.58 1 0.62 0.55 0.28 1 0.33 0.36
(0.044) - (0.001) (0.003) (0.320) - (0.156) (0.180)

LASSO 0.92 0.62 1 0.98 0.40 0.33 1 0.81
(0.182) (0.001) - (0.329) (0.434) (0.156) - (0.176)

adaLASSO 0.93 0.55 0.98 1 0.69 0.36 0.81 1
(0.023) (0.003) (0.329) - (0.453) (0.180) (0.176) -

t+ 6 t+ 12

AR(4) 1 0.11 0.12 0.10 1 0.39 -0.04 -0.15
- (0.019) (0.498) (0.489) - (0.12) (0.022) (0.006)

Factor 0.11 1 -012 -0.12 0.39 1 -0.05 -0.09
(0.019) - (0.128) (0.127) (0.016) - (0.116) (0.384)

LASSO 0.12 -0.12 1 0.99 -0.04 -0.05 1 0.88
(0.498) (0.128) - (0.030) (0.022) (0.116) - (0.465)

adaLASSO 0.10 -0.12 0.99 1 -0.15 -0.09 0.88 1
(0.489) (0.127) (0.030) - (0.006) (0.384) (0.465) -

This table shows the correlation and the p-value of the Giacomini and White test for the forecasts
in Figure 3.10.
The p-values are shown in parentheses. The null hypothesis of the GW test is that the forecasts
are statistically equal.

Table 3.3: Forecast correlations and GW test p-values: IGP-M

debt came second and unemployment and exchange rates were rarely selected.

The t+1 adaLASSO selected only government debt variables. However, Figure

3.14 and the first row of the table show that this is not very important. The

continuous segment of dots on the t + 1 adaLASSO is the IGP-DI and debt

variables were selected only twice (the two dots in the middle of the t+1 plot),

accounting for 6% of the selected variables.

LASSO t+ 1 adaLASSO t+ 1 LASSO-all adalasso total
P., AR, Dummy 0.27 0.94 0.07 0.14
Other Variables 0.73 0.06 0.93 0.86

G. debt 0.24 1 0.25 0.41
Unemployment 0 0 0.02 0.09

Exchange 0.15 0 0.02 0
Money 0.56 0 0.43 0.46
Others 0.05 0 0.28 0.04

The table shows how often a variable from each of the groups was selected.
The first row shows how often autorregressive terms, other inflation
measures, and dummy variables were selected. The second row shows the
proportion of the variables which are not considered in the first row.
Rows 3-7 show how the variables from row 2 are distributed.

Table 3.4: Most selected variables: IGP-M

3.4
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Figure 3.12: Cumulative squared errors: IGP-M

Final Remarks

We analyzed the two most important Brazilian inflation measures, the

IPCA, which is the official measure, and the IGP-M, which is used in several

contracts.

Our main objective was to forecast inflation. We used several econometric

models such as AR models, factor models, LASSO, and adaLASSO. The

latter two are models based on shrinkage estimations. This sort of estimation

procedure selects only a few regressors in a high dimensional framework with

hundreds of candidate variables.

We used all the models to produce forecasts for several horizons. The

adaLASSO was the best model to forecast the IPCA inflation from one up to

four months ahead. On the other hand, for longer horizons, the AR and the

factor models have shown smaller errors. The Giacomini and White test for
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Figure 3.13: Variables selected by the LASSO: IGP-M

equal predictive accuracy showed that, in the IPCA case, the forecasts of all

the models were not statistically different. However, this finding may be due to

the restricted sample size (only 36 observations). Finally, most of the variables

selected by the LASSO and adaLASSO were related to government debt and

to the AR component of inflation.

Regarding the IGP-M inflation, the adaLASSO was statistically the best

model for one-month-ahead forecasts. However, the AR dominated all the other

models for longer horizons. Government debt variables were also selected, but

in a smaller proportion than in the IPCA case. Additionally, the M3 and M4

variables were consistently selected.

We have three main results. First, economic variables other than price

indexes are not good at predicting inflation on longer horizons. Second, apart
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Figure 3.14: Variables selected by the adaLASSO: IGP-M

from variables related to inflation persistence, government debt variables

represent the most important predictors to forecast short-term inflation. Third,

our evidence is that the inflation mechanisms in Brazil are not those stated by

the Phillips curve, especially when it comes to the unemployment-inflation

relationship. Although Brazilian unemployment indexes are very low, the

proportion of the population that does not work is big due to some public

policies that target only those who are not currently working. These people

are not considered unemployed because they are not looking for jobs. This type

of policy may change the relationship that variables related to production have

with inflation.

Finally, studies such as this one are especially important for emerging

countries like Brazil. It helps academics and practitioners to understand the
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inflation determinants and it also produces reliable forecasts. Many of these

countries, including Brazil, have experienced periods of hyperinflation, and

even though Brazilian inflation is much more under control now than in the

late 1980s and early 1990s, it is still bigger than the inflation in developed

countries and it is much easier for emerging countries to lose control over it.

3.5
Chapter Appendix

3.5.1
Estimation Procedures

In this Appendix, we show some technical details on the estimation

procedure.

3.5.1.1
Differentiation

We used the Augmented Dickey-Fuller test (ADF) and the

Kwiatkowski–Phillips–Schmidt–Shin test (KPSS) to decide whether to

differentiate the variables. An important thing to mention is that we assumed

that the IPCA and the IGP-M indexes are stationary. The ADF strongly

rejected the null, with p-values smaller than 0.01. The KPSS p-value was

greater than 0.1 for both indexes (recall that the null hypothesis for the

KPSS is stationary). Several results for both tests in our dataset indicated

the opposite or that the p-values were very close to the frontier of rejection.

We adopted the criterion of differentiating the time-series when the test

results were not reliable. All variables were differentiated, except the inflation

indexes.

3.5.1.2
LASSO and adaLASSO estimation

The LASSO was estimated using the R package GLMNET package (43).

Let λols be the penalty parameter that implies the model with the biggest

possible number of variables, and λc the penalty parameter that results in a
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constant-only model such that λols < λc. We estimate the LASSO for 100

different values of λ such that the first model uses λols and the last model has

only a constant. All the other 98 models have at least one selected variable. This

is the standard procedure in the GLMNET.We select the best 100 models using

the BIC. Figure 3.15 shows the BIC as a function of the penalty parameter. The

dashed line is the best model and the upper axis shows the number of selected

variables in each model (including the constant). Although the function is not

convex, it clearly has a global minimum.

Recall that the adaLASSO estimator is defined as:

β̂ = arg min
β̂
||Y −Xβ||22 + λ

p∑
j=1

(β̂∗j )−τ |βj|, (3-4)

(13) choose parameter τ computationally. After estimating the LASSO’s

first step, they estimate the adaLASSO for different τ ’s and select the best

model using the BIC in a very similar way to the one implemented to select

the best λ. This increases considerably the computational cost since for each

τ we have to estimate 100 models to select the λ. We used the same procedure

to estimate the λ, as this is the standard in the R package GLMNET. As for

the τ , we selected one fixed value for each index (0.3 for the IPCA and 0.5

for the IGP-M). The values were selected using the BIC in the first subsample

of the rolling window implementation. This procedure saves time as one τ is

selected for each window with a negligible variation in the results, given that

the best τ does not change much across the rolling window samples.

DBD
PUC-Rio - Certificação Digital Nº 1421640/CA



Chapter 3. Forecasting Brazilian inflation with high-dimensional models 52

−10 −9 −8 −7 −6

−
14

00
−

13
50

−
13

00
−

12
50

−
12

00
−

11
50

log(Lambda)

B
IC

139 133 118 101 87 76 75 65 50 42 34 25 19 16 9 6 5 4 4 4 4

Figure 3.15: Model selection using the BIC

DBD
PUC-Rio - Certificação Digital Nº 1421640/CA



Chapter 3. Forecasting Brazilian inflation with high-dimensional models 53

3.5.2
List of Variables

Prices
IPCA - general -index (dec. 1993 = 100)
IGP-M - general - index (aug. 1994 = 100)
IGP-DI - general - index (aug. 1994 = 100)
IGP-OG - general - index (aug. 1994 = 100)
IGP-10 - index (ago. 1994 = 100)

Employment and Wages
Unemployment Rate - RMSP
Unemployment Rate - Open - RMSP
Unemployment Rate - Hidden - RMSP
Unemployment Rate - Hidden - Precarious - RMSP
Employment Personnel - Industry
Working Hours (Hours Worked???) - Production - Industry
Number of Employees
Employment level - Industry
Average Income
Minimum Wage - Industry
Real Minimum Wage
Payroll - Industry
Minimum Wage - Purchasing Power Parities
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International Transactions and Government Debt
Balance of Payments - Total Result - US$
Financial and Capital Accounts - US$
Current Transactions - US$
Unrequited Transfers - US$
External Debt - States and Cities
Fiscal Debt - Public Sector
Internal Debt - States and Cities
Internal Debt - Federal Government
Total Net Debt - States and Cities
Total Net Debt - Federal Government and Central Bank

Economic Activity and Production
Apparent Consumption - Alcohol
Apparent Consumption - Oil and Derivatives
Apparent Consumption - Capital Goods
Apparent Consumption - Intermediate Goods
Apparent Consumption - Consumer Goods - All
Apparent Consumption -Durable Consumer Goods
Apparent Consumption -Semi-durable and Non-durable Goods
Apparent Consumption -Industry - General
Apparent Consumption - Manufacturing Industry
Real Income - Industry
Real Sales - Industry
Electricity - Consumption
Default - Number of Queries
Default - New Registers - Net
Economic Condition Index
Bad Checks
Capacity Utilization
Industrial Production - Intermediate Goods
Industrial Production - Plastic and Rubber
Industrial Production - General
Industrial Production - Capital Goods
Industrial Production - Metallurgy
Industrial Production - Cellulose and Paper
Industrial Production - Oil
Industrial Production - Steel
Industrial Production - Motor Vehicles
Slaughter Cattle and Poultry
Slaughter Pigs
Construction Index
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Taxes and Government Income
Cofins - total - Gross Income
Social Contribution over Net Profits
PIS / Pasep - total - Gross Income
Gross Collection of Federal Revenues
Taxes on Goods Circulation
Financial Execution
Import Taxes
Income Taxes - Legal Entity
Income Taxes - Individual
Total Gross Income Taxes
Taxes on Rural Properties
Social Security Cash Flow
Tax on Motor Vehicles
Other Taxes
Payment Rates
Financial Taxes
Industry Taxes

Exchange Rates and Finance
Exchange Rate - Dollar - Commercial
Exchange Rate - Dollar - Tourism
BOVESPA Stock Index
Dow Jones Stock Index
Average Return on Investment Funds
Return on Savings
Returns on Gold
Interest Rate - CDI / Over
Interest Rate - TJLP
Interest Rate - Over / Selic

Money
M0 - Monetary Base
M1
M2
M2 - Savings Deposits
M2 - Corporate Securities
M3 - Fixed Income Funds
M3 - New Concept
M4 - New Concept
M4 - Federal Bonds
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Economic Confidence
Consumer Confidence Index
Index of Economic Expectations
Government Evaluation - Excellent and Good
Government Evaluation - Regular
Government Evaluation - Poor
Way of Governing - Approves
Way of Governing - Disapproves
Confidence in the President - Good
Confidence in the President - Poor
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4
Forecasting Macroeconomic Variables in Data-Rich
Environments

JEL: C22.

Keywords: Big Data, forecasting, LASSO, Shrinkage, Model selection.

Abstract: We show that high-dimensional models produce, on average,

smaller forecasting errors for macroeconomic variables when we consider a

large set of predictors. Our results showed that, empirically, a good selection

of the adaptive LASSO hyperparameters also reduces forecast errors.
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4.1
Introduction

Recent advances in computer science, statistics and econometrics allow

us to work with large and complex datasets. In this paper we consider

high-dimensional econometric models to forecast macroeconomic variables

in situations when is hard to select predictors. Our results show that in

most cases, more complex models provide smaller forecast errors than simple

autoregressive and factor models.

4.2
Econometric Models for Data-Rich Environments

4.2.1
LASSO

The Least Absolute Shrinkage and Selection Operator (LASSO) was

proposed by (2) as an alternative to ridge regression. Instead of imposing

a quadratic penalty on the parameters, the LASSO penalizes their absolute

value. This type of penalization allows irrelevant variables to be shrinked

exactly to zero. The LASSO estimator is defined as

β̂ = arg min
β
||Y −Xβ||22 + λ

p∑
j=1
|βj|, (4-1)

where β is a N -dimensional vector of parameters, X is a T × N matrix

of candidate variables,1 Y is the dependent variable and λ is the shrinkage

parameter. The second part of (5-4) controls the shrinkage and depends

directly on the size of λ, which is selected using the BIC.

However, (3) showed that the LASSO does not have the oracle property

and its performance tends to deteriorate as we increase the number of

candidate variables. (3) showed that the oracle could be achieved by using a

weighted penalization with weights estimated from a first-step model. This

new estimator is the adaptive LASSO (adaLASSO), defined as:
1The LASSO can be used even when N > T (16).
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β̂ = arg min
β̂
||Y −Xβ||22 + λ

p∑
j=1

wj|βj|, (4-2)

where wj = |β̂∗j |−τ , β̂∗j is a parameter estimated in a first-step, and τ > 0

determines how much we want to emphasize the weights.

We estimated the adaLASSO using the LASSO as the fist-step and τ = 1,

or using the elastic-net2 as first step, selecting τ using the BIC. We call this

last model flex-adaLASSO.

4.2.2
Bagging

The use of bagging to forecast time-series was proposed by (44). It

consists on using several bootstrap samples to estimate the parameters,

selecting the relevant variables on each sample using t-statistics. After we

computed the forecasts using the estimated parameters from each bootstrap

sample, we use the average forecast as the final object.

The bootstrap samples were draw using block-bootstrap and the number

of samples was 100. Since we are dealing with 130 variables, and we also use lags

and factors as candidate variables, we did a pre-testing to select the relevant

variables in two steps. First, we divided the sample into five arbitrary groups

of variables and selected those with |t| > 1.96. Then we did another pre-testing

with the selected variables from the five groups. The ones that remained with

|t| > 1.96 were selected.

4.2.3
Target Factors

(6) showed that one could achieve better forecasting results using factor

models considering which variable is going to be predicted. In other words, if

we have a very large set of potentially relevant variables, we could improve our
2The elastic-net is a convex combination of the LASSO penalization and the ridge

penalization. We determined how much weight to put on each penalization also using the
BIC. This procedure has a very high computational cost.
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forecasts simply by doing some type of pre-test to select which variables might

be more relevant to forecast our targeted variable.

Let yt be the variable we want to forecast, h is the forecasting horizon

andW t contains a set of controls in the pre-test. In our case,W t contains only

lags of yt. Furthermore, Xit, i = 1, . . . , N represents the candidate variables.

The details of the pre-test are as follows:

1. For each i = 1, . . . , N , fit a regression3 of yt+h on W t and Xit and save

the t-statistics for all Xit.

2. Sort the absolute t-statistics of each Xit in descending order.

3. Select a significance level α. The variables considered as relevant will be

those with |ti| bigger than the critical value.

4. Let xt(α) be the selected relevant variables. Compute factors F t from

xt(α) using principal components.

5. Fit a regression of yt+h on W t and f̂ t ⊂ F̂ t.

In the last step, we selected f t using the criteria in (4). Additionally,

instead of selecting lags for f t using the BIC like (6), we allowed four lags of

each candidate variable in the pre-testing procedure.

4.2.4
Complete Subset Regression

The Complete Subset Regression (CRS) was proposed by (45). It consists

of selecting a number k < N , where N is the number of variables in the

database, and fit regressions for all possible combinations of k variables. In

our case we have 25 variables and k = 4, therefore we had to estimate

12, 650 regressions. The final forecasts is the average forecast computed from

all regressions.
3We followed (6) and used W t as four lags of yt.
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Note that, initially, we have 131 potential variables, and as in the target

factors case, we allowed four lags of each variable. This number of variables

makes the CSR computationally infeasible, therefore, we had to use a pre-

testing procedure to select only a few variables (25). Following the same

notation we used for the target factors, the pre-testing is described below:

1. For each i = 1, . . . , N , fit a regression of yt+h on Xi,t. This time we did

not use fixed controls W t, the autorregressive variables were treated as

variables in X t.

2. Select the K variables with biggest |t|. We used K = 25.

3. Fit regressions for yt+h using all possible subsets of k variables from the

K pre-selected variables. In our case, k = 4.

4. Compute the final forecast as the average forecast from all the fitted

regressions.

4.3
Estimation Procedures and Data

4.3.1
Estimation Procedures

We estimated models directly for the horizons we wanted to forecast,

in this case, one and four steps ahead. Furthermore, we used a rolling

window scheme of 144 windows to compare the forecasts. Considering the

particularities of each model, the estimated equation was:

yt+h = α0 +
N∑
i=1

βixi,t + εt+h (4-3)

where, yt is the variable we want to forecast, h is the forecast horizon, α0 is

a constant, βi are the regression parameters, xit represents all variables, or in

some cases, candidate variables and εt is an error term.

We used autoregressive terms in all models. They are candidate

variables on the LASSO models, CSR and Bagging. In the target factors,
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Mean SD Min Max
CPI 0.0033 0.0032 -0.0179 0.0181

emptot 0.0014 0.0026 -0.0099 0.0147
iptot 0.0022 0.0077 -0.0413 0.0309
ncom 63.0539 14.8183 18.0000 97.6000
nempl 49.1782 6.9385 25.3000 67.8000
nprod 55.4676 7.4651 26.3000 80.6000

Table 4.1: Descriptive Statistics

four autoregressive lags were included in the regression, they are represented

by W t, which is used as fixed control on the pre-testing and on the factor

regression.

4.3.2
Data

We used 131 macroeconomic variables related to the US economy. The

period of analysis is from January 1960 to December 2011. This data-set was

also used by (46). We selected six variables from the data to be forecasted using

all the remaining 130 variables. The selected variables were the CPI inflation,

variations on the total total number of employees on the private sector except

by the farm (emptot), variations on the aggregated industrial production index

(iptot) and NAPM indexes for commodities (ncom), employment (nempl) and

production (nprod).

4.4
Results

In this section we show the results for h = 1 and h = 4. First, Table 4.1

shows descriptive statistics for the forecasted variables. The forecast results

for h = 1 are displayed in Table 4.2 where the values in parenthesis are the p-

value of the test of (42) using the AR(4) as benchmark. The results show that

the flex-adaLASSO produces smaller forecast errors for all variables. The high-

dimensional models provided better forecasts for all variables, except for the

emptot, where these models had forecast errors equal to the AR(4) on average.

The CSR was the high-dimensional model with the worst performance.
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CPI EMPTOT IPTOT NCOM NEMPL NPROD
AR(4) 0.0033 0.0011 0.0068 6.13 2.44 3.21

- - - - - -
AR(4) + Factors 0.0033 0.0012 0.0061 6.04 2.29 3.06

(0.760) (0.271) (0.068) (0.844) (0.288) (0.414)
T. Factors 0.0032 0.0012 0.0060 6.37 2.34 3.04

(0.914) (0.192) (0.049) (0.099) (0.509) (0.736)
Lasso 0.0029 0.0012 0.0065 5.90 2.40 3.02

(0.021) (0.081) (0.036) (0.370) (0.992) (0.336)
adaLasso 0.0031 0.0011 0.0065 11.49 3.86 3.90

(0.008) (0.663) (0.457) (0.000) (0.000) (0.002)
PO adaLasso 0.0031 0.0011 0.0065 10.94 2.33 3.52

(0.223) (0.849) (0.288) (0.000) (0.750) (0.151)
Flex-adaLasso 0.0028 0.0011 0.0059 5.72 2.26 2.75

(0.079) (0.562) (0.001) (0.078) (0.315) (0.013)
PO flex-adaLasso 0.0029 0.0011 0.0059 5.78 2.27 2.73

(0.126) (0.929) (0.002) (0.126) (0.314) (0.009)
Bagging 0.0030 0.0011 0.0064 6.16 2.29 2.90

(0.114) (0.414) (0.329) (0.822) (0.999) (0.182)
CSR 0.0032 0.0013 0.0065 8.26 3.16 3.90

(0.061) (0.002) (0.019) (0.000) (0.000) (0.001)
Values in parenthesis are the GW p-values using the AR(4) as benchmark and rows
with PO are post-ols estimation.

Table 4.2: RMSE across the rolling windows and Giacomini-White test for
h = 1

Table 4.3 shows the results for four steps ahead forecasts. The Flex-

adaLASSO had the smallest forecast errors for four of the six variables. The

target factor had the smallest errors for the variable emptot, however it was

not statistically different from that of the AR(4). The AR(4) generated the

smaller errors for the iptot variable, but it was also not statistically different

from the forecasts of many other models.

Additionally, there was no significant gain in estimating the post-ols for

the adaLASSO and the flex-adaLASSO. Finally, the parameter τ from the

adaLASSO seems to make a big difference on the results. For example, on the

ncom variable for h = 1, the adaLASSO had very big erros, however, when we

selected the τ using the BIC as in the flex-adaLASSO, the adaLASSO went

from the worst model to the best model.
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CPI EMPTOT IPTOT NCOM NEMPL NPROD
AR(4) 0.0038 0.0017 0.0072 14.59 4.78 6.37

- - - - - -
AR(4) + Factors 0.0037 0.0016 0.0073 14.18 4.69 6.07

(0.764) (0.501) (0.617) (0.898) (0.369) (0.594)
T. Factors 0.0036 0.0015 0.0074 14.17 4.58 6.05

(0.513) (0.949) (0.865) (0.661) (0.371) (0.298)
Lasso 0.0036 0.0019 0.0078 13.18 4.38 6.28

(0.099) (0.000) (0.075) (0.004) (0.127) (0.668)
adaLasso 0.0035 0.0016 0.0073 14.12 6.44 7.39

(0.020) (0.201) (0.866) (0.830) (0.000) (0.004)
PO adaLasso 0.0035 0.0017 0.0077 14.21 6.38 7.28

(0.071) (0.169) (0.349) (0.809) (0.000) (0.007)
Flex-adaLasso 0.0035 0.0017 0.0075 12.69 4.08 5.67

(0.051) (0.056) (0.047) (0.015) (0.031) (0.023)
Po flex-adaLasso 0.0035 0.0017 0.0079 12.87 3.99 5.69

(0.256) (0.070) (0.005) (0.041) (0.015) (0.055)
Bagging 0.0037 0.0017 0.0076 14.19 4.50 5.84

(0.917) (0.440) (0.107) (0.571) (0.312) (0.156)
CSR 0.0036 0.0020 0.0079 13.15 5.08 6.80

(0.011) (0.000) (0.126) (0.016) (0.005) (0.243)
Values in parenthesis are the GW p-values using the AR(4) as benchmark and rows
with PO are post-ols estimation.

Table 4.3: RMSE across the rolling windows and Giacomini-White test for
h = 4

4.5
Conclusion

We showed that high-dimensional models such as LASSO and Bagging

provide smaller forecast errors for some macroeconomic variables. The results

for target factors and complete subset regression were less conclusive. The

adaLASSO had the smaller forecast errors of all models when we allowed the

hyper
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Real-Time Inflation Forecasting with High-Dimensional
Models: The Case of Brazil

JEL: C22.

Keywords: real-time inflation forecasting, emerging markets, shrinkage,

factor models, LASSO, regression trees, random forests, complete subset

regression, machine learning, model confidence set, forecast combination,

expert forecasts.

Abstract: We show that high-dimensional econometric models, such as

shrinkage and complete subset regression, perform very well in real time

forecasting of inflation in data-rich environments. We use Brazilian inflation

as an application. It is an ideal example because it exhibits high short-term

volatility and several agents devote extensive resources to forecast its

short-term behavior. Therefore, precise specialist’s forecasts are available

both as a benchmark and as an important candidate regressor for the

forecasting models. Furthermore, we combine forecasts based on model

confidence sets and we show that model combination can achieve superior

predictive performance.

5.1
Introduction

Forecasting inflation in real-time is a difficult task and it has been

extensively studied in the literature. At least since (47) introduced the concept

of real interest rates, forecasting inflation has been a crucial issue for both

academics and practitioners. We estimate models to forecast inflation in real-

time and in data-rich environments. By real-time we mean that forecasts are
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computed by using solely the information available to the econometrician at

the time the forecasts are made. A data-rich environment is the one where the

number of potential predictors is large, possibly larger than the sample size.

We consider the case of an emerging economy with inflation targeting, where

precise inflation forecasts are of utmost importance for monetary policy and

investment strategies (48).

Emerging markets usually exhibit higher and more volatile inflation,

which tend to shorten the investment horizon. In Brazil, a country that

conquered hyperinflation only in 1994, most fixed income assets are still very

short. Therefore, the importance of forecasting short-term inflation is higher

than in advanced economies, with more resources being devoted by financial

institutions to such endeavor. Forecasting short-term inflation in Brazil is not

only hard enough an exercise, with lots of data, but also one where extremely

good expert forecasts exist with which different econometric techniques may

be compared.

The literature on inflation forecasting is vast and there is substantial

evidence that models based on the Philips curve do not provide good inflation

forecasts. Although (33) showed that many production-related variables are

useful predictors of the US inflation, (34) showed that in many cases the Philips

curve fails to beat even simple naive models. These results inspired researchers

to look for different models and variables in order to improve inflation forecasts.

Among the variables used are financial variables (36), commodity prices (35)

and expectation variables (37).

Real-time inflation forecasting has been recently considered by several

authors. (48) evaluate forecasts made in real time to support monetary policy

decisions at the Swedish Central Bank from 2007 to 2013. The authors

compare Dynamic Stochastic General Equilibrium (DSGE) models with

Bayesian Vector Autoregressive (BVAR) models. (49) propose a

mixed-frequency model for daily forecasts of euro area inflation in real-time.
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The authors showed that the mixed-frequency model has superior predictive

performance with respect to forecasts based only on economic derivatives.

(50) consider real-time inflation forecasts by AR models and with revised

data. Finally, (37) evaluate the use of Bayesian Model Averaging (BMA) to

forecast inflation in real-time. However, none of these authors have

considered the use of large-dimensional machine learning models.

There is also a growing literature on inflation forecasting in Brazil. (30)

used several linear and nonlinear models and the Phillips curve to forecast

inflation. The authors showed that some nonlinear models and the simple

autoregressive (AR) model produce smaller forecast errors than the Phillips

curve. (31) used long-memory heteroskedastic models to show that Brazilian

inflation has long-range dependence both on the mean and on the variance.

However, they do not exclude the importance of the short-term AR component.

The relevance of past inflation is also pointed out by (32). More recently, (11)

considered different high-dimensional models to forecast Brazilian inflation.

The authors showed that techniques based on the Least Absolute Shrinkage

and Selection Operator (LASSO) have the smallest forecasting errors for short

horizon forecasts. For longer horizons, the AR benchmark is the best model

with respect to point forecasts, even though there is no significant differences

between them. Factor models also produces some good long-horizon forecasts

in a few cases. However, none of the above papers consider real-time forecasts.

In this paper, we make use of the most important advances in econometric

modeling to estimate real-time forecasts of the Brazilian CPI inflation (IPCA).

This is not only the most widely used inflation measure in Brazil, but is also

the index used to set the inflation target for central bank policy.

As far as we know, this is the first paper to use high dimensional and

machine learning models to forecast inflation in real-time for an emerging

economy, using expert survey forecasts as potential candidate predictors. The

models used here may be classified into shrinkage models, such as the LASSO
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(2), the adaptive LASSO (3), or the Post-Ordinary Least Squares (51), and

models that combine information, such as target factors (6) and Complete

Subset Regression (45, 20). We also included AR models and Random Walk

forecasts as benchmarks and the Random Forest model (9) as a nonlinear

alternative. As a robustness check, we also compare the high-dimensional

models with the Unobserved Component Stochastic Volatility (UC-SV) model

advocated by (52) and a Bayesian vector autoregression with priors from (10).

Furthermore, we use specialist’s forecasts compiled by the Brazilian Central

Bank (BCB) both to gauge the quality of our forecasts and to include them as

potential variables in our models. The specialist’s forecasts are obtained in the

FOCUS report, which contains expectations for several variables regarding the

Brazilian economy (53). The FOCUS is an online environment that collects

projections from more than a hundred professional forecasters about key

Brazilian macroeconomic variables. The report was created to support the

inflation target regime and it is published by the Brazilian Central Bank

weekly, every Monday. The information is collected from several agents in the

market such as banks, fund managers, and consulting companies. We use the

median, the mean and the standard deviation of these market expectations

in our models. Additionally, the FOCUS report also publishes the Top5

expectations, which includes only the five agents which were more accurate on

previous periods. The expectations are collected daily, but many forecasters

update their forecasts only on Friday, since the survey is published every

Monday. Besides inflation, the report also publishes expectations on GDP,

industrial production, exchange rates and other variables. All this information

is used by the Brazilian Central Bank to gauge its monetary policy. Finally,

following (54), we use a forecast combination strategy based on the model

confidence sets proposed by (55). The idea is to compute the average of the

forecasts from the models included in a given confidence set. We show that

this delivers superior forecasts than all individual models as well as the simple
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average of all models.

We estimated forecasts for the following forecast-horizons: five days

before the CPI index is published to 11 months plus five days (12 forecasts

on total). For five-day-ahead, the LASSO and the FOCUS (expert forecast)

are virtually the same. For the second horizon, the adaptive LASSO is

superior than any other model. For the remaining horizons, the Complete

Subset Regression dominates all other alternatives. The results are the same

if we either use the root mean squared error or the mean absolute error. In

terms of accumulated inflation, the Complete Subset Regression is the model

which delivers the most precise forecasts. However, most of the forecasts from

different models are not statistically different according the model confidence

set. In light of this finding, we construct the final forecast as the average

of the models included in the confidence set. This approach delivers the

best forecasts among all the competing alternatives. Finally, we also compute

density forecasts for each model based on bootstrap re-sampling. According

to the log-score statistic, the CSR has superior performance for most of the

forecasting horizons except the first two where LASSO based methods are

ranked as the best models.

Following this Introduction, this paper has four sections. In Section 2,

we describe the models that were used, as well as the empirical procedures. In

Section 3, we explain the dataset. The main results are presented and discussed

in Section 4. Finally, the main conclusions are summarized in Section 5. A

description of the dataset is included in the appendix.

5.2
Empirical Methods

In this section we describe the methods used in this paper to forecast

future inflation. We consider a direct forecast approach where the inflation

h-periods-ahead, πt+h, is modeled as a function of a set of predictors measured

at time t such as:
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πt+h = T (xt) + ut+h, (5-1)

where T (xt) is a possibly nonlinear mapping of a set of q predictors and

ut+h is the forecasting error, xt = (x1t, . . . , xqt)′ ∈ X ⊆ Rq may include

weakly exogenous predictors, lagged values of inflation and a number of factors

computed from a large number of potential covariates. Importantly, as we

focus on real-time forecasts, xt contains only variables that are observed and

available to the econometrician at time t. Many variables are published months

after their period of reference. These variables are not included in the dataset

at time t. Note further that by considering direct forecasts models for each

horizon, this avoids the necessity to estimate a model for the evolution of xt.

For most of the methods considered in this paper, the mapping T (·) is

linear, such that:
πt+h = β′xt + ut+h, (5-2)

where β ∈ Rq is a vector of unknown parameters.

5.2.1
Factor Models with Targeted Predictors

Factor models using principal components are a very popular approach to

avoid the curse of dimensionality when the number of predictions is potentially

large. The idea is to extract common components from all variables, thus

reducing the model dimension.

Consider equation 5-2. When the number of candidate predictors q is

large, potentially larger than the sample size T , ordinary least squares (OLS)

is either infeasible or have a very large variance. One solution to circumvent

this drawback is to use factors as predictors instead of xt. The factors can

be observed as in Fama and French (1993,1996) or unobserved as in (56) and

(57). Our focus are on unobserved factors. Consider the following forecasting

model:
πt+h =

p∑
i=1
γ ′if t−i + ut+h, (5-3)

where, f t is a vector of k of common factors extracted from xt and k is
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much smaller than q. Note that f t is not observed and must be estimated by

principal components. The assumptions and the theory behind factor models

and when can we treat factors as observed variables can be found in Bai and

Ng (2002,2006,2008).

In order to improve the forecasting performance of factor models, (6)

proposed targeting the predictors. The idea is that if many variables in xt

are irrelevant predictors of πt+h, factor analysis using all variables may result

in noisy factors with poor forecasting ability. The target factors are regular

factor models with a pre-testing procedure to select only relevant variables

to be in included in the factor analysis. We show the steps of this procedure

pointing out where our methodology differs from that proposed by (6). Let

xi,t, i = 1, . . . , q, be the candidate variables and wt a set of fixed regressors

that will be used as controls in the pre-testing. We follow (6) and use wt as

AR terms of πt. The procedure is described as follows.

1. For i = 1, . . . , q, regress πt+h on wt and xi,t and compute the t-statistics

for the coefficient corresponding to xi,t. We include four lags of each

candidate variable in the pre-testing. (6) uses only the variables in t and

select the lags latter.

2. Sort all t-statistics calculated in Step 1 in descending order.

3. Choose a significance level α, and select all variables which are significant

using the computed t-statistics.

4. Let xt(α) be the selected variables from Steps 1–3. Estimate the factors

F t from xt(α) by principal components.

5. Regress πt+h on wt and f t ⊂ F t. The number of factor in f t is selected

using the BIC. (6) selected also the number of lagged factors using the

BIC. However, since we use lagged variables as regressors in the pre-

testing, we did not use lagged factors.
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The same procedure was used by (58). The authors showed that, in most

cases, target factors slightly reduce the forecasting errors compared to factor

models without targeting.

5.2.2
LASSO and adaptive-LASSO

A successful alternative to factor models to estimate parameters in large

dimensions is to use shrinkage methods. The idea is to shrink to zero the

parameters corresponding to irrelevant variables. Under some conditions, it

is possible to handle more variables than observations. Among shrinkage

methods, the Least Absolute Shrinkage and Selection Operator (LASSO),

introduced by (2), and the adaptive LASSO (adaLASSO) of (3), have received

particular attention. It has been shown that the LASSO can handle more

variables than observations and the correct subset of relevant variables can

be selected (59, 16, 38). As noted in (16) and (3), for attaining model

selection consistency, the LASSO requires a rather strong condition denoted

“Irrepresentable Condition” and does not have the oracle property. (3) proposes

the adaLASSO to amend these deficiencies. The adaLASSO is a two-step

methodology which uses a first-step estimator, usually the LASSO, to weight

the relative importance of the regressors.

The LASSO estimator is defined as

β̂ = arg min
β̂

 T∑
t=1

(πt+h − β′xt)2 + λ
q∑
j=1
|βj|

 , (5-4)

where λ controls the amount of shrinkage and is determined by data-driven

techniques such as cross-validation or the use of information criteria.

The adaLASSO is defined as:

β̂ = arg min
β̂

 T∑
t=1

(πt+h − β′xt)2 + λ
q∑
j=1

wj|βj|

 , (5-5)

where wj = |β̂∗j |−τ represents different weights on the penalization of each

variable, β̂∗j is the parameter estimated on a first step, and τ > 0 determines
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how much we want to emphasize the difference of the weights. (17) showed

that the conditions that must be satisfied on the adaLASSO are very general.

The model works even when the number of variables increases faster than the

number of observations and when errors are non-Gaussian and heteroskedastic.

The most usual is to make τ = 1. However, (58) showed that selecting

τ using the BIC reduces the forecasting errors. They refer to this model as

Flex-adaLASSO. The τ is not bounded on both sides as the λ. If τ → 0 then

we have the traditional LASSO without weights, however, we do not have an

upper bound. Note that if τ → ∞, then the wi → 0 and we have no penalty.

Thus, in order to select the τ using an information criterion, one must establish

an upper bound or the problem becomes computationally infeasible. If we use

the LASSO as the first model, than some weights will be infinite. To deal with

this issue computationally, we sum T−
1
2 to all coefficients from the first model.

(51) showed that the estimating a linear regression with the variables

selected by the LASSO (post-OLS) is at least as good as the LASSO itself in

terms of rate of convergence to the oracle and it also has a smaller bias. We

estimated the post-OLS regression for the Flex-adaLASSO in order to check

if it reduces forecasting errors.

5.2.3
Random Forest

The Random Forest (RF) methodology was initially proposed by (9) as

a solution to reduce the variance of regression trees and is based on bootstrap

aggregation (Bagging) of randomly constructed regression trees.

A regression tree is a nonparametric model based on the recursive binary

partitioning of the covariate space X where the function T (·) is a sum of

local models (usually just a constant), each of which is determined in K ∈ N

different regions (partitions) of X. The model is usually displayed in a graph

which has the format of a binary decision tree with N ∈ N parent (or split)

nodes and K ∈ N terminal nodes (also called leaves), and which grows from
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the root node to the terminal nodes. Usually, the partitions are defined by a

set of hyperplanes, each of which is orthogonal to the axis of a given predictor

variable, called the split variable. Hence, conditionally to the knowledge of the

subregions, the relationship between πt+h and xt in (5-1) is approximated by

a piecewise constant model, where each leaf (or terminal node) represents a

distinct regime.

To mathematically represent a complex regression-tree model, we

introduce the following notation. The root node is at position 0 and a parent

node at position j generates left- and right-child nodes at positions 2j + 1

and 2j + 2, respectively. Every parent node has an associated split variable

xsjt ∈ xt, where sj ∈ S = {1, 2, . . . , q}. Furthermore, let J and T be the sets

of indexes of the parent and terminal nodes, respectively. Then, a tree

architecture can be fully determined by J and T.

The forecasting model based on regression tree can be mathematically

represented as

πt+h = HJT(xt;ψ) + ut+h =
∑
i∈T

βiBJi (xt;θi) + ut+h (5-6)

where

BJi (xt;θi) =
∏
j∈J

I(xsj ,t; cj)
ni,j (1+ni,j )

2
[
1− I(xsj ,t; cj)

](1−ni,j)(1+ni,j)
, (5-7)

I(xsj ,t; cj) =


1 ifxsj ,t ≤ cj

0 otherwise,
(5-8)

ni,j =



−1 if the path to leaf i does not include the parent node j;

0 if the path to leaf i includes the right-child node of the parent node j;

1 if the path to leaf i includes the left-child node of the parent node j.
(5-9)

Let Ji be the subset of J containing the indexes of the parent nodes that form
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the path to leaf i. Then, θi is the vector containing all the parameters ck such

that k ∈ Ji, i ∈ T. Note that ∑j∈JBJi (xt;θj) = 1, ∀xt ∈ Rq+1.

A Random Forest is a collection of regression-trees each of which is

specified in a bootstrapped sub-sample of the original data. Suppose there

are B bootstrapped sub-samples and denote HJbTb
(·;ψb) as the estimated

regression-tree for each one of the sub-samples. The final prediction is defined

as:
π̂t+h = 1

B

B∑
b=1

HJbTb
(xt;ψb). (5-10)

For each of the bootstrapped sub-samples a regression-tree is estimates

by recursively repeating the following steps for each terminal node of the tree

until the minimum number of observations at each node is achieved.

1. Randomly select m out of q covariates as possible split variables.

2. Pick the best variable/split point among the m candidates.

3. Split the node into two children nodes.

Random Forests can deal with a very big number of explanatory variables

and the predicted model is highly nonlinear. It is important to notice that since

we are dealing with time-series, bootstrap samples are calculated using block

bootstrap.

5.2.4
Complete Subset Regression with Targeted Predictors

The Complete Subset Regression (CSR) was developed by (45, 20). The

motivation is that selecting the optimal subset of xt to predict πt+h by testing

all possible combinations of regressors is computationally very demanding

and in most of the times even unfeasible. Suppose that we have q candidate

variables, the CSR selects a number n ≤ q and computes all combinations

of regressions using only n variables. The forecast of the model will be the

average forecast of all regressions in the subset.
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The CSR deals well with a small number of candidate variables. However,

for large sets the number of regressions to be estimated increases very fast. For

example, with q = 25 and n = 4 we need to estimate 12, 650 regressions.

As the number of candidate variables is much larger, we adopt a pre-testing

procedure similar to the one used with the target factors. We start fitting a

linear regression of πt+h on each of the candidate variables (including lags) and

saving the t-statistics of each variable1. The t-statistics are ranked in absolute

value and we select the q̃ variables which are more relevant on the ranking.

The CSR forecast is calculated on these variables. We used q̃ = 25 and n = 4.

5.3
The Data

Inflation is measured by the Brazilian Consumer Price Index (IPCA),

which is the official inflation index in Brazil. Furthermore, a sizeable amount

of inflation-linked bonds use the IPCA as reference. The dataset is obtained

from Bloomberg and from the Central Bank of Brazil, covering the period

from January 2003 to December 2015, a total of 156 observations. We have

59 macroeconomic variables and 34 variables linked to specialist forecasts.

The number of macroeconomic variables is smaller than that of (11) because

we are using only variables available on the period the forecast is computed.

The dataset also includes expert forecasts from the FOCUS survey produced

by the Central Bank of Brazil. Among expectation variables we consider the

median of the h-period-ahead specialist forecasts, the median of the top five

(Top5) experts, i.e., the five experts who produced the best forecasts in the

previous period, and, finally, the mean and the standard deviation of the Top5.

The macroeconomic variables cover several inflation and industry indexes,

unemployment and other variables related to labour, energy consumption,

exchange rates, stock markets, government accounts, expenditure and debt,

taxes, monetary variables and exchange of goods and services. The inflation
1We did not use a fixed set of controls, wt, in the pre-testing like we did on the target

factors.
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series as well as the Top5 median are presented in Figure 5.1. As can been

seen from Figure 5.1, the Top5 delivers the smallest RMSE for h = 1 (five-day-

ahead) but rapidly looses performance as h grows.
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Figure 5.1: Brazilian Consumer Prices Index and Focus Top5 Forecasts

5.4
Main Results

5.4.1
Forecasting Errors

We estimate all models described in Section 5.2 for h = 1, . . . , 12. Recall

that h = 1 is five days before the IPCA inflation is published, h = 2 is one

month plus five days and h = 12 is 11 months plus five days. In this section

we show the results and compare the forecasting errors of all models. We also

estimate autoregressive models with lags selected by the BIC and include as

well Random Walk forecasts in the comparison. All models are estimated in a

nine-year rolling-window scheme and the first forecast is for January 1, 2012.
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Therefore, the models are evaluated based on 48 point forecasts with the last

forecast being for December 20152. This period covers different situations of

the Brazilian economy. In 2012 and 2013 the Brazilian GDP increased 1.9%

and 3% respectively, 2014 had an increase of 0.1% and 2015 had a decrease

of 3.7%. Figure 5.1 shows that the state of the economy does not affect the

precision of the short term forecasts. However, for longer forecasting horizons

the errors are bigger in 2015, which was an year of 10.67% inflation. Note that

the inflation target is 4.5% and its ceiling is 6.5%.

Table 5.1 shows the root mean squared error (RMSE) and the Mean

Absolute Error (MAE) for all forecasting models. The model with the smallest

forecasting error in each horizon is displayed in bold font. The last column of

Table 5.1 shows the cumulative error for the 11 months inflation. The LASSO

and the Flex-adaLASSO have the smallest errors for h = 1 and h = 2 and

the CSR has the smallest errors for all other horizons. However, for h = 1,

the forecasts from the LASSO are not statistically different from the expert

forecasts. On the other hand, for larger horizons there is a substantial gain from

using the CSR models. The target factor models become more competitive as

h increases. The Random Walk and the autoregressive models have both a

poor performance. The Random Forest was not the best model in any horizon,

however, its performance was not bad overall. Its cumulative forecasting error

was smaller than that of the FOCUS, the Top5 and the LASSO. Additionally,

the Post-OLS estimation with the variables selected by the Flex-adaLASSO

delivers larger errors than the Flex-adaLASSO itself.

The reason the LASSO and the Flexible adaLASSO are the best models

for small horizons is due to the fact that expert forecasts are very precise

for h = 1 and h = 2. As previously mentioned, market players devote

considerable amount of resources to inflation forecasting. Therefore, variable
2We start producing forecasts in 2012 in order to have a reasonably number of point

forecasts for each forecasting horizon and still have enough observations for the in-sample
estimation of the models. As the models are for direct forecasts, we have 108 observations
to estimate models for h = 1, 107 for h = 2, and so on. We also show results for 24 rolling
windows.
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The table shows the root mean squared error and the mean absolute deviation, in parenthesis, of the forecasts. The values in bold represent the
best model in each measure of error and each forecasting horizon. All values are multiplied by 1000. The column Acc. shows the errors of the
forecast accumulated over 11 months.

Brazilian Consumer Price Index
RMSE× 1000 Forecast Horizon
(MAE× 1000) t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12 Acc.

RW 2.41 3.23 3.68 4.10 4.40 4.62 4.76 4.33 3.76 3.40 3.03 2.75 33.94
(1.99) (2.63) (3.01) (3.38) (3.44) (3.64) (3.71) (3.41) (3.04) (2.73) (2.58) (2.13) (26.11)

AR 2.30 2.89 3.26 3.31 3.23 3.18 3.04 2.82 2.72 2.70 2.67 2.64 20.75
(1.93) (2.21) (2.47) (2.60) (2.54) (2.49) (2.37) (2.16) (2.13) (2.07) (2.06) (2.01) (16.14)

Factors 1.33 2.19 2.42 2.48 2.44 2.49 2.48 2.37 2.29 2.50 2.38 2.44 14.31
(0.98) (1.75) (1.88) (1.93) (1.83) (1.91) (1.96) (1.89) (1.79) (2.01) (1.86) (1.93) (9.63)

LASSO 0.95 1.85 2.85 3.21 2.75 2.83 2.79 3.33 2.80 3.33 3.51 3.33 17.09
(0.74) (1.46) (2.28) (2.44) (2.11) (2.24) (2.12) (2.65) (2.15) (2.69) (2.89) (2.71) (12.42)

F. aL 0.98 1.58 2.20 2.43 2.39 2.42 2.53 2.86 2.48 2.56 2.54 2.46 13.50
(0.75) (1.30) (1.75) (1.94) (1.82) (1.89) (2.04) (2.33) (1.94) (2.06) (2.01) (1.88) (9.39)

P. OLS 0.98 1.62 2.23 2.23 2.49 2.52 2.53 3.08 2.52 2.66 2.61 2.46 14.02
(0.75) (1.34) (1.80) (1.80) (1.89) (1.97) (2.02) (2.48) (1.94) (2.11) (2.06) (1.89) (9.58)

RF 1.43 1.95 2.56 2.54 2.66 2.88 2.82 2.85 2.71 2.65 2.64 2.46 15.67
(0.97) (1.45) (1.93) (1.93) (2.06) (2.30) (2.21) (2.25) (2.09) (1.96) (1.99) (1.82) (12.36)

CSR 1.05 1.64 2.04 2.23 2.25 2.29 2.29 2.26 2.26 2.27 2.25 2.26 11.93
(0.88) (1.33) (1.69) (1.75) (1.79) (1.80) (1.80) (1.80) (1.81) (1.79) (1.77) (1.78) (8.41)

FOCUS 0.95 1.83 2.39 2.48 2.53 2.57 2.56 2.53 2.55 2.57 2.58 2.60 16.82
(0.76) (1.50) (1.87) (1.91) (1.93) (1.97) (1.94) (1.91) (1.93) (1.93) (1.94) (1.96) (12.51)

Top 5 0.96 1.69 2.32 2.48 2.62 2.70 2.77 2.67 2.51 2.65 2.56 2.55 16.69
(0.74) (1.39) (1.83) (1.90) (1.99) (2.07) (2.06) (2.03) (1.99) (1.97) (1.91) (1.89) (12.12)

Table 5.1: Forecasts Mean Absolute Errors and Root Mean Squared Errors

selection models such as the LASSO perform better than those methods

that combine information from many variables such as target factors and

CSR. However, as we increase the forecast horizons the expert forecasts

loose their prediction power of prediction and many variables become more

relevant. Models that combine information can successfully extract common

information on all variables that are useful to forecast inflation. Figure 5.2

shows the average number of variables selected by the LASSO and the Flexible

adaLASSO in all horizons. For h = 1 and 2, the number of selected variables is

very small for both models, and it gets bigger for other horizons, especially in

the case of the LASSO. For shorter horizons, the Flexible adaLASSO is mostly

a combination of specialist forecasts.

Frequently, the model with the smallest average squared error may not

be the model with smallest errors in most of the 48 rolling windows. Table 5.2

shows the ranking of models for each forecasting window. The table reports the

proportion of cases where each model is in each position of the ranking. The

results are aggregated for all horizons. Surprisingly, the Random Walk, which

performed badly in terms of average errors, is the best model in 24% of the

cases, the same proportion as the Top5. However, the same two models deliver

the worst forecasts in 19% and 17% of the cases, respectively. The CSR model,
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Figure 5.2: Average Number of Selected Variables by the Shrinkage Methods

The table shows the proportion which each model is in each ranking position.
The results are aggregated for all forecasting horizons.

Brazilian Consumer Price Index
Model Position

1 2 3 4 5 6 7 8 9 10
RW 0.24 0.01 0.08 0.07 0.02 0.05 0.03 0.02 0.28 0.19
AR 0.04 0.06 0.06 0.06 0.03 0.07 0.06 0.06 0.24 0.31

Factors 0.14 0.05 0.18 0.07 0.09 0.15 0.09 0.10 0.06 0.08
LASSO 0.06 0.08 0.12 0.08 0.15 0.15 0.14 0.18 0.02 0.02
F. aL 0.03 0.07 0.10 0.14 0.18 0.15 0.09 0.20 0.02 0.02

P. OLS 0.05 0.10 0.11 0.12 0.18 0.12 0.11 0.17 0.03 0.02
RF 0.05 0.14 0.11 0.16 0.17 0.09 0.11 0.13 0.03 0.03

CSR 0.07 0.14 0.10 0.15 0.10 0.10 0.15 0.09 0.06 0.04
FOCUS 0.08 0.16 0.08 0.07 0.05 0.06 0.16 0.04 0.19 0.12

Top5 0.24 0.20 0.06 0.08 0.02 0.05 0.09 0.02 0.07 0.17

Table 5.2: Proportion each Model was in each Position of the Error Ranking

which is the best model on average in most horizons has the smallest errors

only on 7% of the forecasts, and the Flexible adaLASSO model, which is the

second best model considering the cumulative inflation, is the best model only

in 3% of the cases. The models with smallest errors on average are the ones

that perform well when most models perform bad. However, when all models

are doing well they are not the best models anymore.

We show the correlation of the forecasting errors in Figure 5.3. The figure

displays the heat-maps for horizons 1, 2, 6, and 12. The pattern is very similar

for all horizons. The FOCUS and the Top5 are positively correlated. However,
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their correlation with all other models is negative. The remaining forecasts

are all positively correlated. The two best models, which are the Flexible

adaLASSO and the CSR models, have a strong negative correlation with both

expert forecasts considered in this paper. This result shows that even though

some models and the expert forecasts have small forecasting errors, these

forecasts are considerably different, and that opens the possibility of improving

the results using combinations of these forecasts, which will be discussed on

the next section.

AR

CSR

Factors

F. aL

FOCUS

LASSO

P. OLS

RF

RW

Top5

AR CSR Factors F. aL FOCUS LASSO P. OLS RF RW Top5

M
od

el
 1

−1.0

−0.5

0.0

0.5

1.0
value

Panel(a): t+1

AR

CSR

Factors

F. aL

FOCUS

LASSO

P. OLS

RF

RW

Top5

AR CSR Factors F. aL FOCUS LASSO P. OLS RF RW Top5

−1.0

−0.5

0.0

0.5

1.0
value

Panel(b): t+2

AR

CSR

Factors

F. aL

FOCUS

LASSO

P. OLS

RF

RW

Top5

AR CSR Factors F. aL FOCUS LASSO P. OLS RF RW Top5
Model 2

M
od

el
 1

−1.0

−0.5

0.0

0.5

1.0
value

Panel(c): t+6

AR

CSR

Factors

F. aL

FOCUS

LASSO

P. OLS

RF

RW

Top5

AR CSR Factors F. aL FOCUS LASSO P. OLS RF RW Top5
Model 2

−1.0

−0.5

0.0

0.5

1.0
value

Panel(d): t+12

Figure 5.3: Forecasting Errors Correlation

5.4.2
Model Confidence Sets and Model Combination

In this section we report the Model Confidence Set (MCS) developed by

(55). The MCS allows us to compare a large number of models at the same time.

The test returns a confidence set that includes the best model with probability

(1− α). As we decrease α the set becomes wider (with more models) and for

large values of α we may even have a set with only one single model.

The MCS uses bootstrapped samples of a given loss function, in our

case squared error, to create the test statistics. The confidence set estimates p-
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values for all models using the bootstrapped samples and uses α to select which

models are inside the set. Since models are removed from the set interactively,

the MCS also generates a ranking. The best model has a p-value equals 1 by

definition, since it can only be as good as itself and there is no other model

to compare. If model 1 is removed from the set with p-value equals k1 and

model 2 is removed afterwards with p-value equals k2, the test p-value if only

model 1 and model 2 are excluded will be max{k1, k2}. Therefore, the p-value

may not decrease when a new model is excluded from the confidence set. We

exclude models until the null hypotheses is not rejected. There are two statistics

proposed by (55) to be used as a decision rule, the Tmax,M and the TR,M. We

adopted the first, since it is simple and easy to compute. The second statistic

compares all the models two by two to create the set, making the procedure

more intensive.

The MCS p-values are presented in Table 5.3. Values in bold represent

models that remained in the confidence set with α = 20%. Autoregressive

models and the Random Walk were removed from the set on most forecasting

horizons. The only models which are in the confidence set for all horizons are

the Flex-adaLASSO, the Random Forest, the Complete Subset Regression and

the FOCUS forecast. If we include the cumulative forecasts than we remain

only with the Flex-adaLASSO and the CSR as the models which are always

in the set. If we look at the ranking, the CSR is the model with more p-values

equal to 1.

We use the results from Table 5.3 to generate combined forecasts from

the models in the confidence set. These results are displayed in Table 5.4. The

first row of the table shows the forecasting errors from averaging the forecasts

from all models. The second row shows the forecasting errors from averaging

the forecasts of the models in the confidence set and the last row shows the

forecasting error of the best model from Table 5.1 on each forecasting horizon3.
3The cumulative errors are calculated considering the 95% confidence set in order to

include the specialist forecasts. This was done because of the results in Figure 5.3, which
show that the specialist forecasts are negatively correlated with the other forecasts.
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The table shows the Model Confidence Set p-values for all forecasting horizons and the 12 month accumulated
inflation. Values in bold are included in the α = 20% or 80% confidence set. The p-values can be used to rank
the models. The model with p-value equals 1 is the best model, or the model that remains in all confidence sets.

Brazilian Consumer Price Index
Forecast Horizon

t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12 Acc
RW 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.03 0.01 0.05 0.15 0.68 0.01
AR 0.00 0.03 0.03 0.03 0.02 0.11 0.42 0.56 0.43 0.75 0.74 0.70 0.03

Factors 0.16 0.03 0.48 0.80 0.68 0.71 0.62 0.52 0.79 0.54 0.35 0.75 0.35
LASSO 0.94 0.48 0.07 0.31 0.28 0.22 0.42 0.13 0.43 0.05 0.02 0.01 0.06
F. aL. 0.79 1.00 0.24 0.65 0.68 0.71 0.90 0.46 0.66 0.67 0.90 0.95 0.34
P. OLS 0.76 0.74 0.19 0.91 0.64 0.59 0.76 0.42 0.41 0.85 0.79 0.93 0.35

RF 0.27 0.48 0.28 0.91 0.61 0.22 0.27 0.56 0.39 0.76 0.81 0.93 0.06
CSR 0.31 0.74 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

FOCUS 1.00 0.48 0.48 0.80 0.64 0.59 0.90 0.34 0.72 0.58 0.90 0.70 0.05
Top5 0.94 0.49 0.29 0.88 0.42 0.20 0.45 0.19 0.72 0.85 0.79 0.95 0.05

Table 5.3: Model Confidence Set

The table shows the forecasting errors of the average forecast of all models and of the models in the confidence set. The last row shows
the best individual model to compare with the combined forecasts. All values are multiplies by 1000.

Brazilian Consumer Price Index
RMSE× 1000 Forecast Horizon

MAE× 1000 t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12 Acc.
All Models 0.74 1.18 1.48 1.53 1.52 1.58 1.58 1.63 1.49 1.55 1.52 1.42 9.72

(0.62) (0.89) (1.15) (1.17) (1.15) (1.18) (1.18) (1.32) (1.15) (1.24) (1.25) (1.12) (7.13)
MCS Models 0.42 0.71 0.80 1.22 1.15 1.73 1.38 1.81 1.33 1.22 1.19 1.27 9.69

(0.33) (0.58) (0.63) (0.97) (0.85) (1.35) (1.08) (1.47) (1.05) (0.97) (0.95) (0.99) (6.72)
Best ind. Model 0.96 1.58 2.04 2.23 2.25 2.29 2.29 2.26 2.26 2.27 2.25 2.26 11.93

(0.74) (1.30) (1.69) (1.75) (1.79) (1.80) (1.80) (1.80) (1.79) (1.79) (1.77) (1.78) (8.41)

Table 5.4: Combined Forecasts Mean Absolute Errors and Mean Squared
Errors

The results in Table 5.4 show that the simple average of all models improves

the results from the best individual model. The combined forecast from the

MCS improves the results even more, especially considering the first forecasting

horizons. Even on the horizon h = 1, which is only five days before the IPCA

is published, the forecasting errors are considerably smaller when we combine

forecasts. In many cases the forecasting errors are less than half the errors from

the best individual model.

5.4.3
Look Ahead Bias on the MCS Combined Forecasts

Our combined forecasts based on the MCS is contaminated with look

ahead bias as we need the forecasting errors in order to estimate the confidence

set. However, the selected models in the confidence set tend to be stable over

the time. To test how stable and to provide results free of look ahead bias

we split the sample of 48 observations into two sub-samples: one with 36

observations to estimate the confidence set and another with 12 observations to
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This table shows the forecasting errors of the average forecast of all models and of the models in the confidence set. The last row
shows the best individual model to compare with the combined forecasts. All values are multiplies by 1000.

Brazilian Consumer Price Index
RMSE× 1000 Forecast Horizon
(MAE× 1000) t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12 Acc.

All Models 0.75 1.62 2.23 2.24 2.32 2.39 2.29 2.27 2.20 2.10 2.03 2.09 15.67
(0.67) (1.33) (1.93) (1.84) (1.95) (2.01) (1.89) (1.89) (1.78) (1.73) (1.73) (1.81) (13.68)

MCS Models 0.43 0.93 1.02 1.71 1.71 1.35 1.80 1.61 1.85 1.64 1.71 1.86 12.08
(0.35) (0.83) (0.86) (1.43) (1.43) (1.10) (1.51) (1.39) (1.48) (1.32) (1.40) (1.61) (9.97)

Table 5.5: Combined Forecasts Mean Absolute Errors and Mean Squared
Errors without Look Ahead Bias

estimate the combined forecasts. We also estimate the simple average forecast

for these 12 months.

The results are displayed in Table 5.5. They show that the combined

MCS forecasting errors calculated without look ahead bias are still smaller

than those calculated with a simple average across all models. Note that these

results are only for the last 12 months in the sample (January to December,

2015), which was the worst year in terms of GDP growth for the Brazilian

economy in our sample.

5.4.4
Different Window Size

Given the length of the dataset, it is not viable to test the models on a

completely different sample. However, we can check if changing the size of the

rolling window, and consequently, the number of forecasts, has a significant

impact on our results.

Increasing the window size from 9 to 10 years, reduces the number of

forecasts (windows) from 48 to 24. Table 5.6 shows the forecasting RMSEs and

MAEs when the models are estimated with a larger window of observations.

The results are similar to the case of 48 windows. However, the errors in Table

5.6 are in general larger because the forecasts are just for 2014 and 2015,

two years of more instability in the Brazilian economy (specially 2015). As we

mentioned before, the forecasting errors are larger in 2015 for longer horizons,

and that is what shifted the errors up. The target factor are the model with

the smallest errors in several forecasting horizons. The other models worth

mentioning are the LASSO and Flexible adaLASSO, which performed well on
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The table shows the root mean squared error and the mean absolute deviation, in parenthesis, of the forecasts based on 24 rolling windows. The
values in bold represent the best model in each measure of error and each forecasting horizon. All values are multiplied by 1000. The column
Acc. shows the errors of the 12 month cumulative forecast build using the monthly forecasts.

Brazilian Consumer Price Index - 24 Rolling Windows
RMSE ∗ 1000 Forecast Horizon
MAE ∗ 1000 t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12 Acc.

RW 2.69 3.80 4.37 4.81 5.14 5.46 5.72 5.29 4.40 3.77 3.45 3.17 43.16
(2.25) (3.13) (3.68) (4.02) (4.10) (4.45) (4.69) (4.36) (3.72) (3.00) (2.97) (2.44) (34.70)

AR 2.61 3.41 3.29 3.55 3.82 3.77 3.60 3.38 3.33 3.26 3.22 3.26 32.59
(2.24) (2.66) (2.68) (2.81) (3.12) (3.06) (2.90) (2.68) (2.71) (2.62) (2.61) (2.54) (29.57)

Factors 1.50 2.45 2.72 2.96 3.15 3.11 2.95 2.85 2.56 2.45 2.45 2.55 21.83
(1.15) (1.98) (2.32) (2.40) (2.49) (2.41) (2.20) (2.33) (2.09) (2.01) (1.97) (2.07) (18.04)

LASSO 0.95 2.15 2.87 3.17 3.21 3.24 3.23 3.21 3.20 3.32 3.79 3.55 25.27
(0.76) (1.75) (2.35) (2.48) (2.45) (2.56) (2.54) (2.51) (2.48) (2.64) (2.91) (2.97) (23.04)

F. aL 1.03 1.76 2.50 2.84 2.84 2.97 3.32 3.30 3.32 3.28 3.31 3.35 24.84
(0.83) (1.46) (2.08) (2.32) (2.24) (2.32) (2.64) (2.60) (2.59) (2.56) (2.60) (2.70) (22.83)

P. OLS 1.04 1.77 2.58 2.58 2.95 3.06 3.36 3.27 2.96 2.93 2.87 2.81 22.74
(0.83) (1.48) (2.08) (2.08) (2.28) (2.38) (2.72) (2.58) (2.33) (2.31) (2.17) (2.15) (20.02)

RF 1.65 2.30 3.03 3.11 3.36 3.69 3.57 3.64 3.39 3.10 3.08 2.99 25.17
(1.08) (1.74) (2.36) (2.46) (2.60) (2.94) (2.80) (2.79) (2.52) (2.27) (2.31) (2.22) (23.00)

CSR 1.05 1.87 2.44 2.71 2.77 2.75 2.68 2.71 2.69 2.59 2.62 2.63 18.04
(0.91) (1.55) (2.09) (2.18) (2.23) (2.20) (2.11) (2.11) (2.05) (1.93) (1.99) (2.02) (16.40)

FOCUS 0.97 2.14 2.99 3.13 3.20 3.25 3.22 3.20 3.22 3.25 3.27 3.28 26.95
(0.83) (1.74) (2.38) (2.48) (2.51) (2.60) (2.56) (2.52) (2.55) (2.58) (2.58) (2.60) (24.86)

Top 5 0.99 1.92 2.80 3.09 3.29 3.34 3.46 3.35 3.05 3.35 3.27 3.24 26.94
(0.78) (1.55) (2.21) (2.42) (2.57) (2.64) (2.64) (2.63) (2.48) (2.58) (2.54) (2.48) (24.72)

Table 5.6: Forecasts Mean Absolute Errors and Root Mean Squared Errors for
24 Rolling Windows

shorter horizons, and the Complete Subset Regression, which has good results

for longer horizons. We already detected an improvement on target factor

models on longer horizons in the results for 48 rolling windows. The difference

it that for 24 rolling windows, factor models are able to beat the CSR in some

cases.

We show the Model Confidence Set results for the 24 rolling window

analysis in Table 5.7. The results are similar to those of the 48 windows.

However, the only model in the confidence set on the accumulated inflation is

the CSR. If we look at the monthly horizons individually, the models that are

included in the 80% confidence set on all horizons are the Flexible adaLASSO,

the Post-OLS estimated with the variables selected by the Flexible adaLASSO,

the Random Forest and the CSR. The CSR was the last remaining model in

six cases, against four of the target factors. The LASSO and the Flexible

adaLASSO are the last remaining models in one case each.

5.4.5
Bayesian Alternatives

In this section we show the results using two alternative Bayesian

models. First, the Unobserved Component Stochastic Volatility (UC-SV)

model proposed by (52), which is a very popular model for the U.S. inflation;
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The table shows the Model Confidence Set p-values for all forecasting horizons and the 12 month cumulative
inflation using 24 rolling windows. Values in bold are included in the α = 20% or 80% confidence set. The size
of the p-values can be used to rank the models. The model with p-value equals 1 is the best model, or the model
that remains in all confidence sets.

Brazilian Consumer Price Index - 24 Rolling Windows
Forecast Horizons

t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12 Acc
RW 0.00 0.00 0.00 0.00 0.02 0.03 0.01 0.01 0.06 0.44 0.50 0.64 0.12
AR 0.00 0.08 0.23 0.39 0.04 0.03 0.14 0.72 0.26 0.27 0.43 0.43 0.03

Factors 0.09 0.10 0.56 0.75 0.35 0.67 0.33 0.60 1.00 1.00 1.00 1.00 0.06
LASSO 1.00 0.40 0.43 0.63 0.60 0.38 0.44 0.59 0.54 0.27 0.63 0.17 0.03
F. aL 0.86 1.00 0.50 0.34 0.55 0.57 0.58 0.55 0.26 0.44 0.63 0.20 0.05

P. OLS 0.91 0.60 0.50 0.75 0.45 0.67 0.44 0.59 0.28 0.35 0.33 0.45 0.06
RF 0.34 0.53 0.48 0.69 0.67 0.38 0.58 0.72 0.54 0.35 0.33 0.45 0.05

CSR 0.91 0.29 1.00 1.00 1.00 1.00 1.00 1.00 0.71 0.66 0.59 0.78 1.00
FOCUS 0.79 0.40 0.41 0.63 0.67 0.23 0.19 0.23 0.49 0.19 0.50 0.29 0.02
Top 5 0.79 0.53 0.56 0.59 0.39 0.38 0.37 0.55 0.51 0.19 0.19 0.64 0.12

Table 5.7: Model Confidence Set - 24 Rolling Windows

and second, a large Bayesian Vector Autorregressive (BVAR) using all variables

in the dataset ad with priors defined as in (10).

5.4.5.1
Unobserved Component Stochastic Volatility Model

The UC-SV model is described by the following equations:

πt =τt + eht/2εt,

τt =τt−1 + ut,

ht =ht−1 + vt,

(5-11)

where {εt} is a sequence of independent and normally distributed random

variables with zero mean and unit variance, εt ∼ N(0, 1), ut and vt are

also normal with zero mean and variance given by inverse-gamma priors.

τ1 ∼ N(0, Vτ ) and h1 ∼ N(0, Vh), where Vτ = Vh = 0.12. The model is

estimated by Markov Chain Monte Carlo (MCMC) methods. The h-steps-

ahead forecast is computed as π̂t+h = τ̂t|t. We computed forecasts for the

same forecasting horizons as the models from the previous sections and the

forecasting errors are calculated for 48 months out-of-sample as before.

5.4.5.2
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Bayesian Vector Autoregressive Model

Let Y t = (y1,t, y2,t, . . . yn,t)′ be described as the following VAR model:

Y t = c+A1Y t−1 + · · ·+ApY t−p + ut, (5-12)

where c is a n-dimensional vector of constants, Ai, i = 1 . . . p are (n × n)

matrices of coefficients and ut is the n−dimensional error vector. The same

model may be written as a system of equations:

Y = XB +U (5-13)

where Y = (Y 1, . . . ,Y T )′ is a (T ×n) matrix,X = (X1, . . . ,XT )′ is a (T ×k)

matrix with k = np + 1 and X t = (1,Y t−1, . . . ,Y t−p)′, U = (u1, . . . ,uT )′,

and B = (c,A1, . . . ,Ap)′.

The model is estimated using dummy observations Y d and Xd of

dimensions Td × n and Td × k respectively (for details on creating the dummy

observations see (10)). Using these dummies is equivalent to imposing the

normal inverted Whishart prior on the covariance matrix of B. The dummy

observations are used to create Y ∗ = (Y ′,Y ′d)′ and X∗ = (X ′,X ′d)′. The

posterior mean of B is the same as the ordinary least-squares (OLS) estimates

of the regression of Y ∗ on X∗ and also the same as the Minnesota prior.

Additionally, by using the dummies we ensure that for each regression of the

VAR the number of observations is larger than the number of variables, which

makes the OLS estimation of B feasible. Another important issue is the choice

of the expected value of the priors for the diagonal of theA1 matrix. We choose

the value of 0.5 for all elements.

5.4.5.3
Results

The results for the UC-SV and the large BVAR are in Table 5.8. The

forecasting errors are calculated for the last 48 observations of the dataset

using a rolling window scheme. The UC-SV does not use any information other
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than the past inflation. Therefore, its forecasting errors are larger than the

multivariate models that use the FOCUS and other macroeconomic variables

as regressors. Nevertheless, the UC-SV is comparable to the other univariate

models even though it cannot beat the AR model. The BVAR is much more

accurate than the UC-SV and it competes directly with the high-dimensional

models, especially for small forecasting horizons. However, it is not the best

model in any horizon. Note that a h-steps-ahead for the BVAR is iterated, while

the models in Table 5.1 are estimated directly for the horizon of interest. Table

5.9 shows the (42) (GW) test p-values, the null hypothesis is that both models

have the same forecasting accuracy. The null is rejected in most cases for the

UC-SV except when it is compared to the random walk and the AR models.

It has the same forecasting ability as the random walk for small horizons

and it is similar to the AR model for long horizons. Note that these models

are all univariate and very simple. Therefore, it is natural that with only 48

rolling widows the test fails to detect significant differences between them.

The Bayesian VAR (second panel of Table 5.9) is just as accurate as any

other multivariate model five days before the CPI is published (h = 1). The

reason is that all models have specialist’s forecasts, which are very accurate

right before the CPI is published, therefore, the forecasting errors are small

for all multivariate models and any difference between them is not detected by

the GW test. For larger forecasting horizons, the performance of the BVAR is

clearly inferior. The CSR, which is the best models in most cases, is statistically

different from the BVAR for all horizons larger than one.

The table shows the root mean squared error and the mean absolute deviation, in parenthesis, of the forecasts. The values in bold
represent the best model in each measure of error and each forecasting horizon. All values are multiplied by 1000. The column Acc.
shows the errors of the 12 month accumulated forecasts. The order of the BVAR is 4 and the UCSV is estimated by MCMC.

Brazilian Consumer Price Index
RMSE× 1000 Forecast Horizon
(MAE× 1000) t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12 Acc.

UCSV 2.56 3.17 3.54 3.86 4.06 4.09 3.95 3.51 3.08 2.79 2.59 2.61 27.74
(2.14) (2.66) (2.91) (3.11) (3.19) (3.24) (3.06) (2.75) (2.47) (2.28) (2.10) (2.00) (21.79)

BVAR 1.19 2.14 2.53 2.73 2.88 2.98 3.05 3.09 3.11 3.12 3.13 3.14 19.27
(0.92) (1.66) (1.91) (2.04) (2.20) (2.28) (2.33) (2.37) (2.39) (2.39) (2.41) (2.41) (14.6)

Table 5.8: Forecasts Mean Absolute Errors and Root Mean Squared Errors for
BVAR and UCSV
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The table shows the Giacomini and White test p-values for all models compared to the UCSV (first block) and the
Bayesian VAR (second block).

Brazilian Consumer Price Index - GW p-values
Forecast Horizon - All models against UCSV

t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7 t+ 8 t+ 9 t+ 10 t+ 11 t+ 12 Acc.
RW 0.423 0.763 0.515 0.255 0.075 0.020 0.001 0.001 0.000 0.001 0.010 0.358 0.183
AR 0.020 0.107 0.275 0.079 0.037 0.017 0.024 0.053 0.124 0.683 0.566 0.854 0.178

Factors 0.000 0.003 0.000 0.001 0.001 0.000 0.001 0.005 0.004 0.183 0.082 0.282 0.073
LASSO 0.000 0.000 0.029 0.203 0.001 0.002 0.001 0.668 0.250 0.061 0.004 0.004 0.043
F. al. 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.106 0.006 0.185 0.841 0.532 0.079

P. OLS 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.342 0.043 0.553 0.940 0.577 0.083
RF 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.004 0.023 0.447 0.794 0.503 0.059

CSR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.042 0.064 0.025
BVAR 0.000 0.000 0.000 0.000 0.001 0.000 0.002 0.085 0.912 0.223 0.059 0.042 0.002

Forecast Horizon - All models against BVAR
t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7 t+ 8 t+ 9 t+ 10 t+ 11 t+ 12 Acc.

RF 0.000 0.001 0.000 0.000 0.001 0.001 0.000 0.003 0.013 0.378 0.770 0.231 0.001
AR 0.000 0.001 0.001 0.001 0.045 0.232 0.968 0.188 0.051 0.035 0.023 0.008 0.003

Factors 0.518 0.810 0.453 0.311 0.061 0.043 0.027 0.014 0.009 0.035 0.010 0.025 0.092
LASSO 0.165 0.027 0.118 0.317 0.462 0.378 0.045 0.491 0.184 0.474 0.291 0.505 0.021
F. aL. 0.200 0.019 0.070 0.123 0.024 0.012 0.032 0.516 0.011 0.020 0.058 0.011 0.041
P. OLS 0.210 0.031 0.127 0.330 0.128 0.057 0.049 0.987 0.051 0.100 0.205 0.021 0.042

RF 0.202 0.065 0.737 0.116 0.095 0.432 0.089 0.068 0.016 0.018 0.012 0.004 0.002
CSR 0.399 0.027 0.018 0.011 0.005 0.003 0.002 0.001 0.001 0.001 0.001 0.001 0.145

UCSV 0.000 0.000 0.000 0.000 0.001 0.000 0.002 0.085 0.912 0.223 0.059 0.042 0.002

Table 5.9: Giacomini and White test p-values comparing the UCSV and the
Bayesian VAR to all other models

The main conclusion from the above results is that the two Bayesian

alternatives considered in the paper have a performance inferior than the one

from the machine learning methods.

5.4.6
Density Forecasts

So far we analyzed only point forecasts for several models. In this section

we turn our attention to density forecasts. The point forecasts in a rolling

window scheme provide good information on which model is more accurate

on average. However, it does not tell us anything about the forecasting

uncertainty. We obtain the predictive densities by bootstrapping the in-sample

residuals. For each model, in each rolling window, we randomly selected

100, 000 observations of the in-sample residuals and added it to the point

forecast, resulting on an empirical predictive density4.

The predictive densities are used to estimate average log-scores following
4The procedure for the BVAR and the UCSV is slightly different because in these models

we did not estimate direct forecasts. The t + 1 densities were obtained in the same way as
all other models. We used these densities to estimate bootstrap point forecasts, which were
used to obtain the t+2 densities. We kept iterating the bootstrap point forecasts until t+12.
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(60). Suppose we estimate predictive densities f̂(·) for a given model. Let Y be

the observed value of the variable on the period we aim to forecast. The log-

scores are calculated as S(f̂ , Y ) = log f̂(Y ). The log-scores will be larger when

the probability of the observed Y is high. For each model, in each forecasting

horizon, we compute average log-scores across all the rolling windows. The

best model in each case is the one with the highest average log-score. (60) also

propose a test to check whether the predictive densities are statistically equal

for two models, which will be referred as AG test from here on. If we reject

the null, then the two models have different densities.

The average log-scores and the AW test p-values are presented in Tables

(5.10) and (5.11). The first interesting result in Table (5.10) is that although

the LASSO and the Flex-adaLASSO provide similar point forecasts, the Flex-

adaLASSO densities have larger log-scores, especially for long forecasting

horizons. The CSR, which is the best model on the point forecast for most

forecasting horizons, is also the one with the largest log-scores. However, for

t + 1 and t + 2 the POLS and the Flex-adaLASSO are the best models even

though the CSR has a good performance on these horizons too. The BVAR

worked well for t + 1 but its performance deteriorates very fast for longer

horizons. Note that for the BVAR, forecasts for horizons larger than one are

calculated by iterating previous forecasts. As a result, point forecasts and

variances converge fast to their respective unconditional values. Table (5.11)

shows that when there is a large difference between the average log-scores of

two models we, in general, reject the null and obtain statistically different

models.
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The table shows the average log-scores as described by (60). The log-scores were calculated on the
empirical densities generated using bootstrap. Each bootstrap forecast is the sum of the point forecast and
a random observation of the in-sample residuals. Each empirical density was constructed using 100000
bootstrap forecasts.

Brazilian Consumer Price Index
Forecast Horizon - Average log-scores

t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7 t+ 8 t+ 9 t+ 10 t+ 11 t+ 12
RW -0.01 -0.99 -1.27 -1.79 -1.79 -1.74 -1.90 -1.78 -1.51 -1.17 -0.62 -0.61
AR -0.05 -0.34 -0.50 -0.57 -0.48 -0.50 -0.49 -0.33 -0.28 -0.23 -0.18 -0.20

Factor 0.33 -0.01 -0.17 -0.29 -0.23 -0.21 -0.28 -0.18 -0.05 -0.18 -0.14 -0.16
LASSO 0.87 0.20 -0.79 -1.00 -0.44 -0.48 -0.33 -0.85 -0.47 -1.14 -1.62 -1.87
F. aL. 0.90 0.42 0.03 -0.02 -0.08 -0.06 -0.15 -0.46 -0.10 -0.30 -0.23 -0.04
P. OLS 0.93 0.39 0.02 -0.11 -0.15 -0.20 -0.30 -0.62 -0.06 -0.43 -0.35 -0.08

RF 0.14 -0.07 -0.24 -0.22 -0.20 -0.22 -0.18 -0.26 -0.28 -0.16 -0.20 -0.29
CSR 0.85 0.38 0.16 -0.04 -0.09 -0.10 -0.07 0.00 -0.02 0.00 -0.01 -0.02

UCSV -0.85 -0.83 -0.83 -0.82 -0.80 -0.80 -0.80 -0.79 -0.78 -0.76 -0.76 -0.75
BVAR 0.62 -0.20 -0.40 -0.68 -0.69 -0.71 -0.81 -0.79 -0.82 -0.85 -0.99 -0.94

Table 5.10: Average log-scores for all models and all forecasting horizons
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5.5
Conclusion

We have tested several high-dimensional econometric models to forecast

inflation in real-time and with a large number of predictors. We have also

considered a forecasting combination mechanism based on the Model

Confidence Sets. We have evaluated the methods discussed here with

Brazilian inflation data (IPCA). The results can summarized as follows.

For five-day-ahead, the LASSO and the FOCUS (expert forecast) are

virtually the same and deliver the best forecasts. For the second horizon,

the adaptive LASSO is superior than any other model considered. For the

remaining horizons, the Complete Subset Regression dominates all other

alternatives. The results are the same if we either use the root mean squared

error or the mean absolute error. In terms of accumulated inflation, the

Complete Subset Regression is the best model. However, most of the forecasts

from different models are not statistically different according the Model

Confidence Set. We construct the final forecast as the average of the models

included in the confidence set. This approach delivers the best forecasts among

all the competing alternatives. The Bayesian VAR also produced accurate

forecasts for shorter horizons but not as good as some of the high-dimensional

models.

Finally, we computed predictive densities for all individual models using

bootstrap and estimated log-scores to compare the models. The results are

coherent with the point forecasts. Models from the LASSO family are better

for t+ 1 and t+ 2 and the CSR is the best model for longer horizons.

5.6
Data Apendix

The dataset and the computer codes are available from

https://github.com/gabrielrvsc/hdeconometrics. The “HD econometrics”

repository is an R package with implementations of the models used in this
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paper and the data in a .rda file. The package contains a number of functions

used in the paper such as a function that selects the best LASSO model

using the BIC, a function for the complete subset regression with several

arguments to control for pre-testing and a function for the Bayesian VAR

model. Documentation is available in markdown and follows the same format

as traditional R documentation. It can also be viewed in R if the package is

installed. Every function comes with an example in the documentation.

All the variables included in the models are listed in Tables 5.12 and

5.13. The first table shows the macroeconomic variables. They are all obtained

on Bloomberg5. The second table shows the variables from the expectations

database of the Brazilian Central Bank.

Most variables in our data are published for month t before the Brazilian

CPI, which is made public around the 10th day of month t+1. Some variables

have some delay or may be available only after the CPI is published. In that

case, we use the last available observation of such variables.

The first group of Table 5.12 covers prices and money. The CPI IPCA is

the variable of interest and the CPI IPCA-15 is another index, which is released

earlier and used as an indicator to the final CPI IPCA. These two indexes

are officially adopted by the government. The FGV indexes are calculated

by the Getúlio Vargas Foundation (FGV). They are also important measures

of inflation. The second group of the table covers employment variables, the

third group is for exchange rates, financial variables, savings and interest

rates. IBOVESPA is the Brazilian most important stock index, BNDES is

the national bank of investment, which lends money at lower rates and have

significant impact on the national investment. The Selic is the target interest

rate published by the Central Bank. The last group of variables in Table 5.12

covers government and international transactions.

All variables in Table 5.13 are obtained in the Brazilian Central Bank
5The names of the variables in Table 5.12 are the same names as in the Bloomberg

database.
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expectations database. Recall that the forecasts for h = 1 are made five days

before the CPI was published, therefore t + 13 forecasts are for horizons of

12 months plus five days. Our data have the FOCUS and the Top 5 median

forecasts for h = 1 to h = 13. We also include the average forecasts, the squared

average and median forecasts and their standard deviation for horizons equal

1 and 2.

Prices and Money Goverment and Intenational Transactions
1 Brazil CPI IPCA 32 Brazil National Treasury Revenue Total
2 FGV Brazil General Prices IGP-M 33 Brazil Social Contribution over Net Profit Tax Income
3 FGV Brazil General Prices IGP-DI 34 Brazil PIS & PASEP Tax Income
4 FGV Brazil General Prices IGP-10 35 Brazil Central Government Net Revenue
5 Brazil CPI IPCA-15 36 Brazil Central Government Revenue from the Central Bank
55 Brazil Monetary Base 37 Brazil Central Government Total Expenditures
56 Brazil Money Supply M1 Brazil 38 Brazil National Treasury Gross Revenue
57 Brazil Money Supply M2 Brazil 39 Brazil Importing Tax Income
58 Brazil Money Supply M3 Brazil 40 BNDES Brazil Income Taxes
59 Brazil Money Supply M4 Brazil 41 Brazil National Treasury Revenue from Industrialized Products

42 Brazil National Treasury Revenues from Other Taxes
Employment 43 Brazil Central Government Revenue from the Social Security

14 IBGE Brazil Unemployment Rate 44 Brazil National Treasury Revenue from Import Tax
15 Brazil Unemployment Statistic Male 45 Brazil Current Account
16 Brazil Unemployment Statistic Total 46 Brazil Trade Balance FOB
17 IMF Brazil Unemployment Rate 47 Brazil Public Net Fiscal Debt % of GDP
18 CNI Brazil Manufacture Industry Employment 48 Brazil Public Net Fiscal Debt
19 Brazil Industry Working Hours 49 Brazilian Federal Government Domestic Debt

50 Brazil Public Net Government & Central Bank Domestic Debt
Exchange Rates & Finance 51 Brazilian States Debt Total Consolidated Net Debt

22 USD-BRL X-RATE 52 Brazilian States Debt to Foreigners
23 USD-BRL X-RATE Tourism 53 Brazilian Cities Debt
24 EUR-BRL X-RATE 54 Brazilian Cities Debt to Foreigners
25 BRAZIL IBOVESPA INDEX
26 Brazil Savings Accounts Deposits
27 Brazil Total Savings Deposits
28 Brazil BNDES Long Term Interest Rate
29 Brazil Selic Target Rate
30 Brazil Cetip DI Interbank Deposits

Table 5.12: Macroeconomic Variables
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60 t+1 median 77 Top 5 t+5 median
61 t+2 median 78 Top 5 t+6 median
62 t+3 median 79 Top 5 t+7 median
63 t+4 median 80 Top 5 t+8 median
64 t+5 median 81 Top 5 t+9 median
65 t+6 median 82 Top 5 t+10 median
66 t+7 median 83 Top 5 t+11 median
67 t+8 median 84 Top 5 t+12 median
68 t+9 median 85 Top 5 t+13 median
69 t+10 median 86 t+1 median^2
70 t+11 median 87 t+1 mean
71 t+12 median 88 t+1 mean^2
72 t+13 median 89 t+1 Std
73 Top 5 t+1 median 90 t+12 median^2
74 Top 5 t+2 median 91 t+2 mean
75 Top 5 t+3 median 92 t+2 mean^2
76 Top 5 t+4 median 93 t+2 Std

Table 5.13: Focus Expectation Variables
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6
Forecasting Inflation in a Data-Rich Environment: The
Benefits of Machine Learning Methods

JEL: C22, E31.

Keywords: Big data, inflation forecasting, LASSO, random forests, machine

learning.

Abstract: Inflation forecasting is an important but difficult task. We explore

the advances in machine learning (ML) methods and the availability of new

datasets to forecast US inflation. Despite the skepticism in the previous

literature, we show that ML models with a large number of covariates are

systematically more accurate than the benchmarks. The ML method that

deserves more attention is the random forest, which dominated all other

models. Its good performance is due not only to its specific method of

variable selection but also the potential nonlinearities between past key

macroeconomic variables and inflation.

6.1
Introduction

It is difficult to overemphasize the importance of forecasting inflation in

rational economic decision-making. Many contracts concerning employment,

sales, tenancy, and debt are set in nominal terms. Therefore, inflation

forecasting is of great value to households, businesses and policymakers. In

addition, central banks rely on inflation forecasts not only to inform

monetary policy but also to anchor inflation expectations and thus enhance

policy efficacy. Indeed, as part of an effort to improve economic
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decision-making, many central banks release their inflation forecasts on a

regular basis.

Despite the great benefits of forecasting inflation accurately, improving

simple benchmark models has been proven to be a major challenge for both

academics and practitioners. As (61) emphasize, “it is exceedingly difficult

to improve systematically upon simple univariate forecasting models, such as

the (34) random walk model [...] or the time-varying unobserved components

model in (52).” This conclusion is supported by a large literature; see (62)

for a recent survey. Nonetheless, this literature has so far largely ignored the

recent machine learning (ML) and “big data” boom in economics.1 Moreover,

previous works either focused on a restrictive set of variables or were based on

a small set of factors computed from a larger number of potential predictors

known as “diffusion indexes”; see, for example, (65).

“Big data” and ML methods are not passing fads, and investigating

whether the combination of these two methods is able to provide more accurate

forecasts is of paramount importance. (66), for example, show recently that

machine learning methods coupled with hundreds of potential predictors

improve substantially out-of-sample stock return predictions. In a similar

spirit, and despite the previous skepticism, we argue that these methods lead

to more accurate inflation forecasts. Moreover, this new set of models can also

help to uncover the main predictors for future inflation, possibly shedding light

on the drivers of price dynamics.

In this paper, we contribute to the literature in a number of ways. First,

we robustly show that it is possible to beat the usual univariate benchmarks

for inflation forecasting, namely, random walk (RW), autoregressive (AR)

and unobserved components stochastic volatility (UCSV) models. We consider

several ML models in a data-rich environment with hundreds of variables from
1See (63) and (64) for discussions of ML methods and big data in economics. In this

paper, we call ML models any statistical model that is able to either handle a large set
of covariates and/or describe nonlinear mappings nonparametrically. Some of the methods
have been around even before the “machines”.
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the FRED-MD, a monthly database put together by (67), to forecast the US

consumer price index (CPI) inflation during more than twenty years of out-

of-sample observations and we show that the gains can be as large as 30% in

terms of mean squared errors.2

Second, we highlight the main set of variables responsible for these

forecast improvements. Our results indicate that such set of variables is not

sparse, which corroborates the findings of (68) warning against the use of sparse

predictive models. Indeed, we find that ML models that do not impose sparsity

are the best performing ones. In contrast, the high level of aggregation of factor

models, which has been one of the most popular models for macroeconomic

forecasting, is not adequate.

Finally, we aim to give a guidance for the choice of which class of ML

methods should be used for inflation forecasting. Throughout the paper, we

pay special attention to a particular ML model, the random forest (RF) of

(9), which systematically outperforms the benchmarks, factor models and ten

additional ML methods covering a wide class of specifications: the least

absolute shrinkage and selection operator (LASSO) family, which includes

LASSO, adaptive LASSO, elastic net and the adaptive elastic net; ridge

regression (RR); Bayesian vector autoregressions (BVAR); and linear

ensemble methods such as bagging, boosting, complete subset regressions

(CSR) and jackknife model averaging (JMA). RF models are highly

nonlinear nonparametric models that have a tradition in statistics but have

only recently attracted attention in economics. This late success is partly due

to the new theoretical results developed by (69) and (70). Notably, (66) also

find that RF, by allowing for nonlinearities, substantially improves stock

return predictions.

6.1.1
2In the appendix, we show similar results for both the personal consumption expenditures

(PCE) inflation and the core CPI inflation.
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Main takeaways

First, as mentioned before, and contrary to the previous evidence in

(33, 52), (34), and many others, our results show that consistently beating the

benchmark specifications is possible. The MLmodels outperform the univariate

alternatives, especially if we consider the 2001–2015 period, when the US

inflation was more volatile compared to the 1990s. This is a robust finding

for both individual horizons and the accumulated twelve-month forecasts.

Second, although there is strong evidence of the existence of a small number

of factors that drive the joint dynamics of the potential predictors, factor

models deliver inferior forecasts compared to ML alternatives and are inferior

to the RW method for the accumulated twelve-month horizon. Furthermore,

either replacing standard principal component factors with target factors,

as advocated by (6), or using boosting to select factors as discussed in (6),

improves the results only marginally. Third, RR has a superior performance

once compared to the other linear ML methods, especially for short horizons.

However, the RF model delivers the smallest errors for most of the forecasting

horizons for the CPI inflation. The gains, in terms of mean squared error

reduction, can be, on average, of the order of 30%. This is a robust finding

that is independent of the sample considered, the state of the economy or

the level of either macroeconomic, financial uncertainty or real uncertainty.

The RF model is an ensemble of fully grown regression trees estimated on

different bootstrap subsamples of the original data. Therefore, the RF model

is a nonsparse, highly nonlinear specification that aims to reduce the high

variance of a single regression tree.

To open the black box of ML methods, we compare the variables selected

by the adaptive LASSO method, RR, and the RF alternative. Following (67),

we classify variables into eight different groups: (i) output and income; (ii) labor

market; (iii) housing; (iv) consumption, orders and inventories; (v) money and

credit; (vi) interest and exchange rates; (vii) prices; and (viii) stock market. In
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addition, we also consider autoregressive terms and the principal component

factors computed from the full set of potential predictors. The most important

variables for RR and RF models are stable across forecasting horizons but are

quite different between the two specifications. While for RR, autoregressive

terms, prices and employment are the most important predictors, resembling

a sort of backward-looking Phillips curve, RF models give more importance

to prices, interest-exchange rates, employment and housing. LASSO selection

is quite different across forecasting horizons and is, by construction and in

opposition to RF and RR models, sparse. Only AR terms retain their relative

importance independent of the horizon and prices gradually lose their relevance

until up to six months ahead but partially recover for longer horizons. Output-

income variables are more important for medium-term forecasts. Finally, none

of the three classes of models selects either factors or stocks. Not even RR or

RF which produce nonsparse variable selection. This result may indicate that

the high level of cross-section aggregation of the factors is one possible cause

for the poor performance of the factor models.

To disentangle the effects of variable selection from nonlinearity, we also

consider alternative models. In the first method, we use the variables selected

by the RF model and estimate a linear specification by OLS. In the second

method, we estimate an RF specification with only the regressors selected by

the adaptive LASSO method. Both models outperform the RF only for one-

month-ahead forecasting. For longer horizons, the RF model is still the winner,

which provides evidence that both nonlinearity and variable selection play a

key role in the superiority of the RF model.

There are many sources of nonlinearities relating the variables selected

and inflation that could justify the superiority of the RF model. For instance,

the relationship between inflation and employment is nonlinear to the extent

that it depends on the degree of slackness in the economy. Another source

of nonlinearities is economic uncertainty as this uncertainty increases the

DBD
PUC-Rio - Certificação Digital Nº 1421640/CA



Chapter 6. Forecasting Inflation in a Data-Rich Environment: The Benefits of
Machine Learning Methods 102

option value of economic decision delays if they have an irreversible component

(71). For example, if it is expensive to dismiss workers, hiring should be

nonlinear on uncertainty. In addition, this real option argument also makes

households and businesses less sensitive to changes in economic conditions

when uncertainty is high. Hence, the responses of employment and inflation

to interest rate decisions are arguably nonlinear on uncertainty. The presence

of a zero lower bound on nominal interest rates and the implications of this

bound for unconventional monetary policy is another source of nonlinearity

among inflation, employment and interest rate variables (72, 73). Finally, to

the extent that houses serve as collateral for loans, it interacts with monetary

policy (74) and financial intermediation (75, 76). As in the Great Recession, a

housing bubble can form, resulting in a deep credit crash (77, 78). Needless to

say, these interactions are highly nonlinear and arguably have nonlinear effects

on inflation, employment and interest rates.

6.1.2
A brief comparison of the recent literature

The literature on inflation forecasting is vast, and there is substantial

evidence that models based on the Phillips curve do not provide good inflation

forecasts. Although (33) showed that many production-related variables are

potential predictors of US inflation, (34) showed that in many cases, the

Phillips curve fails to beat even simple naive models. These results inspired

researchers to look for different models and variables to improve inflation

forecasts. Among the variables used are financial variables (36), commodity

prices (35) and expectation variables (37). However, there is no systematic

evidence that these models outperform the benchmarks.

More recently, due to the advancements in computational power,

theoretical developments in ML, and availability of large datasets, researchers

have started to consider the usage of high-dimensional models on top of the

well-established (dynamic) factor models of (65), (4, 5), and (79, 80).
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However, most of these studies have either focused only on a very small

subset of ML models or presented a restrictive analysis. For example, (44)

considered bagging, factor models and other linear shrinkage estimators in an

exercise to forecast US inflation with a small set of real economic activity

indicators. Their study is more limited than ours both in terms of the pool of

models considered and richness of the set of predictors. Nevertheless, the

authors were among the few voices that suggested that ML techniques can

deliver nontrivial gains over univariate benchmarks. (17) provided evidence

that LASSO-based models outperform both factor and AR benchmarks in

forecasting US CPI. However, the analysis in the paper is restricted to a

single ML method for just one-month-ahead inflation forecasting.

Most of the previous papers in the inflation forecasting literature have

explored only linear ML models but ignored nonlinear alternatives. One

possible explanation for this limitation is that most of the papers in the early

days considered only univariate nonlinear models that were, in most cases,

outperformed by simple benchmarks; see (81) for an example.3 The message

of our paper is that the combination of a rich dataset with modern ML tools

is responsible for the nontrivial forecasting gains over traditional univariate

benchmarks.4

Finally, we do not apply ML methods as pure black-boxes specifications.

In fact, this paper is different from many “horse-races” in the literature, as we

not only compare a large number of different models, but we also try to clarify

the mechanisms why a given class of models is superior than others.

6.2
3An exception is (82), who show that neural networks outperform univariate

autoregressive models for short horizons.
4More recently, (12) applied a large number of ML methods, including RFs, to real-

time inflation forecasting in Brazil. The results were very promising and indicated a clear
superiority of the CSR method of (45, 20). However, an important question is whether this
is a particular result for Brazil or if similar findings can be replicated for the US economy.
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Data

Our data consist of variables from the FRED-MD database, which is a

large monthly macroeconomic dataset designed for empirical analysis in data-

rich environments. The dataset is updated in real-time through the FRED

database and is available from Michael McCraken’s webpage.5 For further

details, we refer to (67).

In this paper, we use the vintage as of January 2016. Our sample goes

from January 1960 to December 2015 (672 observations), and only variables

with all observations in the defined sample period are used (122 variables).

In addition, we include as potential predictors the four principal component

factors computed from this set of variables. We consider four lags of all

variables, as well as four autoregressive terms for inflation, so the analysis

contemplates 508 potential predictors. The out-of-sample window is from

January 1990 to December 2015. All variables are transformed as described in

Appendix 6.5. The price indexes are log-differenced only one time. Therefore,

πt is the inflation in month t computed as πt = log(Pt) − log(Pt−1), and Pt

is a given price index in period t. The baseline price index is the CPI, but in

Appendix 6.5, we also report results considering both the PCE and the core

CPI. Figure 6.1 displays the evolution of these inflation measures during the

full sample period.

We compare performances not only across models in the out-of-sample

window but also in two subsample periods, namely, 1990 to 2000 (132

out-of-sample observations) and 2001 to 2015 (180 out-of-sample

observations). In Table 6.1, we report the mean, standard deviation (Sd),

median, maximum, minimum, first-order autocorrelation (AC1), and sum of

the first 36 autocorrelations (AC36) for several macroeconomics variables.

These variables include CPI monthly inflation (πt), CPI twelve-month

inflation (π12,t), monthly growth of the industrial production (∆IPt) and
5https://research.stlouisfed.org/econ/mccracken/fred-databases/.
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twelve-month growth of industrial production (∆12IPt). We also report these

statistics for measures of macroeconomic, financial and real uncertainty

computed as in (46), which are the conditional volatility of the

unforecastable part of macroeconomic, financial and firm-level variables,

respectively. In particular, the authors consider forecasting horizons of one,

three and twelve months ahead.6

The statistics in Table 6.1 give an overview of the economic scenario

in each subsample. The first sample corresponds to a period of low inflation

volatility (σ = 0.17%), while in the second sample, inflation is much more

volatile (σ = 0.32%). However, on average, inflation is higher during 1990-2000

than 2001-2015 and much more persistent as well. Relative to the 1990-2000

period, inflation was more volatile near the recession in the early 1990s. The

monthly growth in industrial production is on average higher and less volatile

during the first subsample. Finally, uncertainty measures are uniformly higher

during 2001-2015, mainly due to the Great Recession.

6.3
Methodology

Consider the following model:

πt+h = Th(xt) + ut+h, , h = 1, . . . , H, t = 1, . . . , T, (6-1)

where πt+h is the inflation in month t + h; xt = (x1t, . . . , xnt)′ is a n-vector

of covariates, possibly containing lags of πt and/or common factors as well

as a large set of potential predictors; Th(·) is the mapping between covariates

and future inflation; and ut is a zero-mean random error. The target function

Th(xt) can be a single model or an ensemble of different specifications. There

is a different mapping for each forecasting horizon.

The direct forecasting equation is given by
6These uncertainty measures are available at Sydney C. Ludvigson’s webpage

(https://www.sydneyludvigson.com/).

DBD
PUC-Rio - Certificação Digital Nº 1421640/CA



Chapter 6. Forecasting Inflation in a Data-Rich Environment: The Benefits of
Machine Learning Methods 106

π̂t+h|t = T̂h,t−Rh+1:t(xt), (6-2)

where T̂h,t−Rh+1:t is the estimated target function based on data from time

t − Rh + 1 up to t and Rh is the window size, which varies according to

the forecasting horizon and the number of lagged variables in the model.

We consider direct forecasts as we do not make any attempt to predict the

covariates. The only exception is the case of the BVAR model, where joint

forecasts for all predictors are computed in a straightforward manner following

the procedure described in (10).

The forecasts are based on a rolling window framework of fixed length.

However, as mentioned before, the actual in-sample number of observations

depends on the forecasting horizon. For example, for the 1990–2000 period,

the number of observations is Rh = 360− h− p− 1, where p is the number of

lags in the model. For 2001–2015, Rh = 492− h− p− 1.

In addition to three benchmark specifications (RW, AR and UCSV

models), we consider factor-augmented AR models, sparsity-inducing

shrinkage estimators (LASSO, adaptive LASSO, elastic net and adaptive

elastic net), other shrinkage methods that do not induce sparsity (RR and

BVAR with Minnesota priors), averaging (ensemble) methods (bagging, CSR

and JMA)7 and RF. With respect to the factor-augmented AR models, we

consider in addition to the standard factors computed with principal

component analysis a set of target factors as advocated by Bai and Ng (6)

and boosted factors as in Bai and Ng (7). A detailed discussion of the models

implemented in this paper can be found in Appendix 6.5. Finally, we also

include in the comparison three different model combination schemes,

namely, simple average, trimmed average and the median of the forecasts.

We find that the RF, a highly nonlinear method, robustly outperforms

other methods. To disentangle the role of variable selection from nonlinearity,

we also consider a linear model where the regressors are selected by the RFs
7Bagging and CSR can also be viewed as nonsparsity-inducing shrinkage estimators.
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(RF/ordinary least squares, OLS) and an RF model with regressors preselected

by adaptive LASSO (adaLASSO/RF).

Forecasts for the accumulated inflation over the following twelve months

is computed, with the exception of the RW and UCSV models, by aggregating

the individual forecasts for each horizon. In the case of the RW and UCSV

models, a different specification described in Appendix 6.5 is used to construct

the forecast of the 12-month inflation.

6.4
Results

In this section, we describe our main results for the CPI. More detailed

results, robustness checks and a similar set of results for the PCE and the

CPI-core can be all found in Appendix 6.5.

The models are compared according to three different statistics, namely,

the root mean squared error (RMSE), the mean absolute error (MAE) and

the median absolute deviation from the median (MAD), which are defined for

each model and forecasting horizon as follows:

RMSEm,h = 1
T − T0 + 1

T∑
t=T0

ê2
t,m,h,

MAEm,h = 1
T − T0 + 1

T∑
t=T0

|êt,m,h| ,

MADm,h = median [|êt,m,h −median (êt,m,h)|] ,

where êt,m,h = πt − π̂t,m,h and π̂t,m,h is the inflation forecast for month t made

by model m with information up to t−h. The first two performance measures

above are the usual ones in the forecasting literature. MAD, which is less

commonly used in empirical papers, is robust to outliers.

To test whether the forecasts from different models are different, we

consider a number of tests, namely, the model confidence sets (MCS) as

proposed in (55), the superior predictive ability (SPA) tests of (83), and the

multi-horizon uniform SPA test of (84).
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6.4.1
Overview

In this section, we report an overview of the main findings of the paper.

Tables 6.2–6.4 report a number of statistics for each model across all

the forecasting horizons, including the accumulated twelve-month horizon.

The first three columns report the average RMSE, the average MAE and

the average MAD. Columns (4), (5) and (6) report the number of times (out

of thirteen possible horizons)8 each model achieved the lowest RMSE, MAE,

and MAD, respectively. Columns (7)–(10) present, for square and absolute

losses, the average p-values of the MCS based either on the range or the tmax

statistics. Columns (11) and (12) show the average p-values of the SPA test for

the squared and absolute errors, respectively. Finally, columns (13) and (14)

display the p-value of the uniform multi-horizon test for superior predictive

ability and the p-value of the MCS based on the multi-horizon comparison of

the models, respectively. The uniform SPA test is designed to check for superior

performance at each individual horizon. Table 6.2 shows the results for the

full out-of-sample period (1990–2015), whereas Tables 6.3 and 6.4 present the

results for the subsample periods 1990–2000 and 2001–2015, respectively. The

bold figures highlight the best-performing model. The following facts emerge

from the tables:

1. Machine learning models and the use of a large set of predictors are

able to systematically improve the quality of inflation forecasts over

traditional benchmarks in the literature. This is a robust and statistically

significant result.

2. The RF model outperforms all the other alternatives in terms of point

statistics. The superiority of RF is due both to the variable selection

mechanism induced by the method as well as the presence of

nonlinearities in the relation between inflation and its predictors. RF
8To be precise, monthly inflation from one month up to twelve months ahead and yearly

inflation accumulated over the following twelve months.
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has the lowest RMSEs, MAEs, and MADs across the horizons and the

highest MCS p-values. The RF model also has the highest p-values in

the SPA test, multi-horizon SPA test and multi-horizon MCS. The

improvements over the RW in terms of RMSE, MAE and MAD are

almost 30% and are more pronounced during the second subsample,

where inflation volatility is much higher.

3. Shrinkage methods also produce more precise forecasts than the

benchmarks. Sparsity-inducing methods are slightly worse than

nonsparsity-inducing shrinkage methods. Overall, the forecasting

performance among shrinkage methods is very similar, and ranking

them is difficult.

4. Factor models are strongly outperformed by other methods. The

adoption of boosting and target factors improves the quality of the

forecasts produced by factor models only marginally. The poor

performance of factor models is more pronounced during the first

subsample (low volatility period).

5. CSR and JMA do not perform well either and are comparable to the

factor models.

6. Forecast ensembles do not bring any significant improvements in any of

the performance criteria considered.

7. Among the benchmark models, both AR and UCSV outperform the RW

alternative. Furthermore, the UCSV model is slightly superior to the AR

specification.

6.4.2
Results: Random Forests versus Benchmarks

Tables 6.5–6.7 show the results of the comparison between the RF and

the benchmark models. Table 6.5 presents the RMSE, MAE and MAD ratios
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of the AR, UCSV and RF models with respect to the RW alternative for all

the forecasting horizons as well as for the accumulated forecasts over twelve

months. The models with the smallest ratios are highlighted in bold. It is clear

from the table that the RF model has the smallest ratios for all forecasting

horizons.

To check whether this is a robust finding across the full out-of-sample

period, we also compute rolling RMSEs, MAEs, and MADs over windows of

48 observations. Table 6.6 reports the results. The table shows the frequency

with which each model achieved the lowest RMSEs, MAEs and MADs as well

as the frequency with which each model was the worst-performing alternative

among the four competitors. The RF model is the winning specification and

is superior to the competitors for the majority of time periods, including the

Great Recession. In contrast, the RWmodel delivers the worst forecasts most of

the time. Figures 6.2, 6.3, and 6.4 show the rolling RMSEs, MAEs, and MADs,

respectively, over the out-of-sample period. As expected, the performance

of the RW deteriorates as the forecasting horizon increases. However, the

accomplishments of the RFs seem rather robust.

Finally, Table 6.7 reports the p-values of the unconditional Giacomini and

White (2000) test for superior predictive ability for squared (panel (a)) and

absolute errors (panel (b)). Rejections of the null mean that the forecasts are

significantly different. It is evident from the table that the RF has forecasts that

are significantly different from and superior to the three benchmark models.

6.4.3
Results: The Full Picture

In this section, we compare all models. The main results are shown

in Tables 6.8–6.10. Table 6.8 presents the results for the full out-of-sample

period, whereas Tables 6.9 and 6.10 present the results for the 1990–2000 and

2000-2015 periods, respectively. The tables report the RMSEs and, between

parenthesis, the MAEs for all models relative to the RW specification. The
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error measures were calculated from 132 rolling windows covering the 1990–

2000 period and 180 rolling windows covering the 2001–2015 period. Values in

bold denote the most accurate model in each horizon. Cells in gray (blue) show

the models included in the 50% MCS using the squared error (absolute error)

as the loss function. The MCSs were constructed based on the maximum t

statistic. The last column in the table reports the number of forecast horizons

in which the model was included in the MCS for the square (absolute) loss.

The last two rows in the table report the number of models included in the

MCS for the square and absolute losses.

Several conclusions come out from the tables and we start by analyzing

the full out-of-sample period. Apart from a few short horizons, where either

the RF/OLS or the adaLASSO/RF alternatives are the winning models, the

RF alternative delivers the smallest ratios in most of the cases. The RF is

followed closely by shrinkage models, where RR seems be superior to the

other alternatives. RR, RF and the hybrid linear-RF models are the only

specifications included in the MCS for all forecasting horizons. Neither RF

nor RR impose sparsity, which may corroborate the conclusions of (68), who

provide evidence against sparsity in several applications. Factor models have

very poor results and are almost never included in the MCS. When factors are

combined with boosting, there is a small gain, but the results are still greatly

inferior to those from RF and shrinkage models. This is particularly curious

as there is a correspondence between factor models and RR: RR predictions

are weighed combinations of all principal component factors of the set of

predictors. Several reasons might explain the difference. Firstly, lack of clear

factor structure in the regressors. This is not the case as shown in Figure 6.5,

where we display the eigenvalues of the covariance matrix of regressors over

the forecasting period. As can be seen, there is a small number of dominating

factors. Secondly, there might be factors which explain only a small portion

of the total variance of the regressors but have a high predictive power on
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inflation. Again, we do not think this is the case as target factors as well as

boosting are specifically designed to enhance the quality of the predictions

but, in this case, do not bring any visible improvement. Furthermore, we

allow the ML methods to select factors as well and, as we are going to

show latter, they are never selected. Lastly, we believe the most probable

explanation is that although sparsity can be questioned, factor models are a

too aggregated representation of the potential predictors. The results of JMA

are not encouraging either. Nevertheless, all the competing models outperform

the RW for almost all horizons. Finally, forecast combination does not provide

any significant gain, which can be explained by the empirical fact that most

of the forecasts are positively correlated, as depicted in Figure 6.6.

Focusing now on the two subsamples, the following conclusions stand

out from the tables. The superiority of RF is more pronounced during the

2000–2015 period, when inflation is much more volatile. During this period,

RF achieves the smallest RMSE and MAE ratios for almost all horizons. From

1990-2000, the linear shrinkage methods slightly outperform the RF for short

horizons. However, RF dominates for long horizons and for the twelve-month

forecasts. Among the shrinkage models and during the first period, there is no

clear evidence of a single winner. Depending on the horizon, different models

perform the best. Another salient fact is that there are fewer models included

in the MSC during the first subsample.

Finally, we test whether the superiority of the RF model with respect

to alternative models depends on the state of the economy. We consider two

cases, namely, recessions versus expansions and high versus low macroeconomic

uncertainty.9 The results of the test proposed by (42) for squared loss functions

are presented in Tables 6.11 and 6.12. The tables report the value of the test

statistic as well as the respective p-values. As usual, one, two and three asterisks

represent rejection of the null hypothesis at 10%, 5%, and 1% significance
9Since results barely change if we consider either financial or real, rather than

macroeconomic, uncertainty, we do not report them for brevity. They are available upon
request.
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levels, respectively. In Table 6.11, the results for expansion periods versus

recessions are presented, whereas in Table 6.12, we consider periods of high

macroeconomic uncertainty versus periods of low macroeconomic uncertainty.

Periods of high (low) macroeconomic uncertainty are those where uncertainty

is higher (lower) than the historical average. For conciseness, we display only

the results for the most relevant models.

Inspecting the tables, it is clear that the majority of the statistics are

negative, meaning that the RF model is superior than its competitors. For

instance, out of 72 entries in each table, the values of the statistics are

positive only in four and seven cases in Tables 6.11 and 6.12, respectively.

However, the differences are not statistically significant during recessions.

This result is not surprising as only 34 of the 312 out-of-sample observations

are labeled as recessions. Nevertheless, the magnitudes of the differences are

much higher during recessions. Turning attention now to periods of low and

high macroeconomic uncertainty, it is evident from Table 6.12 that the RF

model is statistically superior to the benchmark models for both periods,

and as in the previous case, the differences are higher in periods of greater

uncertainty. As argued above, both the degrees of slackness and uncertainty

might be sources of nonlinearities in the economy. The fact that the RF model

outperforms competitors in these states of the economy suggests that allowing

for nonlinearities is key to improving macroeconomic forecasts.

6.4.4
Opening the Black Box: Variable Selection

In this section, we compare the predictors selected by some of the ML

methods, namely, adaptive LASSO (adaLASSO), ridge regression (RR) and

random forest (RF). We select these three models for two reasons. First,

they are generally the three best-performing models. Second, they have quite

different characteristics. While adaLASSO is a true sparsity-inducing method,

RR and RF models are only approximately sparse. In addition, RR is a linear
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model, whereas RF is a highly nonlinear specification.

In principle, this analysis is straightforward with sparsity-inducing

shrinkage methods such as the adaLASSO, as the coefficients of potentially

irrelevant variables are automatically set to zero.10 For the other ML

methods, the analysis is more complex. To keep the results among models

comparable, we adopt the following strategy. For RR and adaLASSO, the

relative importance measure is computed as the average coefficient size

(divided by the respective standard deviations of the regressors). To measure

the importance of each variable for the RF models, we use out-of-bag (OOB)

samples.11 When the bth tree is grown, the OOB samples are passed down

the tree and the prediction accuracy is recorded. Then, the values of the jth

variable are randomly permuted in the OOB sample, and the accuracy is

again computed. The decrease in accuracy due to the permutation is

averaged over all trees and is the measure of the importance of the jth

variable in the RF.

Due to space constraints, we cannot show the relative importance for

each variable, each lag, each horizon or each estimation window. Therefore,

as described in Appendix 6.5, and following (67), we categorize the variables,

including lags, into the following nine groups: (i) output and income; (ii) labor

market; (iii) housing; (iv) consumption, orders and inventories; (v) money and

credit; (vi) interest and exchange rates; (vii) prices; and (viii) stock market. We

also consider two additional groups, namely, the principal component factors

computed from the full set of potential predictors and autoregressive terms.

Furthermore, the results are averaged across all estimation windows.

Figure 6.7 shows the importance of each variable group for the

adaLASSO, RR and RF methods for all the twelve forecasting horizons. For

all different methods, the values in the plots are re-scaled to sum one.
10(17) showed, for example, that under sparsity conditions, the adaLASSO model selection

is consistent for high-dimensional time series models in very general settings, i.e., the method
correctly selects the “true” set of regressors.

11For a given data point (yt,x
′
t), the OOB sample is the collection of all bootstrap samples

that do not include (yt,x
′
t).
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The set of the most relevant variables for RR and RF models is quite

stable across forecasting horizons but is remarkably different between the two

specifications. While for RR, autoregressive terms, prices and employment are

the most important predictors, RF models give more importance to prices,

interest-exchange rates, employment and housing. For adaLASSO, selection is

quite different across forecasting horizons, and only autoregressive terms retain

their relative importance independent of the horizon. Prices gradually lose their

relevance until up to six-months-ahead and partially recover relevance when

longer horizons are considered. Output-income variables are more important

for medium-term forecasts. Finally, none of the three classes of models selects

either factors or stocks. This result may indicate that the high level of cross-

section aggregation of the factors is causing the poor performance of factor

models.

To compare the degree of sparsity of each model, we report word clouds

of the selected variables in Appendix 6.5.

6.5
Conclusions

We show that with the recent advances in ML methods and the

availability of new and rich datasets, it is possible to improve inflation

forecasts. Models such as LASSO, bagging, RF and others are able to

produce more accurate forecasts than the standard benchmarks. These

results highlight the benefits of ML methods and rich datasets for

macroeconomic forecasting. Although our paper focuses on inflation

forecasting in the US, one can easily apply ML methods to forecast other

macroeconomic series in a variety of countries. We leave for further research

the question as to whether ML methods can systematically outperform

standard methods when other macroeconomic series, such as industrial

production, and other countries are considered.

The RF method deserves special attention as it delivers the smallest
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errors for most forecasting horizons in the two out-of-sample periods (1990–

1999 and 2001–2015). The good performance of the RF is due both to potential

nonlinearities in the relationship between inflation and its predictors and the

variable selection mechanism of such a model.

The selection of variables for RF models is quite stable across forecasting

horizons. These variables are mostly selected from the following four groups

of variables: prices, exchange and interest rates, housing and labor market.

Although it is difficult to disentangle the precise sources of nonlinearities

that the RF method uncovers, this variable selection may shed light on

them. In fact, there are many theoretical reasons that nonlinearities may be

induced among inflation, interest rate, labor market outcomes and housing. For

example, the relationship between inflation and employment depends on the

degree of slackness in the economy. In addition, as we argued above, uncertainty

might induce nonlinearities among these variables. Finally, part of the out-of-

sample window encompasses quarters when the zero lower bound on nominal

interest rates is binding, which is another source of nonlinearity. This out-of-

sample window also encompasses a period in which a housing bubble led to a

credit crunch, which are events with highly nonlinear consequences.

The RF is the winning method not only in the full sample but also in

the periods of expansion and recession as well as low uncertainty and high

uncertainty. Relative to other methods, the RF performs particularly well

in periods of high uncertainty. In addition, the RF also outperforms other

methods during and after the Great Recession, when uncertainty skyrocketed

and when the zero lower bound was binding. Altogether, these results suggest

that the relationships among key macroeconomic variables might be highly

nonlinear. If this is the case, the various linear methods widely applied in the

profession not only to forecast variables but also to achieve other objectives

such as approximate DSGE models might lead to inaccurate results.

Finally, in this paper, we focus on the RF model due to its flexibility
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and scalability for very large datasets. Nevertheless, alternative nonlinear

methods such as deep learning and other semiparametric models should also

be considered in future work.
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TABLES AND FIGURES

The figure shows the time evolution of the consumer price index (CPI), the personal
consumption expenditures (PCE) and the core CPI inflation measures from January 1960 to
December 2015 (672 observations). Inflation is computed as πt = log(pt)− log(pt−1), where
pt represents each one of the price measures considered in this paper. Shaded areas represent
recession periods.
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Figure 6.1: Inflation rate (CPI, PCE and CPI core) from 1960 to 2015.
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The table reports the root mean squared error (RMSE), mean absolute error (MAE) and
median absolute deviation from the median (MAD) ratios with respect to the random walk
model for the full out-of-sample period (1990–2015). The statistics for the best-performing
model are highlighted in bold.

Panel (a): RMSE Ratio
Forecasting Horizon

Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.
AR 0.902 0.809 0.790 0.805 0.786 0.791 0.783 0.764 0.779 0.824 0.837 0.753 1.218

UCSV 0.954 0.816 0.797 0.813 0.783 0.777 0.784 0.776 0.770 0.804 0.832 0.781 0.908
RF 0.844 0.731 0.706 0.738 0.711 0.715 0.718 0.712 0.722 0.763 0.773 0.685 0.766

Panel (b): MAE Ratio
Forecasting Horizon

Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.
AR 0.874 0.791 0.782 0.805 0.802 0.806 0.777 0.760 0.807 0.847 0.861 0.764 1.220

UCSV 0.911 0.817 0.786 0.803 0.801 0.795 0.796 0.787 0.784 0.799 0.851 0.777 0.894
RF 0.811 0.721 0.711 0.749 0.727 0.728 0.699 0.681 0.717 0.747 0.767 0.668 0.774

Panel (c): MAD Ratio
Forecasting Horizon

Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.
AR 0.738 0.703 0.815 0.822 0.828 0.755 0.664 0.685 0.767 0.697 0.769 0.600 0.889

UCSV 0.876 0.770 0.832 0.906 0.878 0.790 0.761 0.835 0.857 0.829 0.884 0.777 0.876
RF 0.698 0.633 0.772 0.841 0.750 0.728 0.653 0.639 0.728 0.685 0.706 0.575 0.587

Table 6.5: Forecasting Results: RMSE, MAE and MAD Ratios (1990–2015)
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The table reports the frequency with which each model achieved the best (worst)
performance statistics over a rolling window period of four years (48 observations).

Panel (a): Lowest Rolling RMSE
Forecasting Horizon

Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.
RW 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.038 0.000 0.083
AR 0.083 0.049 0.000 0.158 0.011 0.011 0.098 0.177 0.117 0.128 0.113 0.000 0.000

UCSV 0.023 0.049 0.211 0.098 0.181 0.109 0.004 0.030 0.192 0.109 0.094 0.000 0.236
RF 0.894 0.902 0.789 0.743 0.808 0.879 0.898 0.792 0.691 0.762 0.755 1.000 0.681

Panel (b): Lowest Rolling MAE
Forecasting Horizon

Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.
RW 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.094 0.000 0.039
AR 0.166 0.034 0.000 0.049 0.000 0.023 0.098 0.136 0.132 0.064 0.049 0.023 0.000

UCSV 0.151 0.177 0.257 0.226 0.151 0.155 0.000 0.072 0.242 0.226 0.094 0.023 0.201
RF 0.683 0.789 0.743 0.725 0.849 0.823 0.902 0.792 0.626 0.709 0.762 0.955 0.760

Panel (c): Lowest Rolling MAD
Forecasting Horizon

Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.
RW 0.136 0.000 0.034 0.000 0.091 0.045 0.004 0.000 0.034 0.053 0.026 0.045 0.020
AR 0.234 0.162 0.234 0.230 0.121 0.234 0.264 0.321 0.109 0.147 0.423 0.234 0.039

UCSV 0.038 0.192 0.268 0.328 0.094 0.117 0.034 0.008 0.219 0.087 0.034 0.019 0.051
RF 0.592 0.645 0.464 0.442 0.694 0.604 0.698 0.672 0.638 0.713 0.517 0.702 0.890

Panel (d): Highest Rolling RMSE
Forecasting Horizon

Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.
RW 0.823 0.985 0.936 0.992 0.977 0.996 1.000 1.000 0.864 0.804 0.713 0.849 0.000
AR 0.000 0.004 0.057 0.008 0.023 0.004 0.000 0.000 0.136 0.189 0.287 0.151 0.969

UCSV 0.177 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.031
RF 0.000 0.011 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.000

Panel (e): Highest Rolling MAE
Forecasting Horizon

Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.
RW 0.898 0.943 0.864 1.000 0.992 0.966 1.000 0.943 0.819 0.728 0.687 0.770 0.031
AR 0.083 0.034 0.128 0.000 0.008 0.034 0.000 0.057 0.181 0.272 0.283 0.230 0.862

UCSV 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.106
RF 0.000 0.023 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.030 0.000 0.000

Panel (f): Highest Rolling MAD
Forecasting Horizon

Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.
RW 0.683 0.940 0.853 0.804 0.796 0.657 0.811 0.943 0.774 0.804 0.789 0.921 0.315
AR 0.053 0.026 0.117 0.098 0.102 0.068 0.042 0.019 0.098 0.034 0.019 0.008 0.512

UCSV 0.215 0.034 0.026 0.098 0.042 0.260 0.140 0.038 0.106 0.143 0.192 0.072 0.173
RF 0.049 0.000 0.004 0.000 0.060 0.015 0.008 0.000 0.023 0.019 0.000 0.000 0.000

Table 6.6: Forecasting Results: Ranking of Models (1990–2015)
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The table reports the p-values of the unconditional Giacomini-White test for superior
predictive ability between the random forest models and each of the benchmark models.
The test is based on the full out-of-sample period. Panel (a) presents the results for squared
errors, while panel (b) shows the results for absolute errors.

Panel (a): Giacomini-White Test (Sq. Errors)
Forecasting Horizon

Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.
RW 0.003 0.000 0.000 0.001 0.006 0.012 0.010 0.003 0.003 0.027 0.024 0.001 0.049
AR 0.002 0.010 0.023 0.045 0.024 0.024 0.056 0.075 0.047 0.062 0.008 0.000 0.021

UCSV 0.003 0.003 0.013 0.055 0.055 0.024 0.001 0.000 0.003 0.038 0.002 0.000 0.072

Panel (b): Giacomini-White Test (Abs. Errors)
Forecasting Horizon

Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.
RW 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023
AR 0.000 0.000 0.001 0.012 0.002 0.005 0.009 0.017 0.007 0.004 0.000 0.000 0.000

UCSV 0.000 0.000 0.010 0.029 0.003 0.007 0.000 0.000 0.007 0.054 0.008 0.000 0.078

Table 6.7: Forecasting Results: Superior Predictive Ability Test (1990–2015)

The figure displays the root mean squared errors (RMSE) computed over rolling windows of
48 observations. Panel (a) displays the results for one-month-ahead forecasts (h = 1), panel
(b) displays the results for six-months-ahead forecasts (h = 6), panel (c) displays the results
for twelve-months-ahead forecasts (h = 12), and finally, Panel (d) displays the results for
the accumulated twelve month forecasts.
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Figure 6.2: Rolling RMSE.
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The figure displays the mean absolute errors (MAE) computed over rolling windows of 48
observations. Panel (a) displays the results for one-month-ahead forecasts (h = 1), panel (b)
displays the results for six-months-ahead forecasts (h = 6), panel (c) displays the results for
twelve-months-ahead forecasts (h = 12), and finally, panel (d) displays the results for the
accumulated twelve month forecasts.
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Figure 6.3: Rolling MAE.
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The figure displays the mean absolute deviation from the median (MAD) computed over
rolling windows of 48 observations. Panel (a) displays the results for one-month-ahead
forecasts (h = 1), panel (b) displays the results for six-months-ahead forecasts (h = 6),
Panel (c) displays the results for twelve-months-ahead forecasts (h = 12), and finally, panel
(d) displays the results for the accumulated twelve month forecasts.
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Figure 6.4: Rolling MAD.
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The table shows the root mean squared error (RMSE) and, between parenthesis, the mean
absolute errors (MAE) for all models relative to the random walk (RW). The error measures
were calculated from 132 rolling windows covering the 1990-2000 period and 180 rolling
windows covering the 2001-2015 period. Values in bold show the most accurate model in
each horizon. Cells in gray (blue) show the models included in the 50% model confidence set
(MCS) using the squared error (absolute error) as loss function. The MCSs were constructed
based on the maximum t-statistic. The last column in the table reports in how many horizons
the row model was included in the MCS for square (absolute) loss. The last two rows in the
table report how many models were included in the MCS for square and absolute losses.

Consumer Price Index 1990–2015
Forecasting Horizon

RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc. RMSE count
(MAE count)

RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1)

AR 0.90 0.81 0.79 0.81 0.79 0.79 0.78 0.76 0.78 0.82 0.84 0.75 1.22 9
(0.87) (0.79) (0.78) (0.81) (0.80) (0.81) (0.78) (0.76) (0.81) (0.85) (0.86) (0.76) (1.22) (0)

UCSV 0.95 0.82 0.80 0.81 0.78 0.78 0.78 0.78 0.77 0.80 0.83 0.78 0.91 8
(0.91) (0.82) (0.79) (0.80) (0.80) (0.79) (0.80) (0.79) (0.78) (0.80) (0.85) (0.78) (0.89) (3)

LASSO 0.83 0.75 0.73 0.76 0.74 0.75 0.75 0.73 0.75 0.80 0.82 0.73 0.98 11
(0.82) (0.74) (0.73) (0.78) (0.77) (0.75) (0.74) (0.71) (0.76) (0.81) (0.84) (0.74) (1.04) (9)

adaLASSO 0.84 0.76 0.74 0.77 0.75 0.75 0.76 0.75 0.76 0.80 0.83 0.72 0.96 11
(0.81) (0.75) (0.72) (0.77) (0.75) (0.74) (0.73) (0.71) (0.75) (0.79) (0.84) (0.73) (0.96) (11)

ElNet 0.83 0.75 0.73 0.76 0.75 0.74 0.75 0.74 0.76 0.81 0.82 0.73 0.98 11
(0.82) (0.74) (0.73) (0.78) (0.78) (0.76) (0.75) (0.71) (0.77) (0.81) (0.85) (0.75) (1.05) (9)

adaElnet 0.84 0.75 0.73 0.77 0.75 0.75 0.75 0.74 0.76 0.80 0.81 0.73 0.96 11
(0.82) (0.74) (0.72) (0.76) (0.75) (0.74) (0.73) (0.71) (0.75) (0.79) (0.83) (0.75) (0.97) (11)

Ridge 0.85 0.73 0.72 0.75 0.74 0.75 0.75 0.73 0.74 0.77 0.78 0.70 0.89 13
(0.83) (0.72) (0.72) (0.77) (0.76) (0.76) (0.73) (0.71) (0.74) (0.77) (0.79) (0.71) (0.93) (13)

BVAR 0.86 0.76 0.75 0.77 0.74 0.76 0.77 0.76 0.77 0.82 0.83 0.74 1.07 11
(0.87) (0.73) (0.75) (0.79) (0.78) (0.78) (0.76) (0.76) (0.81) (0.83) (0.85) (0.76) (1.09) (8)

Bagging 0.83 0.76 0.76 0.80 0.78 0.79 0.83 0.81 0.78 0.82 0.83 0.74 0.82 11
(0.84) (0.78) (0.79) (0.87) (0.86) (0.85) (0.83) (0.80) (0.80) (0.84) (0.86) (0.78) (0.88) (4)

CSR 0.85 0.77 0.76 0.79 0.77 0.79 0.79 0.77 0.79 0.83 0.84 0.76 1.13 11
(0.84) (0.76) (0.75) (0.79) (0.79) (0.79) (0.76) (0.74) (0.79) (0.83) (0.84) (0.77) (1.11) (3)

JMA 0.99 0.82 0.84 0.85 0.84 0.81 0.91 0.86 0.84 0.95 0.92 0.80 0.88 2
(0.99) (0.85) (0.89) (0.94) (0.96) (0.90) (0.91) (0.87) (0.93) (0.96) (0.96) (0.83) (0.91) (1)

Factor 0.87 0.78 0.78 0.79 0.78 0.78 0.80 0.81 0.82 0.84 0.84 0.78 1.17 4
(0.88) (0.80) (0.80) (0.82) (0.82) (0.80) (0.78) (0.80) (0.87) (0.87) (0.87) (0.82) (1.21) (0)

T. Factor 0.88 0.79 0.78 0.80 0.77 0.79 0.79 0.80 0.80 0.82 0.83 0.78 1.17 3
(0.87) (0.82) (0.81) (0.84) (0.83) (0.84) (0.80) (0.80) (0.84) (0.87) (0.86) (0.80) (1.23) (0)

Boosting 0.95 0.77 0.76 0.78 0.77 0.79 0.79 0.78 0.79 0.83 0.84 0.74 1.17 10
(0.96) (0.80) (0.81) (0.85) (0.84) (0.86) (0.84) (0.82) (0.85) (0.86) (0.86) (0.75) (1.32) (1)

RF 0.84 0.73 0.71 0.74 0.71 0.72 0.72 0.71 0.72 0.76 0.77 0.68 0.77 13
(0.81) (0.72) (0.71) (0.75) (0.73) (0.73) (0.70) (0.68) (0.72) (0.75) (0.77) (0.67) (0.77) (13)

Mean 0.83 0.75 0.73 0.76 0.74 0.74 0.75 0.74 0.75 0.77 0.78 0.71 0.95 12
(0.81) (0.74) (0.73) (0.76) (0.76) (0.75) (0.73) (0.71) (0.75) (0.76) (0.78) (0.70) (0.97) (12)

T.Mean 0.84 0.74 0.73 0.75 0.74 0.74 0.75 0.73 0.74 0.78 0.79 0.71 0.95 12
(0.81) (0.74) (0.72) (0.76) (0.75) (0.74) (0.72) (0.70) (0.74) (0.77) (0.79) (0.70) (0.96) (12)

Median 0.84 0.75 0.72 0.76 0.74 0.74 0.75 0.73 0.74 0.78 0.79 0.71 0.94 12
(0.81) (0.74) (0.72) (0.76) (0.76) (0.74) (0.73) (0.70) (0.74) (0.77) (0.79) (0.71) (0.97) (12)

RF/OLS 0.81 0.73 0.72 0.75 0.74 0.75 0.75 0.74 0.74 0.78 0.79 0.71 0.94 13
(0.79) (0.73) (0.72) (0.76) (0.76) (0.76) (0.73) (0.72) (0.75) (0.78) (0.81) (0.72) (0.97) (13)

adaLASSO/RF 0.85 0.76 0.72 0.73 0.73 0.72 0.72 0.71 0.72 0.79 0.82 0.70 0.80 13
(0.82) (0.73) (0.72) (0.74) (0.74) (0.73) (0.71) (0.68) (0.72) (0.79) (0.82) (0.68) (0.82) (13)

RMSE count 14 15 16 17 19 19 17 15 17 18 19 8 8
MAE count (12) (11) (12) (11) (10) (12) (13) (11) (10) (15) (16) (7) (9)

Table 6.8: Forecasting Errors for the CPI from 1990 to 2015
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Figure 6.5: Eigenvalues of the matrix of contemporaneous regressor.
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Figure 6.6: Correlation of the Forecasts for the CPI from 1990 to 2015
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The table shows the root mean squared error (RMSE), and between parenthesis, the mean
absolute errors (MAE) for all models relative to the random walk (RW). The error measures
were calculated from 132 rolling windows covering the 1990-2000 period and 180 rolling
windows covering the 2001-2015 period. Values in bold show the most accurate model in
each horizon. Cells in gray (blue) show the models included in the 50% model confidence set
(MCS) using the squared error (absolute error) as loss functions. The MCSs were constructed
based on the maximum t-statistic. The last column in the table reports in how many horizons
the row model was included in the MCS for square (absolute) loss. The last two rows in the
table report how many models were included in the MCS for square and absolute losses.

Consumer Price Index 1990–2000
Forecasting Horizon

RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc. RMSE count
(MAE count)

RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 3
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (4)

AR 0.84 0.82 0.88 0.82 0.78 0.79 0.79 0.80 0.87 0.89 0.95 0.85 1.24 10
(0.88) (0.83) (0.92) (0.83) (0.81) (0.84) (0.84) (0.80) (0.94) (0.98) (1.04) (0.94) (1.38) (6)

UCSV 0.86 0.84 0.87 0.87 0.85 0.85 0.86 0.85 0.86 0.89 0.94 0.88 1.00 8
(0.88) (0.85) (0.88) (0.87) (0.86) (0.86) (0.87) (0.84) (0.88) (0.91) (0.96) (0.89) (1.02) (11)

LASSO 0.83 0.82 0.88 0.83 0.79 0.78 0.80 0.81 0.88 0.92 0.97 0.85 1.24 9
(0.88) (0.84) (0.92) (0.84) (0.83) (0.84) (0.88) (0.83) (0.96) (1.02) (1.08) (0.96) (1.41) (5)

adaLASSO 0.81 0.82 0.87 0.83 0.75 0.75 0.77 0.77 0.85 0.87 0.92 0.82 1.03 13
(0.84) (0.82) (0.86) (0.80) (0.73) (0.77) (0.81) (0.77) (0.90) (0.92) (1.00) (0.89) (1.08) (13)

ElNet 0.81 0.81 0.88 0.83 0.80 0.79 0.82 0.81 0.92 0.92 1.00 0.89 1.26 7
(0.86) (0.84) (0.92) (0.86) (0.86) (0.85) (0.92) (0.83) (1.02) (1.02) (1.14) (1.02) (1.47) (4)

adaElnet 0.81 0.82 0.86 0.80 0.74 0.75 0.77 0.78 0.87 0.87 0.92 0.87 1.06 12
(0.85) (0.83) (0.86) (0.77) (0.73) (0.78) (0.81) (0.78) (0.92) (0.93) (1.00) (0.95) (1.13) (12)

Ridge 0.79 0.77 0.86 0.80 0.76 0.80 0.80 0.80 0.86 0.85 0.88 0.76 0.99 12
(0.83) (0.78) (0.90) (0.81) (0.78) (0.84) (0.85) (0.79) (0.90) (0.92) (0.96) (0.82) (1.15) (12)

BVAR 0.97 0.80 0.92 0.83 0.77 0.84 0.87 0.90 1.00 0.98 1.02 0.88 1.43 6
(1.00) (0.77) (0.96) (0.88) (0.84) (0.93) (0.98) (0.95) (1.12) (1.10) (1.16) (1.01) (1.56) (1)

Bagging 0.85 0.86 1.02 0.92 0.90 0.91 0.90 0.86 0.91 0.91 0.93 0.79 1.02 8
(0.86) (0.87) (1.04) (0.95) (0.93) (0.95) (0.92) (0.82) (0.94) (0.95) (0.99) (0.87) (1.15) (8)

CSR 0.83 0.85 0.89 0.81 0.77 0.76 0.76 0.76 0.85 0.88 0.91 0.81 1.11 10
(0.89) (0.89) (0.92) (0.82) (0.79) (0.81) (0.82) (0.76) (0.91) (0.95) (0.97) (0.89) (1.25) (8)

JMA 0.94 1.01 1.17 0.99 1.03 1.01 1.06 1.03 1.21 1.13 1.13 0.93 1.00 1
(1.00) (1.02) (1.19) (1.01) (1.07) (1.05) (1.06) (1.01) (1.29) (1.19) (1.20) (0.98) (1.08) (2)

Factor 0.87 0.85 0.98 0.90 0.89 0.86 0.84 0.90 1.02 0.97 1.04 0.98 1.51 1
(0.96) (0.92) (1.05) (0.97) (0.92) (0.90) (0.88) (0.91) (1.14) (1.09) (1.15) (1.14) (1.72) (1)

T. Factor 0.87 0.91 1.01 0.98 0.92 0.94 0.86 0.91 1.04 1.02 1.02 0.95 1.62 0
(0.93) (0.98) (1.13) (1.07) (1.02) (1.05) (0.94) (0.93) (1.16) (1.18) (1.15) (1.10) (1.91) (0)

Boosting 0.96 0.90 1.05 0.91 0.88 0.95 0.95 0.97 1.02 0.96 0.97 0.81 1.66 5
(1.09) (0.98) (1.16) (0.98) (0.97) (1.06) (1.06) (1.03) (1.12) (1.06) (1.07) (0.89) (1.92) (3)

RF 0.79 0.78 0.85 0.77 0.73 0.76 0.76 0.77 0.82 0.82 0.85 0.72 0.87 13
(0.82) (0.78) (0.88) (0.77) (0.76) (0.79) (0.78) (0.75) (0.86) (0.86) (0.89) (0.76) (0.94) (12)

Mean 0.80 0.79 0.85 0.79 0.76 0.77 0.77 0.77 0.84 0.84 0.87 0.78 1.02 13
(0.83) (0.81) (0.87) (0.80) (0.79) (0.81) (0.81) (0.76) (0.90) (0.91) (0.94) (0.85) (1.11) (12)

T.Mean 0.80 0.80 0.85 0.79 0.75 0.76 0.77 0.77 0.85 0.84 0.89 0.79 1.04 13
(0.84) (0.82) (0.87) (0.79) (0.77) (0.80) (0.81) (0.78) (0.91) (0.91) (0.97) (0.87) (1.15) (12)

Median 0.80 0.80 0.85 0.79 0.75 0.76 0.77 0.77 0.85 0.85 0.89 0.79 1.05 13
(0.84) (0.83) (0.88) (0.79) (0.78) (0.80) (0.82) (0.77) (0.91) (0.91) (0.97) (0.87) (1.16) (12)

RF/OLS 0.80 0.80 0.86 0.78 0.74 0.77 0.77 0.78 0.85 0.85 0.88 0.76 1.01 13
(0.82) (0.82) (0.89) (0.79) (0.76) (0.81) (0.82) (0.78) (0.90) (0.92) (0.96) (0.83) (1.14) (12)

adaLASSO/RF 0.79 0.81 0.91 0.77 0.72 0.77 0.77 0.77 0.82 0.89 0.90 0.72 0.89 12
(0.84) (0.81) (0.94) (0.77) (0.73) (0.81) (0.81) (0.77) (0.86) (0.94) (0.99) (0.76) (0.95) (12)

RMSE count 12 18 14 16 11 14 10 15 14 18 16 11 13
MAE count (12) (15) (9) (10) (3) (14) (13) (15) (15) (16) (14) (13) (13)

Table 6.9: Forecasting Errors for the CPI from 1990 to 2000
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The table shows the root mean squared error (RMSE), and between parenthesis, the mean
absolute errors (MAE) for all models relative to the random walk (RW). The error measures
were calculated from 132 rolling windows covering the 1990-2000 period and 180 rolling
windows covering the 2001-2015 period. Values in bold show the most accurate model in
each horizon. Cells in gray (blue) show the models included in the 50% model confidence set
(MCS) using the squared error (absolute error) as loss functions. The MCSs were constructed
based on the maximum t-statistic. The last column in the table reports in how many horizons
the row model was included in the MCS for square (absolute) loss. The last two rows in the
table report how many models were included in the MCS for square and absolute losses.

Consumer Price Index 2001–2015
Forecasting Horizon

RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc. RMSE count
(MAE count)

RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (0)

AR 0.92 0.81 0.78 0.80 0.79 0.79 0.78 0.76 0.77 0.81 0.82 0.73 1.21 7
(0.87) (0.78) (0.74) (0.79) (0.80) (0.80) (0.75) (0.75) (0.76) (0.80) (0.79) (0.70) (1.17) (0)

UCSV 0.98 0.81 0.79 0.80 0.77 0.77 0.77 0.76 0.76 0.79 0.81 0.76 0.89 9
(0.93) (0.81) (0.76) (0.77) (0.78) (0.77) (0.77) (0.77) (0.75) (0.76) (0.81) (0.73) (0.85) (5)

LASSO 0.84 0.74 0.71 0.75 0.74 0.74 0.75 0.72 0.74 0.78 0.79 0.70 0.91 13
(0.79) (0.71) (0.67) (0.75) (0.74) (0.72) (0.69) (0.67) (0.69) (0.73) (0.75) (0.65) (0.91) (12)

adaLASSO 0.84 0.75 0.72 0.76 0.75 0.75 0.76 0.74 0.75 0.79 0.81 0.70 0.93 13
(0.80) (0.72) (0.68) (0.76) (0.76) (0.73) (0.71) (0.69) (0.71) (0.75) (0.78) (0.67) (0.92) (11)

ElNet 0.84 0.74 0.71 0.74 0.73 0.74 0.74 0.73 0.73 0.79 0.79 0.70 0.91 13
(0.80) (0.70) (0.67) (0.74) (0.74) (0.72) (0.69) (0.67) (0.69) (0.73) (0.74) (0.64) (0.92) (12)

adaElnet 0.85 0.74 0.72 0.76 0.75 0.75 0.75 0.74 0.74 0.79 0.80 0.70 0.93 12
(0.81) (0.71) (0.68) (0.76) (0.76) (0.73) (0.70) (0.68) (0.70) (0.74) (0.76) (0.67) (0.92) (11)

Ridge 0.86 0.72 0.70 0.75 0.73 0.74 0.74 0.72 0.72 0.76 0.77 0.69 0.86 12
(0.83) (0.70) (0.67) (0.75) (0.75) (0.74) (0.69) (0.68) (0.69) (0.71) (0.73) (0.67) (0.86) (12)

BVAR 0.83 0.75 0.72 0.75 0.74 0.74 0.75 0.74 0.74 0.79 0.79 0.72 0.99 13
(0.81) (0.72) (0.68) (0.75) (0.75) (0.73) (0.69) (0.69) (0.70) (0.73) (0.74) (0.67) (0.93) (12)

Bagging 0.82 0.74 0.72 0.78 0.76 0.77 0.81 0.80 0.76 0.80 0.81 0.73 0.77 11
(0.84) (0.74) (0.71) (0.83) (0.84) (0.82) (0.80) (0.79) (0.76) (0.80) (0.82) (0.74) (0.80) (4)

CSR 0.86 0.75 0.74 0.78 0.78 0.79 0.80 0.77 0.78 0.82 0.83 0.75 1.12 10
(0.82) (0.71) (0.69) (0.78) (0.79) (0.78) (0.74) (0.73) (0.75) (0.78) (0.80) (0.73) (1.07) (5)

JMA 1.00 0.78 0.79 0.83 0.80 0.77 0.89 0.83 0.79 0.91 0.88 0.77 0.84 5
(0.99) (0.78) (0.79) (0.92) (0.91) (0.84) (0.85) (0.82) (0.81) (0.88) (0.87) (0.78) (0.85) (1)

Factor 0.87 0.77 0.75 0.77 0.76 0.77 0.79 0.80 0.79 0.81 0.81 0.74 1.10 9
(0.84) (0.76) (0.72) (0.77) (0.78) (0.76) (0.74) (0.76) (0.78) (0.79) (0.77) (0.69) (1.04) (5)

T. Factor 0.88 0.76 0.74 0.76 0.74 0.76 0.78 0.78 0.76 0.78 0.80 0.74 1.05 9
(0.85) (0.75) (0.71) (0.74) (0.75) (0.76) (0.75) (0.75) (0.74) (0.76) (0.76) (0.69) (1.00) (6)

Boosting 0.95 0.75 0.72 0.76 0.74 0.76 0.77 0.75 0.76 0.81 0.81 0.73 1.03 12
(0.91) (0.72) (0.70) (0.79) (0.78) (0.79) (0.76) (0.75) (0.76) (0.79) (0.79) (0.69) (1.13) (8)

RF 0.86 0.72 0.69 0.73 0.71 0.71 0.71 0.70 0.71 0.75 0.76 0.68 0.74 13
(0.81) (0.70) (0.66) (0.74) (0.71) (0.70) (0.67) (0.66) (0.67) (0.70) (0.72) (0.63) (0.72) (13)

Mean 0.84 0.74 0.72 0.75 0.74 0.74 0.75 0.74 0.73 0.76 0.77 0.69 0.93 13
(0.80) (0.71) (0.69) (0.74) (0.75) (0.73) (0.70) (0.70) (0.70) (0.71) (0.72) (0.65) (0.92) (11)

T.Mean 0.85 0.73 0.71 0.75 0.73 0.74 0.74 0.73 0.73 0.77 0.78 0.70 0.92 13
(0.80) (0.71) (0.67) (0.74) (0.74) (0.72) (0.69) (0.68) (0.69) (0.72) (0.72) (0.64) (0.90) (12)

Median 0.85 0.73 0.71 0.75 0.73 0.74 0.74 0.73 0.73 0.77 0.78 0.70 0.92 13
(0.80) (0.70) (0.67) (0.74) (0.75) (0.72) (0.69) (0.68) (0.69) (0.72) (0.73) (0.65) (0.90) (12)

RF/OLS 0.81 0.72 0.71 0.75 0.74 0.75 0.75 0.73 0.73 0.77 0.78 0.70 0.92 13
(0.78) (0.70) (0.67) (0.75) (0.76) (0.74) (0.70) (0.69) (0.70) (0.73) (0.76) (0.68) (0.91) (12)

adaLASSO/RF 0.87 0.75 0.69 0.72 0.74 0.71 0.72 0.70 0.71 0.77 0.80 0.70 0.77 13
(0.81) (0.70) (0.66) (0.73) (0.74) (0.71) (0.68) (0.65) (0.67) (0.73) (0.75) (0.66) (0.77) (13)

RMSE count 11 17 15 19 18 18 18 17 19 19 20 19 17
MAE count (13) (15) (16) (16) (16) (16) (15) (11) (12) (16) (13) (12) (6)

Table 6.10: Forecasting Errors for the CPI from 2001 to 2015
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Figure 6.7: Variable importance

Data Appendix

In this section, we present a description of the dataset used in this paper.

Tables 6.13–6.20 describe the data and the transformations that were applied

to each variable. Each table considers one of the eight different sectors in

which the variables are grouped. The column tcode denotes the following data

transformation for a series x: (1) no transformation; (2) ∆xt; (3) 2∆2xt; (4)

log(xt); (5) ∆ log(xt); (6) ∆2 log(xt); and (7) ∆(xt/xt−1−1). The FRED column

gives mnemonics in FRED followed by a short description. The comparable

series in global insight is given in the column GS.
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The column tcode denotes the following data transformation for a series x: (1) no

transformation; (2) ∆xt; (3) 2∆2xt; (4) log(xt); (5) ∆ log(xt); (6) ∆2 log(xt); (7) ∆(xt/xt−1−

1). The FRED column gives mnemonics in FRED followed by a short description. The

comparable series in Global Insight is given in the column GS.
Group 1: Output and income

id tcode fred description gsi gsi:description

1 1 5 RPI Real Personal Income M_14386177 PI

2 2 5 W875RX1 Real personal income ex transfer receipts M_145256755 PI less transfers

3 6 5 INDPRO IP Index M_116460980 IP: total

4 7 5 IPFPNSS IP: Final Products and Nonindustrial Supplies M_116460981 IP: products

5 8 5 IPFINAL IP: Final Products (Market Group) M_116461268 IP: final prod

6 9 5 IPCONGD IP: Consumer Goods M_116460982 IP: cons gds

7 10 5 IPDCONGD IP: Durable Consumer Goods M_116460983 IP: cons dble

8 11 5 IPNCONGD IP: Nondurable Consumer Goods M_116460988 IP: cons nondble

9 12 5 IPBUSEQ IP: Business Equipment M_116460995 IP: bus eqpt

10 13 5 IPMAT IP: Materials M_116461002 IP: matls

11 14 5 IPDMAT IP: Durable Materials M_116461004 IP: dble matls

12 15 5 IPNMAT IP: Nondurable Materials M_116461008 IP: nondble matls

13 16 5 IPMANSICS IP: Manufacturing (SIC) M_116461013 IP: mfg

14 17 5 IPB51222s IP: Residential Utilities M_116461276 IP: res util

15 18 5 IPFUELS IP: Fuels M_116461275 IP: fuels

16 19 1 NAPMPI ISM Manufacturing: Production Index M_110157212 NAPM prodn

17 20 2 CUMFNS Capacity Utilization: Manufacturing M_116461602 Cap uti

Table 6.13: Data Description: Output and Income
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The column tcode denotes the following data transformation for a series x: (1) no

transformation; (2) ∆xt; (3) 2∆2xt; (4) log(xt); (5) ∆ log(xt); (6) ∆2 log(xt); (7) ∆(xt/xt−1−

1). The FRED column gives mnemonics in FRED followed by a short description. The

comparable series in Global Insight is given in the column GS.
Group 2: Labor market

id tcode fred description gsi gsi:description

1 21* 2 HWI Help-Wanted Index for United States Help wanted indx

2 22* 2 HWIURATIO Ratio of Help Wanted/No. Unemployed M_110156531 Help wanted/unemp

3 23 5 CLF16OV Civilian Labor Force M_110156467 Emp CPS total

4 24 5 CE16OV Civilian Employment M_110156498 Emp CPS nonag

5 25 2 UNRATE Civilian Unemployment Rate M_110156541 U: all

6 26 2 UEMPMEAN Average Duration of Unemployment (Weeks) M_110156528 U: mean duration

7 27 5 UEMPLT5 Civilians Unemployed - Less Than 5 Weeks M_110156527 U < 5 wks

8 28 5 UEMP5TO14 Civilians Unemployed for 5-14 Weeks M_110156523 U 5-14 wks

9 29 5 UEMP15OV Civilians Unemployed - 15 Weeks & Over M_110156524 U 15+ wks

10 30 5 UEMP15T26 Civilians Unemployed for 15-26 Weeks M_110156525 U 15-26 wks

11 31 5 UEMP27OV Civilians Unemployed for 27 Weeks and Over M_110156526 U 27+ wks

12 32* 5 CLAIMSx Initial Claims M_15186204 UI claims

13 33 5 PAYEMS All Employees: Total nonfarm M_123109146 Emp: total

14 34 5 USGOOD All Employees: Goods-Producing Industries M_123109172 Emp: gds prod

15 35 5 CES1021000001 All Employees: Mining and Logging: Mining M_123109244 Emp: mining

16 36 5 USCONS All Employees: Construction M_123109331 Emp: const

17 37 5 MANEMP All Employees: Manufacturing M_123109542 Emp: mfg

18 38 5 DMANEMP All Employees: Durable goods M_123109573 Emp: dble gds

19 39 5 NDMANEMP All Employees: Nondurable goods M_123110741 Emp: nondbles

20 40 5 SRVPRD All Employees: Service-Providing Industries M_123109193 Emp: services

21 41 5 USTPU All Employees: Trade, Transportation & Utilities M_123111543 Emp: TTU

22 42 5 USWTRADE All Employees: Wholesale Trade M_123111563 Emp: wholesale

23 43 5 USTRADE All Employees: Retail Trade M_123111867 Emp: retail

24 44 5 USFIRE All Employees: Financial Activities M_123112777 Emp: FIRE

25 45 5 USGOVT All Employees: Government M_123114411 Emp: Govt

26 46 1 CES0600000007 Avg Weekly Hours : Goods-Producing M_140687274 Avg hrs

27 47 2 AWOTMAN Avg Weekly Overtime Hours : Manufacturing M_123109554 Overtime: mfg

28 48 1 AWHMAN Avg Weekly Hours : Manufacturing M_14386098 Avg hrs: mfg

29 49 1 NAPMEI ISM Manufacturing: Employment Index M_110157206 NAPM empl

30 127 6 CES0600000008 Avg Hourly Earnings : Goods-Producing M_123109182 AHE: goods

31 128 6 CES2000000008 Avg Hourly Earnings : Construction M_123109341 AHE: const

32 129 6 CES3000000008 Avg Hourly Earnings : Manufacturing M_123109552 AHE: mfg

Table 6.14: Data Description: Labor Market
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The column tcode denotes the following data transformation for a series x: (1) no

transformation; (2) ∆xt; (3) 2∆2xt; (4) log(xt); (5) ∆ log(xt); (6) ∆2 log(xt); (7) ∆(xt/xt−1−

1). The FRED column gives mnemonics in FRED followed by a short description. The

comparable series in Global Insight is given in the column GS.
Group 3: Housing

id tcode fred description gsi gsi:description

1 50 4 HOUST Housing Starts: Total New Privately Owned M_110155536 Starts: nonfarm

2 51 4 HOUSTNE Housing Starts, Northeast M_110155538 Starts: NE

3 52 4 HOUSTMW Housing Starts, Midwest M_110155537 Starts: MW

4 53 4 HOUSTS Housing Starts, South M_110155543 Starts: South

5 54 4 HOUSTW Housing Starts, West M_110155544 Starts: West

6 55 4 PERMIT New Private Housing Permits (SAAR) M_110155532 BP: total

7 56 4 PERMITNE New Private Housing Permits, Northeast (SAAR) M_110155531 BP: NE

8 57 4 PERMITMW New Private Housing Permits, Midwest (SAAR) M_110155530 BP: MW

9 58 4 PERMITS New Private Housing Permits, South (SAAR) M_110155533 BP: South

10 59 4 PERMITW New Private Housing Permits, West (SAAR) M_110155534 BP: West

Table 6.15: Data Description: Housing

The column tcode denotes the following data transformation for a series x: (1) no

transformation; (2) ∆xt; (3) 2∆2xt; (4) log(xt); (5) ∆ log(xt); (6) ∆2 log(xt); (7) ∆(xt/xt−1−

1). The FRED column gives mnemonics in FRED followed by a short description. The

comparable series in Global Insight is given in the column GS.
Group 4: Consumption, orders, and inventories

id tcode fred description gsi gsi:description

1 3 5 DPCERA3M086SBEA Real personal consumption expenditures M_123008274 Real Consumption

2 4* 5 CMRMTSPLx Real Manu. and Trade Industries Sales M_110156998 M&T sales

3 5* 5 RETAILx Retail and Food Services Sales M_130439509 Retail sales

4 60 1 NAPM ISM : PMI Composite Index M_110157208 PMI

5 61 1 NAPMNOI ISM : New Orders Index M_110157210 NAPM new ordrs

6 62 1 NAPMSDI ISM : Supplier Deliveries Index M_110157205 NAPM vendor del

7 63 1 NAPMII ISM : Inventories Index M_110157211 NAPM Invent

8 64 5 ACOGNO New Orders for Consumer Goods M_14385863 Orders: cons gds

9 65* 5 AMDMNOx New Orders for Durable Goods M_14386110 Orders: dble gds

10 66* 5 ANDENOx New Orders for Nondefense Capital Goods M_178554409 Orders: cap gds

11 67* 5 AMDMUOx Unfilled Orders for Durable Goods M_14385946 Unf orders: dble

12 68* 5 BUSINVx Total Business Inventories M_15192014 M&T invent

13 69* 2 ISRATIOx Total Business: Inventories to Sales Ratio M_15191529 M&T invent/sales

14 130* 2 UMCSENTx Consumer Sentiment Index hhsntn Consumer expect

Table 6.16: Data Description: Consumption, Orders and Inventories
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The column tcode denotes the following data transformation for a series x: (1) no

transformation; (2) ∆xt; (3) 2∆2xt; (4) log(xt); (5) ∆ log(xt); (6) ∆2 log(xt); (7) ∆(xt/xt−1−

1). The FRED column gives mnemonics in FRED followed by a short description. The

comparable series in Global Insight is given in the column GS.
Group 5: Money and credit

id tcode fred description gsi gsi:description

1 70 6 M1SL M1 Money Stock M_110154984 M1

2 71 6 M2SL M2 Money Stock M_110154985 M2

3 72 5 M2REAL Real M2 Money Stock M_110154985 M2 (real)

4 73 6 AMBSL St. Louis Adjusted Monetary Base M_110154995 MB

5 74 6 TOTRESNS Total Reserves of Depository Institutions M_110155011 Reserves tot

6 75 7 NONBORRES Reserves Of Depository Institutions M_110155009 Reserves nonbor

7 76 6 BUSLOANS Commercial and Industrial Loans BUSLOANS C&I loan plus

8 77 6 REALLN Real Estate Loans at All Commercial Banks BUSLOANS DC&I loans

9 78 6 NONREVSL Total Nonrevolving Credit M_110154564 Cons credit

10 79* 2 CONSPI Nonrevolving consumer credit to Personal Income M_110154569 Inst cred/PI

11 131 6 MZMSL MZM Money Stock N.A. N.A.

12 132 6 DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding N.A. N.A.

13 133 6 DTCTHFNM Total Consumer Loans and Leases Outstanding N.A. N.A.

14 134 6 INVEST Securities in Bank Credit at All Commercial Banks N.A. N.A.

Table 6.17: Data Description: Money and Credit
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The column tcode denotes the following data transformation for a series x: (1) no

transformation; (2) ∆xt; (3) 2∆2xt; (4) log(xt); (5) ∆ log(xt); (6) ∆2 log(xt); (7) ∆(xt/xt−1−

1). The FRED column gives mnemonics in FRED followed by a short description. The

comparable series in Global Insight is given in the column GS.
Group 6: Interest and exchange rates

id tcode fred description gsi gsi:description

1 84 2 FEDFUNDS Effective Federal Funds Rate M_110155157 Fed Funds

2 85* 2 CP3Mx 3-Month AA Financial Commercial Paper Rate CPF3M Comm paper

3 86 2 TB3MS 3-Month Treasury Bill: M_110155165 3 mo T-bill

4 87 2 TB6MS 6-Month Treasury Bill: M_110155166 6 mo T-bill

5 88 2 GS1 1-Year Treasury Rate M_110155168 1 yr T-bond

6 89 2 GS5 5-Year Treasury Rate M_110155174 5 yr T-bond

7 90 2 GS10 10-Year Treasury Rate M_110155169 10 yr T-bond

8 91 2 AAA Moody’s Seasoned Aaa Corporate Bond Yield Aaa bond

9 92 2 BAA Moody’s Seasoned Baa Corporate Bond Yield Baa bond

10 93* 1 COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS CP-FF spread

11 94 1 TB3SMFFM 3-Month Treasury C Minus FEDFUNDS 3 mo-FF spread

12 95 1 TB6SMFFM 6-Month Treasury C Minus FEDFUNDS 6 mo-FF spread

13 96 1 T1YFFM 1-Year Treasury C Minus FEDFUNDS 1 yr-FF spread

14 97 1 T5YFFM 5-Year Treasury C Minus FEDFUNDS 5 yr-FF spread

15 98 1 T10YFFM 10-Year Treasury C Minus FEDFUNDS 10 yr-FF spread

16 99 1 AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS Aaa-FF spread

17 100 1 BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS Baa-FF spread

18 101 5 TWEXMMTH Trade Weighted U.S. Dollar Index: Major Currencies Ex rate: avg

19 102 * 5 EXSZUSx Switzerland / U.S. Foreign Exchange Rate M_110154768 Ex rate: Switz

20 103 * 5 EXJPUSx Japan / U.S. Foreign Exchange Rate M_110154755 Ex rate: Japan

21 104 * 5 EXUSUKx U.S. / U.K. Foreign Exchange Rate M_110154772 Ex rate: UK

22 105 * 5 EXCAUSx Canada / U.S. Foreign Exchange Rate M_110154744 Ex rate: Canada

Table 6.18: Data Description: Interest and Exchange Rates

DBD
PUC-Rio - Certificação Digital Nº 1421640/CA



Chapter 6. Forecasting Inflation in a Data-Rich Environment: The Benefits of
Machine Learning Methods 141

The column tcode denotes the following data transformation for a series x: (1) no

transformation; (2) ∆xt; (3) 2∆2xt; (4) log(xt); (5) ∆ log(xt); (6) ∆2 log(xt); (7) ∆(xt/xt−1−

1). The FRED column gives mnemonics in FRED followed by a short description. The

comparable series in Global Insight is given in the column GS.
Group 7: Prices

id tcode fred description gsi gsi:description

1 106 6 WPSFD49207 PPI: Finished Goods M110157517 PPI: fin gds

2 107 6 WPSFD49502 PPI: Finished Consumer Goods M110157508 PPI: cons gds

3 108 6 WPSID61 PPI: Intermediate Materials M_110157527 PPI: int matls

4 109 6 WPSID62 PPI: Crude Materials M_110157500 PPI: crude matls

5 110* 6 OILPRICEx Crude Oil, spliced WTI and Cushing M_110157273 Spot market price

6 111 6 PPICMM PPI: Metals and metal products M_110157335 PPI: nonferrous

7 112 1 NAPMPRI ISM Manufacturing: Prices Index M_110157204 NAPM com price

8 113 6 CPIAUCSL CPI : All Items M_110157323 CPI-U: all

9 114 6 CPIAPPSL CPI : Apparel M_110157299 CPI-U: apparel

10 115 6 CPITRNSL CPI : Transportation M_110157302 CPI-U: transp

11 116 6 CPIMEDSL CPI : Medical Care M_110157304 CPI-U: medical

12 117 6 CUSR0000SAC CPI : Commodities M_110157314 CPI-U: comm.

13 118 6 CUUR0000SAD CPI : Durables M_110157315 CPI-U: dbles

14 119 6 CUSR0000SAS CPI : Services M_110157325 CPI-U: services

15 120 6 CPIULFSL CPI : All Items Less Food M_110157328 CPI-U: ex food

16 121 6 CUUR0000SA0L2 CPI : All items less shelter M_110157329 CPI-U: ex shelter

17 122 6 CUSR0000SA0L5 CPI : All items less medical care M_110157330 CPI-U: ex med

18 123 6 PCEPI Personal Cons. Expend.: Chain Index gmdc PCE defl

19 124 6 DDURRG3M086SBEA Personal Cons. Exp: Durable goods gmdcd PCE defl: dlbes

20 125 6 DNDGRG3M086SBEA Personal Cons. Exp: Nondurable goods gmdcn PCE defl: nondble

21 126 6 DSERRG3M086SBEA Personal Cons. Exp: Services gmdcs PCE defl: service

Table 6.19: Data Description: Prices

The column tcode denotes the following data transformation for a series x: (1) no

transformation; (2) ∆xt; (3) 2∆2xt; (4) log(xt); (5) ∆ log(xt); (6) ∆2 log(xt); (7) ∆(xt/xt−1−

1). The FRED column gives mnemonics in FRED followed by a short description. The

comparable series in Global Insight is given in the column GS.
Group 8: Stock Market

id tcode fred description gsi gsi:description

1 80* 5 S&P 500 S&P’s Common Stock Price Index: Composite M_110155044 S&P 500

2 81* 5 S&P: indust S&P’s Common Stock Price Index: Industrials M_110155047 S&P: indust

3 82* 2 S&P div yield S&P’s Composite Common Stock: Dividend Yield S&P div yield

4 83* 5 S&P PE ratio S&P’s Composite Common Stock: Price-Earnings Ratio S&P PE ratio

5 135* 1 VXOCLSx VXO

Table 6.20: Data Description: Stock Market
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Appendix Models

For all models, with the exception of the RW and UCSV specifications, we

include a dummy for the November 2008, when a huge deflation was observed.

This appendix was removed because all the information concerning models was

discussed in chapter 2.

Appendix Additional Results

Variable Selection: Word Clouds

This Appendix presents the variable selection for several models as word

clouds. In the present context, a word cloud is an image composed of the

names of variables selected by a specific model across the estimation windows

in which the size of each word indicates its frequency or importance. The names

displayed in the clouds are as defined in the third column of Tables 6.13–6.20.

These names represent FRED mnemonics. The clouds also indicate the degree

of sparsity of each model. For instance, the smaller the cloud is, the more

sparse the model is.

Figures 6.8 and 6.9 display the word clouds for the linear model estimated

with the adaLASSO method for the first and second subsamples, respectively.

In each figure, panel (a) shows the cloud for one-month-ahead models (h = 1),

panel (b) presents the results for the three-month horizon (h = 3), and

panels (c) and (d) consider the cases for h = 6 and h = 12, respectively.

A number of findings emerge from the word clouds. First, as expected, the

adaLASSO method delivers very sparse methods, and this did not change

much according to the subsample considered. Second, the models across

different horizons, as shown before, are quite different. For example, in the

first subsample and for h = 1, the three variables that stand out from the

cloud are CUSR0000SAOL5 (CPI: all items less medical care), WPSFD49207
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(PPI: finished goods), and DSERRG3M086SBEA (PCE: Services). However,

for h = 12, the most important variables are AMDMUOx (unfilled orders for

durable goods) and HOUSTMW (Housing starts, Midwest). Finally, the pool

of selected variables also changes from the first to the second sample, specially

for h = 1. In this case, oil prices turn out to be one of the most relevant

variables.

Figures 6.10 and 6.11 shows the word clouds for the RF model. From the

pictures it is clear that the number of important variables are much higher. As

in the adaLASSO case, the variable composition changes from the first to the

second subsample.
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Figure 6.8: Word clouds for the adaLASSO method (1990–2000).
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Figure 6.9: Word clouds for the adaLASSO method (2001–2015).
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Figure 6.10: Word clouds for the Random Forest model (1990-2000).
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Figure 6.11: Word clouds for the Random Forest model (2001—2015).

Additional Results: Personal Consumption Expenditure (PCE)

In this section, we report forecasting results for PCE. The main message

is similar to the one described in the main text: RF models outperform

traditional benchmarks as well as other linear ML methods.

In Tables 6.21–6.23, we report for each model a number of different

summary statistics across all the forecasting horizons, including the

accumulated twelve-month horizon for the full out-of-sample period

(1990–2015) as well as for the two subsamples considered, namely, 1990–2000

and 2001–2015. Columns (1), (2) and (3) report the RMSE, the MAE and

the MAD, respectively. In columns (4), (5) and (6) we report the number of
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times (across horizons) each model achieved the lowest RMSE, MAE, and

MAD, respectively. Columns (7)–(10) present, for square and absolute losses,

the average p-values based either on the range or the tmax statistics as

described in (55). Columns (11) and (12) show the average p-values of the

SPA test proposed by (83). Finally, columns (13) and (14) display the p-value

of the multi-horizon test for superior predictive ability proposed by (84). The

superiority of the RF models is clear from the tables.

Tables 6.24–6.26 show the RMSE and, in parenthesis, the MAE for all

models relative to the RW. The error measures were calculated from 132 rolling

windows covering the 1990-2015 period and 180 rolling windows covering the

2001-2015 period. Values in bold show the most accurate model in each horizon.

Cells in gray (blue) show the models included in the 50% MCS using the

squared error (absolute error) as loss function. The MCSs were constructed

based on the maximum t statistic. The last column in the table reports in how

many horizons the row model was included in the MCS for square (absolute)

loss. The last two rows in the table report how many models were included

in the MCS for square and absolute losses. Again, the performance of the RF

model is remarkable.
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Additional Results: CPI-Core

In this section, we report forecasting results for the Core of the Consumer

Price Index. The CPI-Core series exhibits a dynamics quite different from the

other two inflation indexes reported before. More specifically there is a clear

seasonal patern in the series.

In Tables 6.27–6.29, we report for each model a number of different

summary statistics across all the forecasting horizons, including the

accumulated twelve-month horizon for the full out-of-sample period

(1990–2015) as well as for the two subsamples considered, namely, 1990–2000

and 2001–2015. Columns (1), (2) and (3) report the RMSE, the MAE and

the MAD, respectively. In columns (4), (5) and (6) we report the number of

times (across horizons) each model achieved the lowest RMSE, MAE, and

MAD, respectively. Columns (7)–(10) present, for square and absolute losses,

the average p-values based either on the range or the tmax statistics as

described in (55). Columns (11) and (12) show the average p-values of the

SPA test proposed by (83). Finally, columns (13) and (14) display the p-value

of the multi-horizon test for superior predictive ability proposed by (84).

Tables 6.30–6.32 show the RMSE and, in parenthesis, the MAE for all

models relative to the RW. The error measures were calculated from 132 rolling

windows covering the 1990-2015 period and 180 rolling windows covering the

2001-2015 period. Values in bold show the most accurate model in each horizon.

Cells in gray (blue) show the models included in the 50% MCS using the

squared error (absolute error) as loss function. The MCSs were constructed

based on the maximum t statistic. The last column in the table reports in how

many horizons the row model was included in the MCS for square (absolute)

loss. The last two rows in the table report how many models were included in

the MCS for square and absolute losses.
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The table shows the root mean squared error (RMSE) and, between parenthesis, the mean
absolute errors (MAE) for all models relative to the RandomWalk (RW). The error measures
were calculated from 132 rolling windows covering the 1990-2015 period and 180 rolling
windows covering the 2001-2015 period. Values in bold show the most accurate model in
each horizon. Cells in gray (blue) show the models included in the 50% model confidence set
(MCS) using the squared error (absolute error) as loss function. The MCSs were constructed
based on the maximum t-statistic. The last column in the table reports in how many horizons
the row model was included in the MCS for square (absolute) loss. The last two rows in the
table reports how many models were included in the MCS for square and absolute losses.

Personal Consumer Expenditure 1990–2015
Forecasting Horizon

RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc. RMSE count
(MAE count)

RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (0)

AR 0.89 0.83 0.82 0.84 0.82 0.80 0.79 0.78 0.82 0.84 0.87 0.80 0.96 7
(0.87) (0.81) (0.79) (0.83) (0.82) (0.81) (0.79) (0.75) (0.82) (0.84) (0.89) (0.82) (0.91) (3)

UCSV 0.94 0.86 0.84 0.86 0.84 0.83 0.83 0.82 0.83 0.84 0.86 0.83 0.85 5
(0.92) (0.86) (0.82) (0.85) (0.84) (0.83) (0.84) (0.82) (0.84) (0.84) (0.90) (0.83) (0.90) (0)

LASSO 0.83 0.78 0.75 0.79 0.78 0.78 0.78 0.77 0.81 0.82 0.84 0.76 0.79 9
(0.80) (0.77) (0.73) (0.80) (0.81) (0.79) (0.78) (0.73) (0.80) (0.81) (0.86) (0.77) (0.77) (7)

adaLASSO 0.84 0.79 0.77 0.80 0.79 0.78 0.78 0.79 0.82 0.82 0.84 0.76 0.83 9
(0.82) (0.78) (0.74) (0.80) (0.79) (0.77) (0.77) (0.74) (0.80) (0.80) (0.85) (0.77) (0.82) (6)

ElNet 0.83 0.78 0.75 0.79 0.78 0.78 0.77 0.77 0.81 0.82 0.85 0.76 0.79 9
(0.80) (0.77) (0.73) (0.81) (0.81) (0.80) (0.78) (0.74) (0.81) (0.81) (0.87) (0.78) (0.78) (6)

adaElnet 0.84 0.79 0.76 0.80 0.79 0.78 0.78 0.78 0.82 0.82 0.84 0.76 0.83 9
(0.83) (0.79) (0.74) (0.80) (0.80) (0.78) (0.77) (0.74) (0.80) (0.81) (0.86) (0.77) (0.81) (5)

Ridge 0.85 0.76 0.76 0.79 0.76 0.77 0.76 0.75 0.79 0.78 0.81 0.74 0.77 13
(0.83) (0.75) (0.73) (0.78) (0.79) (0.78) (0.75) (0.72) (0.79) (0.78) (0.83) (0.75) (0.77) (9)

BVAR 0.90 0.80 0.79 0.81 0.79 0.80 0.81 0.82 0.86 0.87 0.90 0.83 0.90 5
(0.89) (0.78) (0.79) (0.83) (0.83) (0.84) (0.83) (0.82) (0.89) (0.89) (0.94) (0.87) (0.89) (3)

Bagging 0.87 0.78 0.78 0.83 0.82 0.81 0.82 0.80 0.83 0.81 0.84 0.76 0.76 8
(0.86) (0.76) (0.76) (0.86) (0.90) (0.86) (0.83) (0.80) (0.86) (0.83) (0.88) (0.78) (0.82) (4)

CSR 0.85 0.78 0.77 0.80 0.78 0.79 0.79 0.78 0.82 0.84 0.87 0.81 0.90 11
(0.82) (0.78) (0.74) (0.80) (0.79) (0.78) (0.76) (0.73) (0.80) (0.82) (0.87) (0.81) (0.87) (8)

JMA 0.95 0.88 0.84 0.89 0.87 0.84 0.88 0.85 0.92 0.87 0.91 0.82 0.79 2
(0.94) (0.91) (0.85) (0.97) (0.97) (0.91) (0.91) (0.86) (0.97) (0.92) (0.95) (0.88) (0.83) (1)

Factor 0.89 0.84 0.83 0.84 0.83 0.84 0.83 0.83 0.87 0.87 0.89 0.85 0.95 0
(0.87) (0.84) (0.83) (0.84) (0.85) (0.85) (0.84) (0.81) (0.89) (0.88) (0.90) (0.88) (0.92) (0)

T. Factor 0.90 0.83 0.81 0.81 0.81 0.81 0.80 0.80 0.83 0.84 0.85 0.82 0.92 2
(0.91) (0.85) (0.82) (0.80) (0.83) (0.83) (0.81) (0.77) (0.84) (0.86) (0.87) (0.84) (0.90) (1)

Boosting 0.99 0.83 0.82 0.84 0.82 0.84 0.84 0.84 0.87 0.86 0.88 0.81 0.91 7
(1.00) (0.83) (0.83) (0.89) (0.89) (0.89) (0.88) (0.85) (0.91) (0.88) (0.92) (0.83) (1.02) (1)

RF 0.86 0.76 0.74 0.76 0.73 0.73 0.72 0.72 0.75 0.75 0.78 0.71 0.67 13
(0.82) (0.74) (0.73) (0.77) (0.77) (0.75) (0.72) (0.68) (0.73) (0.74) (0.78) (0.70) (0.63) (13)

Mean 0.84 0.77 0.76 0.78 0.77 0.77 0.76 0.75 0.78 0.78 0.80 0.75 0.80 13
(0.81) (0.77) (0.73) (0.78) (0.78) (0.77) (0.76) (0.71) (0.77) (0.77) (0.81) (0.75) (0.77) (10)

T.Mean 0.84 0.77 0.75 0.78 0.77 0.76 0.76 0.75 0.78 0.79 0.81 0.75 0.80 13
(0.81) (0.76) (0.73) (0.78) (0.78) (0.77) (0.75) (0.71) (0.77) (0.77) (0.82) (0.75) (0.77) (10)

Median 0.83 0.77 0.75 0.78 0.77 0.77 0.76 0.76 0.78 0.79 0.81 0.75 0.79 13
(0.81) (0.76) (0.73) (0.78) (0.78) (0.77) (0.75) (0.71) (0.77) (0.77) (0.82) (0.75) (0.77) (10)

RF/OLS 0.82 0.76 0.75 0.78 0.76 0.76 0.76 0.76 0.79 0.79 0.82 0.76 0.82 13
(0.80) (0.76) (0.73) (0.78) (0.78) (0.78) (0.75) (0.72) (0.79) (0.79) (0.85) (0.78) (0.82) (9)

adaLASSO/RF 0.85 0.79 0.75 0.76 0.74 0.74 0.72 0.72 0.76 0.76 0.80 0.74 0.70 13
(0.81) (0.78) (0.73) (0.78) (0.77) (0.75) (0.72) (0.68) (0.74) (0.76) (0.81) (0.73) (0.68) (11)

RMSE count 13 16 13 16 16 17 8 8 16 18 7 8 18
MAE count (10) (16) (13) (15) (14) (11) (7) (8) (1) (3) (1) (8) (10)

Table 6.24: Forecasting Errors for the PCE from 1990 to 2015
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The table shows the root mean squared error (RMSE) and, between parenthesis, the mean
absolute errors (MAE) for all models relative to the RandomWalk (RW). The error measures
were calculated from 132 rolling windows covering the 1990-2015 period and 180 rolling
windows covering the 2001-2015 period. Values in bold show the most accurate model in
each horizon. Cells in gray (blue) show the models included in the 50% model confidence set
(MCS) using the squared error (absolute error) as loss function. The MCSs were constructed
based on the maximum t-statistic. The last column in the table reports in how many horizons
the row model was included in the MCS for square (absolute) loss. The last two rows in the
table reports how many models were included in the MCS for square and absolute losses.

Personal Consumer Expenditure 1990–2000
Forecasting Horizon

RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc. RMSE count
(MAE count)

RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 3
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (2)

AR 0.84 0.80 0.86 0.82 0.79 0.80 0.83 0.84 0.90 0.86 0.95 0.92 0.82 12
(0.86) (0.79) (0.88) (0.85) (0.79) (0.84) (0.89) (0.80) (0.89) (0.90) (1.00) (0.98) (0.84) (11)

UCSV 0.89 0.85 0.86 0.88 0.85 0.84 0.86 0.87 0.89 0.87 0.90 0.89 1.04 12
(0.90) (0.84) (0.87) (0.88) (0.84) (0.85) (0.89) (0.86) (0.86) (0.87) (0.93) (0.89) (1.15) (11)

LASSO 0.83 0.83 0.86 0.89 0.85 0.88 0.89 0.89 0.96 0.88 0.95 0.88 0.78 8
(0.83) (0.82) (0.87) (0.94) (0.89) (0.93) (1.00) (0.86) (0.96) (0.91) (1.02) (0.95) (0.81) (6)

adaLASSO 0.84 0.84 0.86 0.85 0.81 0.83 0.86 0.88 0.93 0.83 0.90 0.87 0.82 10
(0.84) (0.83) (0.87) (0.87) (0.82) (0.85) (0.92) (0.83) (0.91) (0.85) (0.94) (0.92) (0.85) (11)

ElNet 0.80 0.83 0.87 0.90 0.86 0.89 0.92 0.91 0.95 0.88 1.00 0.91 0.80 7
(0.81) (0.83) (0.89) (0.97) (0.92) (0.96) (1.02) (0.88) (0.96) (0.92) (1.08) (0.98) (0.83) (2)

adaElnet 0.85 0.84 0.86 0.86 0.80 0.84 0.86 0.88 0.95 0.84 0.92 0.88 0.80 8
(0.86) (0.84) (0.87) (0.90) (0.82) (0.87) (0.93) (0.84) (0.93) (0.87) (0.97) (0.94) (0.83) (6)

Ridge 0.82 0.77 0.85 0.83 0.78 0.82 0.83 0.84 0.90 0.83 0.91 0.84 0.76 13
(0.82) (0.75) (0.86) (0.85) (0.82) (0.87) (0.90) (0.80) (0.90) (0.87) (0.96) (0.87) (0.80) (13)

BVAR 0.99 0.83 0.95 0.91 0.87 0.94 1.02 1.07 1.15 1.05 1.16 1.10 1.11 6
(1.00) (0.80) (1.00) (0.99) (0.95) (1.05) (1.14) (1.08) (1.22) (1.15) (1.29) (1.22) (1.17) (2)

Bagging 0.85 0.82 0.94 0.90 0.86 0.86 0.84 0.83 0.91 0.86 0.97 0.89 1.09 12
(0.85) (0.80) (0.95) (0.94) (0.93) (0.92) (0.91) (0.80) (0.90) (0.88) (1.00) (0.91) (1.19) (9)

CSR 0.83 0.83 0.86 0.81 0.76 0.78 0.80 0.81 0.87 0.83 0.90 0.85 0.81 13
(0.83) (0.81) (0.87) (0.83) (0.78) (0.80) (0.85) (0.76) (0.86) (0.86) (0.93) (0.89) (0.87) (13)

JMA 0.94 1.00 1.06 1.04 1.00 0.92 1.02 1.01 1.17 1.00 1.08 1.00 1.09 4
(0.97) (1.03) (1.10) (1.06) (1.06) (0.95) (1.11) (0.92) (1.15) (1.03) (1.06) (0.99) (1.16) (2)

Factor 0.89 0.89 0.96 0.88 0.86 0.92 0.91 0.92 1.05 0.98 1.05 1.04 0.96 3
(0.91) (0.89) (1.01) (0.89) (0.87) (0.95) (0.98) (0.89) (1.09) (1.04) (1.10) (1.13) (1.04) (1)

T. Factor 0.95 0.91 1.01 0.84 0.83 0.88 0.89 0.88 1.00 0.96 0.99 0.97 0.94 6
(0.96) (0.91) (1.07) (0.85) (0.84) (0.91) (0.98) (0.86) (1.01) (1.01) (1.03) (1.02) (1.02) (3)

Boosting 0.99 0.90 1.01 0.96 0.91 0.98 1.00 1.04 1.06 0.94 0.99 0.92 1.09 6
(1.03) (0.91) (1.09) (1.02) (0.97) (1.05) (1.09) (1.01) (1.06) (0.96) (1.03) (0.94) (1.30) (4)

RF 0.82 0.77 0.86 0.83 0.78 0.80 0.80 0.81 0.84 0.78 0.85 0.79 0.67 13
(0.82) (0.77) (0.90) (0.87) (0.81) (0.85) (0.85) (0.76) (0.82) (0.80) (0.90) (0.82) (0.63) (12)

Mean 0.82 0.79 0.84 0.82 0.78 0.80 0.81 0.81 0.88 0.82 0.87 0.84 0.74 13
(0.83) (0.79) (0.85) (0.84) (0.79) (0.83) (0.88) (0.77) (0.86) (0.84) (0.92) (0.88) (0.74) (13)

T.Mean 0.82 0.80 0.85 0.82 0.79 0.80 0.82 0.83 0.90 0.82 0.89 0.85 0.75 13
(0.83) (0.79) (0.86) (0.84) (0.80) (0.83) (0.89) (0.79) (0.88) (0.85) (0.94) (0.90) (0.76) (13)

Median 0.82 0.80 0.84 0.82 0.79 0.81 0.83 0.84 0.90 0.82 0.89 0.85 0.75 13
(0.83) (0.79) (0.85) (0.85) (0.81) (0.83) (0.89) (0.79) (0.89) (0.85) (0.94) (0.90) (0.76) (13)

RF/OLS 0.81 0.77 0.83 0.80 0.76 0.79 0.80 0.83 0.87 0.80 0.87 0.83 0.81 13
(0.81) (0.76) (0.84) (0.82) (0.79) (0.84) (0.87) (0.78) (0.86) (0.84) (0.93) (0.87) (0.89) (13)

adaLASSO/RF 0.81 0.89 0.91 0.87 0.81 0.82 0.84 0.81 0.85 0.79 0.90 0.84 0.71 11
(0.82) (0.87) (0.94) (0.90) (0.83) (0.87) (0.89) (0.77) (0.84) (0.83) (0.94) (0.87) (0.71) (10)

RMSE count 13 15 14 16 17 20 11 12 11 15 18 16 21
MAE count (12) (14) (11) (11) (13) (13) (11) (11) (12) (15) (18) (13) (16)

Table 6.25: Forecasting Errors for the PCE from 1990 to 2000
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The table shows the root mean squared error (RMSE) and, between parenthesis, the mean
absolute errors (MAE) for all models relative to the RandomWalk (RW). The error measures
were calculated from 132 rolling windows covering the 2001-2015 period and 180 rolling
windows covering the 2001-2015 period. Values in bold show the most accurate model in
each horizon. Cells in gray (blue) show the models included in the 50% model confidence set
(MCS) using the squared error (absolute error) as loss function. The MCSs were constructed
based on the maximum t-statistic. The last column in the table reports in how many horizons
the row model was included in the MCS for square (absolute) loss. The last two rows in the
table reports how many models were included in the MCS for square and absolute losses.

Personal Consumer Expenditure 1990–2015
Forecasting Horizon

RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc. RMSE count
(MAE count)

RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (0)

AR 0.91 0.84 0.81 0.84 0.82 0.80 0.79 0.77 0.80 0.83 0.85 0.77 0.99 8
(0.88) (0.82) (0.75) (0.82) (0.83) (0.79) (0.74) (0.72) (0.78) (0.81) (0.83) (0.74) (0.93) (0)

UCSV 0.96 0.86 0.84 0.86 0.83 0.83 0.82 0.81 0.82 0.83 0.85 0.81 0.81 3
(0.94) (0.87) (0.81) (0.84) (0.84) (0.83) (0.82) (0.81) (0.83) (0.83) (0.88) (0.80) (0.81) (1)

LASSO 0.83 0.77 0.73 0.77 0.76 0.76 0.75 0.75 0.78 0.80 0.81 0.73 0.79 13
(0.79) (0.74) (0.67) (0.74) (0.77) (0.72) (0.69) (0.68) (0.73) (0.76) (0.78) (0.68) (0.76) (11)

adaLASSO 0.84 0.77 0.74 0.78 0.78 0.77 0.76 0.77 0.79 0.81 0.83 0.73 0.83 13
(0.80) (0.76) (0.69) (0.77) (0.78) (0.74) (0.71) (0.70) (0.74) (0.78) (0.81) (0.70) (0.80) (10)

ElNet 0.84 0.76 0.72 0.76 0.76 0.75 0.74 0.74 0.78 0.80 0.81 0.72 0.78 13
(0.80) (0.74) (0.67) (0.73) (0.76) (0.72) (0.68) (0.67) (0.74) (0.76) (0.78) (0.68) (0.76) (12)

adaElnet 0.84 0.78 0.74 0.78 0.79 0.77 0.76 0.76 0.79 0.81 0.82 0.73 0.83 13
(0.81) (0.76) (0.68) (0.76) (0.78) (0.74) (0.71) (0.69) (0.75) (0.78) (0.81) (0.70) (0.80) (9)

Ridge 0.87 0.76 0.73 0.77 0.76 0.75 0.74 0.73 0.76 0.77 0.78 0.71 0.77 13
(0.84) (0.74) (0.67) (0.75) (0.78) (0.75) (0.69) (0.68) (0.74) (0.74) (0.76) (0.70) (0.76) (11)

BVAR 0.85 0.79 0.75 0.78 0.77 0.77 0.76 0.76 0.79 0.81 0.82 0.76 0.85 12
(0.83) (0.77) (0.70) (0.76) (0.77) (0.74) (0.69) (0.70) (0.75) (0.76) (0.78) (0.71) (0.80) (12)

Bagging 0.88 0.76 0.74 0.81 0.81 0.79 0.82 0.79 0.81 0.80 0.81 0.73 0.68 11
(0.87) (0.75) (0.69) (0.82) (0.88) (0.83) (0.80) (0.80) (0.84) (0.80) (0.82) (0.72) (0.70) (5)

CSR 0.86 0.77 0.75 0.79 0.79 0.79 0.79 0.77 0.81 0.84 0.86 0.80 0.92 10
(0.81) (0.76) (0.68) (0.79) (0.80) (0.77) (0.73) (0.71) (0.77) (0.81) (0.84) (0.77) (0.87) (6)

JMA 0.96 0.84 0.78 0.85 0.83 0.82 0.84 0.82 0.86 0.83 0.86 0.77 0.72 6
(0.92) (0.84) (0.75) (0.92) (0.93) (0.89) (0.82) (0.83) (0.89) (0.87) (0.91) (0.83) (0.73) (1)

Factor 0.89 0.83 0.80 0.83 0.82 0.81 0.81 0.81 0.83 0.83 0.84 0.80 0.95 4
(0.85) (0.82) (0.75) (0.82) (0.83) (0.80) (0.78) (0.77) (0.80) (0.80) (0.81) (0.77) (0.88) (1)

T. Factor 0.88 0.80 0.76 0.80 0.80 0.79 0.78 0.78 0.79 0.80 0.82 0.78 0.91 8
(0.88) (0.81) (0.72) (0.78) (0.82) (0.80) (0.74) (0.74) (0.77) (0.78) (0.80) (0.76) (0.86) (2)

Boosting 1.00 0.80 0.77 0.81 0.79 0.80 0.80 0.79 0.82 0.84 0.85 0.79 0.87 11
(0.98) (0.79) (0.73) (0.82) (0.84) (0.82) (0.79) (0.78) (0.85) (0.84) (0.87) (0.78) (0.93) (3)

RF 0.88 0.76 0.71 0.74 0.72 0.71 0.70 0.70 0.73 0.74 0.76 0.70 0.67 13
(0.82) (0.73) (0.66) (0.73) (0.74) (0.71) (0.67) (0.65) (0.70) (0.71) (0.72) (0.64) (0.63) (13)

Mean 0.85 0.76 0.74 0.77 0.77 0.76 0.75 0.74 0.76 0.77 0.78 0.72 0.81 13
(0.81) (0.75) (0.68) (0.75) (0.77) (0.74) (0.71) (0.68) (0.73) (0.73) (0.76) (0.69) (0.78) (11)

T.Mean 0.84 0.76 0.73 0.77 0.76 0.75 0.74 0.74 0.76 0.78 0.79 0.72 0.80 13
(0.80) (0.75) (0.67) (0.75) (0.77) (0.73) (0.69) (0.67) (0.72) (0.74) (0.76) (0.68) (0.77) (12)

Median 0.84 0.76 0.73 0.77 0.76 0.76 0.74 0.74 0.76 0.78 0.79 0.72 0.80 13
(0.80) (0.75) (0.68) (0.75) (0.76) (0.74) (0.69) (0.67) (0.72) (0.74) (0.76) (0.68) (0.77) (13)

RF/OLS 0.83 0.76 0.74 0.78 0.76 0.76 0.75 0.74 0.77 0.78 0.81 0.74 0.82 13
(0.80) (0.75) (0.68) (0.76) (0.78) (0.75) (0.70) (0.69) (0.76) (0.77) (0.81) (0.74) (0.80) (11)

adaLASSO/RF 0.86 0.75 0.71 0.73 0.73 0.72 0.69 0.70 0.74 0.76 0.78 0.71 0.69 13
(0.81) (0.73) (0.65) (0.73) (0.74) (0.70) (0.66) (0.64) (0.70) (0.72) (0.75) (0.67) (0.67) (13)

RMSE count 15 16 18 17 20 16 15 15 18 20 17 13 16
MAE count (12) (15) (15) (9) (12) (12) (11) (13) (3) (16) (10) (13) (16)

Table 6.26: Forecasting Errors for the PCE from 2001 to 2015
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The table shows the root mean squared error (RMSE) and, between parenthesis, the mean
absolute errors (MAE) for all models relative to the RandomWalk (RW). The error measures
were calculated from 132 rolling windows covering the 1990-2015 period and 180 rolling
windows covering the 2001-2015 period. Values in bold show the most accurate model in
each horizon. Cells in gray (blue) show the models included in the 50% model confidence set
(MCS) using the squared error (absolute error) as loss function. The MCSs were constructed
based on the maximum t-statistic. The last column in the table reports in how many horizons
the row model was included in the MCS for square (absolute) loss. The last two rows in the
table reports how many models were included in the MCS for square and absolute losses.

Consumer Price Index (Core) 1990–2015
Forecasting Horizon

RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc. RMSE count
(MAE count)

RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (2)

AR 0.87 0.69 0.59 0.62 0.79 0.93 0.90 0.68 0.47 0.49 0.67 1.21 1.96 4
(0.92) (0.70) (0.59) (0.62) (0.80) (0.91) (0.85) (0.63) (0.45) (0.49) (0.70) (1.27) (2.09) (2)

UCSV 0.96 0.80 0.76 0.77 0.86 0.96 0.93 0.84 0.76 0.73 0.82 1.38 1.02 1
(1.03) (0.80) (0.74) (0.76) (0.87) (0.93) (0.90) (0.80) (0.74) (0.74) (0.84) (1.38) (1.01) (1)

LASSO 0.85 0.66 0.62 0.69 0.86 0.97 0.90 0.72 0.54 0.58 0.80 1.39 1.90 0
(0.92) (0.66) (0.60) (0.68) (0.85) (0.93) (0.86) (0.68) (0.52) (0.57) (0.83) (1.43) (2.06) (0)

adaLASSO 0.84 0.65 0.59 0.66 0.84 0.94 0.89 0.73 0.51 0.52 0.72 1.24 1.64 0
(0.89) (0.65) (0.57) (0.65) (0.82) (0.90) (0.85) (0.68) (0.48) (0.51) (0.74) (1.27) (1.62) (1)

ElNet 0.86 0.67 0.61 0.68 0.86 0.98 0.89 0.72 0.55 0.59 0.83 1.46 1.94 0
(0.92) (0.67) (0.60) (0.67) (0.85) (0.94) (0.85) (0.68) (0.53) (0.58) (0.85) (1.49) (2.12) (0)

adaElnet 0.85 0.66 0.60 0.68 0.83 0.94 0.90 0.72 0.50 0.52 0.73 1.26 1.66 0
(0.90) (0.66) (0.58) (0.67) (0.82) (0.90) (0.85) (0.68) (0.48) (0.52) (0.75) (1.30) (1.69) (0)

Ridge 0.92 0.66 0.61 0.67 0.85 0.95 0.84 0.68 0.59 0.62 0.87 1.56 1.63 0
(0.99) (0.67) (0.60) (0.66) (0.85) (0.93) (0.81) (0.65) (0.58) (0.63) (0.92) (1.62) (1.69) (1)

BVAR 0.91 0.71 0.70 0.79 1.01 1.13 1.01 0.83 0.75 0.80 1.10 1.93 2.97 0
(0.97) (0.71) (0.67) (0.76) (0.99) (1.08) (0.96) (0.79) (0.73) (0.80) (1.15) (1.99) (3.26) (0)

Bagging 0.81 0.57 0.55 0.67 0.91 0.96 0.81 0.65 0.48 0.50 0.71 1.28 1.33 7
(0.81) (0.56) (0.52) (0.65) (0.87) (0.88) (0.77) (0.62) (0.46) (0.49) (0.73) (1.28) (1.31) (7)

CSR 0.82 0.65 0.57 0.62 0.78 0.89 0.85 0.66 0.46 0.48 0.65 1.21 1.77 8
(0.86) (0.65) (0.56) (0.60) (0.77) (0.87) (0.82) (0.61) (0.45) (0.47) (0.68) (1.25) (1.78) (7)

JMA 0.91 0.68 0.68 0.75 1.05 1.06 0.96 0.74 0.57 0.55 0.82 1.45 1.50 0
(0.92) (0.65) (0.65) (0.74) (0.98) (0.99) (0.91) (0.68) (0.53) (0.53) (0.81) (1.46) (1.48) (2)

Factor 0.90 0.71 0.62 0.68 0.86 0.96 0.90 0.73 0.47 0.52 0.73 1.26 2.07 1
(0.95) (0.71) (0.61) (0.67) (0.87) (0.93) (0.86) (0.68) (0.46) (0.51) (0.75) (1.29) (2.13) (1)

T. Factor 0.90 0.72 0.64 0.69 0.86 0.97 0.92 0.75 0.47 0.51 0.71 1.25 2.25 1
(0.94) (0.72) (0.62) (0.68) (0.86) (0.95) (0.88) (0.69) (0.47) (0.51) (0.75) (1.31) (2.25) (2)

Boosting 0.94 0.70 0.69 0.79 1.02 1.10 0.98 0.77 0.64 0.72 0.99 1.67 3.03 0
(1.00) (0.70) (0.67) (0.78) (1.02) (1.07) (0.94) (0.75) (0.64) (0.73) (1.05) (1.74) (3.19) (0)

RF 0.84 0.61 0.56 0.62 0.78 0.87 0.80 0.64 0.43 0.45 0.63 1.14 1.36 9
(0.89) (0.61) (0.54) (0.60) (0.78) (0.84) (0.77) (0.61) (0.42) (0.45) (0.66) (1.16) (1.45) (10)

Mean 0.81 0.64 0.58 0.64 0.79 0.88 0.81 0.66 0.50 0.52 0.69 1.19 1.59 5
(0.86) (0.63) (0.57) (0.63) (0.79) (0.86) (0.78) (0.62) (0.49) (0.52) (0.72) (1.22) (1.66) (4)

T.Mean 0.83 0.64 0.58 0.63 0.79 0.89 0.83 0.67 0.49 0.51 0.70 1.21 1.64 2
(0.88) (0.65) (0.57) (0.63) (0.79) (0.87) (0.80) (0.63) (0.47) (0.51) (0.72) (1.24) (1.73) (3)

Median 0.83 0.65 0.58 0.64 0.79 0.89 0.84 0.68 0.49 0.51 0.70 1.22 1.64 2
(0.88) (0.65) (0.57) (0.63) (0.79) (0.87) (0.80) (0.64) (0.47) (0.51) (0.72) (1.25) (1.73) (3)

RF/OLS 0.82 0.63 0.57 0.64 0.80 0.89 0.81 0.65 0.46 0.48 0.66 1.19 1.51 7
(0.88) (0.63) (0.55) (0.62) (0.80) (0.86) (0.77) (0.61) (0.44) (0.48) (0.69) (1.22) (1.48) (5)

adaLASSO/RF 0.84 0.62 0.56 0.61 0.78 0.91 0.89 0.69 0.45 0.46 0.65 1.16 1.40 7
(0.89) (0.62) (0.54) (0.60) (0.76) (0.86) (0.82) (0.64) (0.43) (0.45) (0.66) (1.15) (1.43) (9)

RMSE count 3 1 5 4 8 8 4 5 8 2 5 1 2
MAE count (10) (1) (3) (3) (3) (8) (4) (12) (8) (2) (3) (1) (2)

Table 6.30: Forecasting Errors for the CPI-Core from 1990 to 2015
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The table shows the root mean squared error (RMSE) and, between parenthesis, the mean
absolute errors (MAE) for all models relative to the RandomWalk (RW). The error measures
were calculated from 132 rolling windows covering the 1990-2015 period and 180 rolling
windows covering the 2001-2015 period. Values in bold show the most accurate model in
each horizon. Cells in gray (blue) show the models included in the 50% model confidence set
(MCS) using the squared error (absolute error) as loss function. The MCSs were constructed
based on the maximum t-statistic. The last column in the table reports in how many horizons
the row model was included in the MCS for square (absolute) loss. The last two rows in the
table reports how many models were included in the MCS for square and absolute losses.

Consumer Price Index (Core) 1990–2000
Forecasting Horizon

RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc. RMSE count
(MAE count)

RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (2)

AR 0.88 0.69 0.59 0.62 0.79 0.96 0.91 0.71 0.50 0.54 0.71 1.26 2.16 5
(0.92) (0.70) (0.58) (0.62) (0.82) (0.96) (0.90) (0.65) (0.48) (0.53) (0.76) (1.43) (2.38) (3)

UCSV 0.91 0.68 0.64 0.72 0.90 1.04 0.91 0.75 0.66 0.68 0.90 1.61 1.06 1
(0.98) (0.67) (0.60) (0.69) (0.93) (1.02) (0.91) (0.70) (0.61) (0.70) (0.95) (1.75) (1.03) (1)

LASSO 0.85 0.65 0.61 0.67 0.87 1.01 0.91 0.73 0.59 0.63 0.87 1.44 1.91 0
(0.91) (0.64) (0.58) (0.65) (0.88) (0.98) (0.90) (0.68) (0.56) (0.63) (0.92) (1.59) (2.18) (1)

adaLASSO 0.85 0.63 0.56 0.63 0.83 0.97 0.90 0.75 0.56 0.56 0.77 1.27 1.39 3
(0.90) (0.63) (0.53) (0.61) (0.83) (0.95) (0.90) (0.70) (0.53) (0.56) (0.80) (1.38) (1.47) (3)

ElNet 0.85 0.66 0.61 0.68 0.87 1.02 0.90 0.73 0.59 0.64 0.89 1.55 2.00 0
(0.91) (0.65) (0.58) (0.66) (0.88) (0.99) (0.90) (0.67) (0.56) (0.65) (0.94) (1.70) (2.30) (0)

adaElnet 0.85 0.64 0.58 0.65 0.82 0.97 0.90 0.74 0.55 0.57 0.79 1.32 1.47 1
(0.91) (0.64) (0.54) (0.63) (0.83) (0.95) (0.90) (0.69) (0.52) (0.58) (0.83) (1.45) (1.61) (1)

Ridge 0.88 0.65 0.60 0.66 0.84 0.99 0.85 0.69 0.59 0.63 0.86 1.51 1.52 1
(0.95) (0.65) (0.57) (0.63) (0.85) (0.97) (0.85) (0.65) (0.58) (0.65) (0.92) (1.62) (1.66) (1)

BVAR 0.91 0.72 0.72 0.84 1.09 1.28 1.10 0.90 0.81 0.88 1.19 2.04 3.73 0
(0.97) (0.71) (0.68) (0.80) (1.10) (1.26) (1.10) (0.85) (0.79) (0.90) (1.27) (2.26) (4.49) (0)

Bagging 0.77 0.57 0.55 0.65 0.82 0.93 0.79 0.65 0.52 0.56 0.74 1.19 1.22 8
(0.79) (0.55) (0.50) (0.62) (0.82) (0.87) (0.77) (0.59) (0.47) (0.54) (0.74) (1.25) (1.19) (9)

CSR 0.81 0.65 0.55 0.59 0.76 0.90 0.83 0.66 0.47 0.49 0.66 1.15 1.56 10
(0.85) (0.64) (0.53) (0.57) (0.77) (0.89) (0.82) (0.61) (0.45) (0.48) (0.67) (1.22) (1.68) (10)

JMA 0.85 0.72 0.62 0.73 1.00 1.11 0.96 0.70 0.58 0.57 0.78 1.44 1.40 2
(0.86) (0.68) (0.58) (0.71) (0.95) (1.04) (0.92) (0.63) (0.54) (0.56) (0.77) (1.54) (1.41) (3)

Factor 0.88 0.75 0.65 0.70 0.89 1.04 0.93 0.82 0.52 0.57 0.78 1.36 2.49 1
(0.91) (0.74) (0.61) (0.68) (0.91) (1.03) (0.92) (0.77) (0.50) (0.57) (0.82) (1.48) (2.63) (0)

T. Factor 0.92 0.81 0.72 0.74 0.91 1.07 0.99 0.86 0.52 0.58 0.78 1.35 2.91 1
(0.96) (0.80) (0.69) (0.72) (0.94) (1.08) (0.99) (0.81) (0.51) (0.59) (0.83) (1.53) (3.14) (0)

Boosting 0.92 0.69 0.68 0.80 1.03 1.15 0.97 0.77 0.63 0.73 0.96 1.55 2.96 0
(0.98) (0.69) (0.66) (0.77) (1.05) (1.13) (0.96) (0.72) (0.62) (0.74) (1.03) (1.70) (2.93) (0)

RF 0.83 0.61 0.56 0.62 0.79 0.92 0.82 0.67 0.46 0.48 0.64 1.14 1.40 10
(0.90) (0.61) (0.54) (0.60) (0.79) (0.90) (0.81) (0.62) (0.43) (0.47) (0.67) (1.22) (1.57) (8)

Mean 0.81 0.64 0.58 0.63 0.80 0.93 0.83 0.69 0.53 0.56 0.74 1.24 1.65 4
(0.86) (0.63) (0.55) (0.61) (0.82) (0.92) (0.83) (0.64) (0.51) (0.56) (0.77) (1.35) (1.81) (2)

T.Mean 0.82 0.65 0.58 0.63 0.80 0.94 0.84 0.69 0.52 0.55 0.74 1.26 1.68 4
(0.87) (0.64) (0.55) (0.62) (0.82) (0.93) (0.84) (0.64) (0.50) (0.56) (0.78) (1.38) (1.86) (2)

Median 0.83 0.65 0.58 0.63 0.80 0.93 0.85 0.69 0.52 0.56 0.74 1.26 1.66 4
(0.88) (0.64) (0.56) (0.62) (0.81) (0.92) (0.84) (0.64) (0.50) (0.56) (0.78) (1.39) (1.83) (2)

RF/OLS 0.83 0.63 0.56 0.62 0.79 0.93 0.83 0.68 0.49 0.50 0.68 1.18 1.35 7
(0.89) (0.63) (0.53) (0.59) (0.80) (0.90) (0.83) (0.64) (0.46) (0.50) (0.69) (1.24) (1.42) (7)

adaLASSO/RF 0.85 0.64 0.55 0.61 0.77 0.93 0.91 0.72 0.49 0.49 0.66 1.17 1.37 7
(0.93) (0.64) (0.51) (0.58) (0.77) (0.89) (0.87) (0.65) (0.43) (0.47) (0.66) (1.21) (1.39) (8)

RMSE count 9 1 8 6 9 8 3 10 8 3 3 1 2
MAE count (3) (13) (5) (7) (5) (5) (1) (9) (6) (3) (3) (1) (2)

Table 6.31: Forecasting Errors for the CPI-Core from 1990 to 2000
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The table shows the root mean squared error (RMSE) and, between parenthesis, the mean
absolute errors (MAE) for all models relative to the RandomWalk (RW). The error measures
were calculated from 132 rolling windows covering the 1990-2015 period and 180 rolling
windows covering the 2001-2015 period. Values in bold show the most accurate model in
each horizon. Cells in gray (blue) show the models included in the 50% model confidence set
(MCS) using the squared error (absolute error) as loss function. The MCSs were constructed
based on the maximum t-statistic. The last column in the table reports in how many horizons
the row model was included in the MCS for square (absolute) loss. The last two rows in the
table reports how many models were included in the MCS for square and absolute losses.

Consumer Price Index (Core) 1990–2015
Forecasting Horizon

RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc. RMSE count
(MAE count)

RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (2)

AR 0.86 0.68 0.60 0.62 0.79 0.90 0.89 0.66 0.43 0.45 0.62 1.16 1.80 8
(0.91) (0.69) (0.59) (0.63) (0.78) (0.87) (0.81) (0.61) (0.43) (0.45) (0.66) (1.15) (1.90) (8)

UCSV 1.00 0.90 0.85 0.81 0.83 0.89 0.94 0.90 0.84 0.78 0.74 1.09 0.99 4
(1.07) (0.91) (0.85) (0.82) (0.82) (0.87) (0.90) (0.87) (0.84) (0.77) (0.75) (1.09) (1.00) (4)

LASSO 0.86 0.66 0.62 0.71 0.85 0.94 0.89 0.71 0.49 0.53 0.73 1.34 1.85 0
(0.92) (0.68) (0.62) (0.71) (0.84) (0.90) (0.82) (0.69) (0.49) (0.52) (0.75) (1.31) (1.98) (0)

adaLASSO 0.84 0.66 0.60 0.69 0.85 0.91 0.88 0.71 0.45 0.48 0.66 1.20 1.74 4
(0.88) (0.66) (0.60) (0.69) (0.82) (0.87) (0.81) (0.67) (0.44) (0.46) (0.69) (1.18) (1.72) (7)

ElNet 0.87 0.68 0.62 0.69 0.85 0.95 0.88 0.72 0.52 0.54 0.76 1.37 1.86 0
(0.94) (0.69) (0.62) (0.69) (0.83) (0.91) (0.82) (0.68) (0.51) (0.52) (0.78) (1.32) (2.00) (0)

adaElnet 0.84 0.67 0.62 0.70 0.84 0.91 0.89 0.71 0.45 0.48 0.67 1.20 1.74 3
(0.89) (0.68) (0.61) (0.70) (0.81) (0.87) (0.81) (0.67) (0.44) (0.47) (0.69) (1.17) (1.74) (6)

Ridge 0.95 0.68 0.62 0.68 0.86 0.92 0.84 0.68 0.58 0.61 0.87 1.61 1.67 0
(1.01) (0.68) (0.62) (0.68) (0.85) (0.90) (0.78) (0.66) (0.58) (0.61) (0.92) (1.61) (1.70) (1)

BVAR 0.91 0.71 0.68 0.75 0.93 1.00 0.93 0.76 0.69 0.73 1.02 1.81 2.29 0
(0.97) (0.70) (0.66) (0.73) (0.90) (0.95) (0.86) (0.74) (0.69) (0.73) (1.05) (1.78) (2.49) (0)

Bagging 0.84 0.58 0.55 0.69 0.98 0.99 0.82 0.66 0.45 0.46 0.68 1.36 1.38 10
(0.83) (0.57) (0.54) (0.67) (0.92) (0.88) (0.77) (0.64) (0.44) (0.45) (0.71) (1.30) (1.39) (10)

CSR 0.82 0.65 0.59 0.64 0.80 0.88 0.87 0.66 0.45 0.47 0.65 1.27 1.84 8
(0.87) (0.65) (0.59) (0.63) (0.78) (0.85) (0.81) (0.62) (0.44) (0.46) (0.68) (1.27) (1.85) (8)

JMA 0.97 0.65 0.72 0.77 1.09 1.02 0.96 0.77 0.57 0.53 0.86 1.46 1.52 1
(0.97) (0.63) (0.70) (0.77) (1.00) (0.95) (0.91) (0.72) (0.52) (0.50) (0.85) (1.40) (1.53) (2)

Factor 0.91 0.68 0.60 0.65 0.84 0.90 0.88 0.65 0.43 0.48 0.68 1.15 1.71 6
(0.98) (0.70) (0.60) (0.66) (0.83) (0.87) (0.82) (0.60) (0.43) (0.47) (0.70) (1.14) (1.81) (7)

T. Factor 0.88 0.63 0.57 0.64 0.81 0.89 0.86 0.63 0.42 0.45 0.63 1.13 1.61 10
(0.92) (0.65) (0.57) (0.64) (0.80) (0.85) (0.80) (0.59) (0.43) (0.45) (0.67) (1.13) (1.70) (10)

Boosting 0.96 0.71 0.69 0.79 1.01 1.07 0.99 0.78 0.65 0.72 1.00 1.78 2.99 0
(1.01) (0.71) (0.68) (0.79) (1.00) (1.03) (0.93) (0.78) (0.66) (0.73) (1.07) (1.78) (3.35) (0)

RF 0.86 0.61 0.55 0.62 0.78 0.83 0.78 0.62 0.41 0.43 0.62 1.13 1.32 11
(0.88) (0.61) (0.54) (0.61) (0.76) (0.79) (0.73) (0.60) (0.41) (0.43) (0.65) (1.10) (1.38) (12)

Mean 0.81 0.63 0.58 0.64 0.78 0.84 0.80 0.64 0.47 0.49 0.65 1.14 1.51 8
(0.86) (0.64) (0.58) (0.64) (0.77) (0.81) (0.74) (0.61) (0.46) (0.48) (0.67) (1.12) (1.56) (9)

T.Mean 0.83 0.64 0.58 0.64 0.78 0.86 0.82 0.66 0.46 0.48 0.65 1.16 1.58 7
(0.88) (0.65) (0.58) (0.64) (0.77) (0.83) (0.76) (0.63) (0.45) (0.47) (0.67) (1.13) (1.64) (8)

Median 0.83 0.64 0.58 0.64 0.79 0.86 0.83 0.66 0.46 0.48 0.65 1.16 1.60 5
(0.88) (0.66) (0.58) (0.64) (0.77) (0.83) (0.77) (0.63) (0.45) (0.47) (0.67) (1.14) (1.66) (8)

RF/OLS 0.82 0.63 0.57 0.65 0.81 0.86 0.79 0.63 0.44 0.46 0.65 1.20 1.57 11
(0.86) (0.63) (0.57) (0.65) (0.80) (0.83) (0.73) (0.60) (0.42) (0.46) (0.68) (1.20) (1.51) (10)

adaLASSO/RF 0.83 0.61 0.57 0.62 0.80 0.89 0.86 0.66 0.42 0.43 0.64 1.16 1.39 11
(0.86) (0.61) (0.56) (0.61) (0.76) (0.84) (0.79) (0.63) (0.42) (0.42) (0.66) (1.11) (1.45) (11)

RMSE count 9 6 5 11 10 14 4 10 9 7 13 9 2
MAE count (9) (4) (5) (11) (12) (14) (8) (9) (10) (14) (13) (12) (2)

Table 6.32: Forecasting Errors for the CPI-Core from 2001 to 2015
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