$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Formato DC |



Título: REDES NEURAIS APLICADAS AO RECONHECIMENTO DE IMAGENS BI-DIMENSIONAIS
Autor: GUY PERELMUTER
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  MARLEY MARIA BERNARDES REBUZZI VELLASCO - ORIENTADOR
Nº do Conteudo: 8636
Catalogação:  05/07/2006 Idioma(s):  PORTUGUÊS - BRASIL
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8636&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8636&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.8636

Resumo:
Esta dissertação investiga a aplicação de Redes Neurais Artificiais no reconhecimento de imagens bi-dimensionais. O trabalho de tese foi dividido em quatro partes principais: um estudo sobre a importância da Visão Computacional e sobre os benefícios da aplicação das técnicas da Inteligência Computacional na área; um estudo da estrutura dos sistemas de reconhecimento de imagens encontrados na literatura; o desenvolvimento de dois sistemas de reconhecimento de imagens baseados em redes neurais; e o estudo de caso e a análise de desempenho dos sistemas desenvolvidos. A Visão Computacional tem se beneficiado das principais técnicas de Inteligência Computacional (redes neurais, algoritmos genéticos e lógica nebulosa) na implementação de sistemas de reconhecimento de imagens. Neste trabalho estudou-se a aplicação de diversos tipos de redes neurais na classificação de imagens Back-Propagation, Competitivas, RBF e Hierárquicas. Além disso, foi realizado um estudo das áreas de aplicação da Visão Computacional. A estrutura básica utilizada por diversos sistemas de Visão Computacional encontrada na literatura foi analisada. Esta estrutura é tipicamente composta por três módulos principais: um pré-processador, um extrator de características e um classificador. Dois sistemas de reconhecimento de imagens, denominados de XVision e SimpleNet, foram desenvolvidos neste trabalho. O sistema XVision segue a estrutura descrita acima, enquanto que o sistema SimpleNet utiliza a informação da imagem bruta para realizar a classificação. O módulo de pré-processamento do sistema XVision executa uma série de transformações na imagem, extraindo suas características intrínsecas para que seja obtida uma representação da imagem invariante a aspectos como rotação, translação e escalonamento. Este Pré- Processador é baseado em um trabalho previamente realizado no campo de Processamento de Sinais. A etapa de extração de características visa detectar as informações mais relevantes contidas na representação da imagem intrínseca obtida na etapa anterior. Foram investigados extratores baseados em técnicas estatísticas (utilizando o discriminante de Fisher) e em técnicas inteligentes (utilizando algoritmos genéticos). Para o módulo de classificação das imagens foram utilizados diversos tipos de redes neurais artificiais: Back-Propagation, Competitivas, RBFs e Hierárquicas. No sistema SimpleNet, o pré-processamento limita-se à redução das dimensões da imagem a ser classificada. Como os próprios pixels da imagem são utilizados para a classificação, não foi implementado um módulo de extração de características. Na etapa de classificação foram empregadas redes neurais Back- Propagation e Competitivas. O sistema XVision apresentou resultados promissores para dois conjuntos distintos de objetos bi-dimensionais: o primeiro composto por peças mecânicas e o segundo por objetos triviais. As amostras utilizadas nos testes apresentavam características diferentes daquelas com as quais as redes neurais foram treinadas - não apenas com rotações, translações e escalonamentos, mas com diferenças estruturais. O classificador conseguiu taxas de acerto superiores a 83% em ambos os conjuntos de objetos. O sistema SimpleNet também mostrou-se eficiente na diferenciação de imagens semelhantes (cartões telefônicos e radiografias de pulmões), obtendo taxas de acerto superiores a 80%. O desenvolvimento destes sistemas demonstrou a viabilidade da aplicação de redes neurais na classificação de objetos bi- dimensionais. Devido ao grande interesse na utilização de sistemas de Visão em aplicações de tempo real, mediu-se o tempo gasto nos processos de reconhecimento. Desta forma foram detectados os garagalos dos sistemas, facilitando assim sua otimização.

Descrição Arquivo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS  PDF  
CAPÍTULO 1 E CAPÍTULO 2  PDF  
CAPÍTULO 3  PDF  
CAPÍTULO 4  PDF  
CAPÍTULO 5  PDF  
CAPÍTULO 6  PDF  
CAPÍTULO 7  PDF  
REFERÊNCIAS BIBLIOGRÁFICAS E APÊNDICES  PDF  
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui