XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: REDES NEURAIS APLICADAS AO RECONHECIMENTO DE IMAGENS BI-DIMENSIONAIS Autor: GUY PERELMUTER
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
MARLEY MARIA BERNARDES REBUZZI VELLASCO - ORIENTADOR
Nº do Conteudo: 8636
Catalogação: 05/07/2006 Idioma(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8636&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8636&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.8636
Resumo:
Título: REDES NEURAIS APLICADAS AO RECONHECIMENTO DE IMAGENS BI-DIMENSIONAIS Autor: GUY PERELMUTER
Nº do Conteudo: 8636
Catalogação: 05/07/2006 Idioma(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8636&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8636&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.8636
Resumo:
Esta dissertação investiga a aplicação de Redes Neurais
Artificiais no reconhecimento de imagens bi-dimensionais. O
trabalho de tese foi dividido em quatro partes principais:
um estudo sobre a importância da Visão Computacional e
sobre os benefícios da aplicação das técnicas da
Inteligência Computacional na área; um estudo da estrutura
dos sistemas de reconhecimento de imagens encontrados na
literatura; o desenvolvimento de dois sistemas de
reconhecimento de imagens baseados em redes neurais; e o
estudo de caso e a análise de desempenho dos sistemas
desenvolvidos. A Visão Computacional tem se beneficiado das
principais técnicas de Inteligência Computacional (redes
neurais, algoritmos genéticos e lógica nebulosa) na
implementação de sistemas de reconhecimento de imagens.
Neste trabalho estudou-se a aplicação de diversos tipos de
redes neurais na classificação de imagens Back-Propagation,
Competitivas, RBF e Hierárquicas. Além disso, foi realizado
um estudo das áreas de aplicação da Visão Computacional. A
estrutura básica utilizada por diversos sistemas de Visão
Computacional encontrada na literatura foi analisada. Esta
estrutura é tipicamente composta por três módulos
principais: um pré-processador, um extrator de
características e um classificador. Dois sistemas de
reconhecimento de imagens, denominados de XVision e
SimpleNet, foram desenvolvidos neste trabalho. O sistema
XVision segue a estrutura descrita acima, enquanto que o
sistema SimpleNet utiliza a informação da imagem bruta para
realizar a classificação. O módulo de pré-processamento do
sistema XVision executa uma série de transformações na
imagem, extraindo suas características intrínsecas para que
seja obtida uma representação da imagem invariante a
aspectos como rotação, translação e escalonamento. Este Pré-
Processador é baseado em um trabalho previamente realizado
no campo de Processamento de Sinais. A etapa de extração de
características visa detectar as informações mais
relevantes contidas na representação da imagem intrínseca
obtida na etapa anterior. Foram investigados extratores
baseados em técnicas estatísticas (utilizando o
discriminante de Fisher) e em técnicas inteligentes
(utilizando algoritmos genéticos). Para o módulo de
classificação das imagens foram utilizados diversos tipos
de redes neurais artificiais: Back-Propagation,
Competitivas, RBFs e Hierárquicas. No sistema SimpleNet, o
pré-processamento limita-se à redução das dimensões da
imagem a ser classificada. Como os próprios pixels da
imagem são utilizados para a classificação, não foi
implementado um módulo de extração de características. Na
etapa de classificação foram empregadas redes neurais Back-
Propagation e Competitivas. O sistema XVision apresentou
resultados promissores para dois conjuntos distintos de
objetos bi-dimensionais: o primeiro composto por peças
mecânicas e o segundo por objetos triviais. As amostras
utilizadas nos testes apresentavam características
diferentes daquelas com as quais as redes neurais foram
treinadas - não apenas com rotações, translações e
escalonamentos, mas com diferenças estruturais. O
classificador conseguiu taxas de acerto superiores a 83% em
ambos os conjuntos de objetos. O sistema SimpleNet também
mostrou-se eficiente na diferenciação de imagens
semelhantes (cartões telefônicos e radiografias de
pulmões), obtendo taxas de acerto superiores a 80%. O
desenvolvimento destes sistemas demonstrou a viabilidade da
aplicação de redes neurais na classificação de objetos bi-
dimensionais. Devido ao grande interesse na utilização de
sistemas de Visão em aplicações de tempo real, mediu-se o
tempo gasto nos processos de reconhecimento. Desta forma
foram detectados os garagalos dos sistemas, facilitando
assim sua otimização.
Descrição | Arquivo |
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS | |
CAPÍTULO 1 E CAPÍTULO 2 | |
CAPÍTULO 3 | |
CAPÍTULO 4 | |
CAPÍTULO 5 | |
CAPÍTULO 6 | |
CAPÍTULO 7 | |
REFERÊNCIAS BIBLIOGRÁFICAS E APÊNDICES |