$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: REGRESSÃO LOGÍSTICA: UM MODELO DE RISCO DE CANCELAMENTO DE CLIENTES
Autor: KARINE DE ALMEIDA KARAM
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  JORGE FERREIRA DA SILVA - ORIENTADOR
Nº do Conteudo: 8259
Catalogação:  08/05/2006 Liberação: 08/05/2006 Idioma(s):  PORTUGUÊS - BRASIL
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8259&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8259&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.8259

Resumo:
O tema central deste projeto é a retenção de clientes como estratégia competitiva para aumentar a lucratividade da empresa. O objetivo é desenvolver um modelo estatístico que relacione variáveis transacionais, demográficas e dados sobre o histórico de eventos com a probabilidade de cancelamento dos clientes assinantes de jornal e definir o perfil dos clientes com maior risco de desligamento. Em uma primeira etapa, este estudo fornece uma revisão teórica sobre lealdade, satisfação e marketing de relacionamento, a fim de buscar uma relação com a retenção de clientes. Em seguida, a revisão de literatura levantou as variáveis mais usadas na segmentação de clientes tais como: variáveis transacionais, geográficas, demográficas, psicográficas e comportamentais para definir o perfil dos clientes que cancelam e dos que não cancelam sua assinatura. Depois de construir um modelo teórico, a regressão logística foi utilizada como técnica estatística para desenvolver um modelo de previsão de cancelamento. Os resultados foram analisados com o auxílio do programa estatístico SPSS e conclui-se que o perfil do cliente que cancela a assinatura do jornal é o jovem de até 30 anos; com baixo nível sócio-demográfico; morador da baixada, subúrbio e outros estados que não o Rio de Janeiro; que tenha adquirido sua assinatura através do canal telemarketing ativo; com a assinatura da modalidade anual e forma de pagamento em boleto ou débito em conta corrente; clientes que adquiriram sua assinatura mais recentemente; que comprem menos de 3 produtos da empresa e que não tenham feito reclamações através da central de atendimento. O modelo final de previsão de cancelamento contou com 11 variáveis e a tabela de classificação mostrou uma taxa de acerto geral de 75,3%. A última etapa apresenta algumas conclusões, implicações e sugestões para pesquisas futuras.

Descrição Arquivo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS  PDF
CAPÍTULO 1  PDF
CAPÍTULO 2  PDF
CAPÍTULO 3  PDF
CAPÍTULO 4  PDF
CAPÍTULO 5  PDF
REFERÊNCIAS BIBLIOGRÁFICAS E ANEXOS  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui