$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC | MARC |



Título: DESENVOLVIMENTO DE SISTEMA PARA DETECÇÃO DE PERDAS COMERCIAIS EM REDES DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA
Autor: RODRIGO FLORA CALILI
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  REINALDO CASTRO SOUZA - ORIENTADOR
HENRIQUE DE OLIVEIRA HENRIQUES - COORIENTADOR

Nº do Conteudo: 7629
Catalogação:  29/12/2005 Liberação: 29/12/2005 Idioma(s):  PORTUGUÊS - BRASIL
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7629&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7629&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.7629

Resumo:
Os modelos matemáticos comumente usados na identificação de irregularidades na medição se baseiam na análise da redução percentual do consumo do mês (normalmente de 20% a 30%) em relação aos meses anteriores. Este método tem gerado resultados imprecisos uma vez que considera o valor do consumo como um valor rígido e, portanto, não incorpora o efeito da sazonalidade na tipologia das cargas das unidades consumidoras. Este trabalho tem o intuito de melhorar a identificação de clientes fraudulentos utilizando métodos de inteligência artificial, tais como Redes Neurais e Lógica Fuzzy, implementados a um banco de dados de cadastro da Distribuidora de Energia ELEKTRO e a uma Pesquisa de Posses e Hábitos de Consumo (PPH) feita nesta mesma empresa. Nesta dissertação, o objetivo foi classificar um grupo de consumidores como normal (adimplente), inadimplente e fraudulento. Para tanto, foi feita inicialmente uma clusterização utilizando uma Rede Neural, mais especificamente uma Rede de Kohonen, para o banco de dados de cadastro disponibilizado pela distribuidora. Tomando os grupos desta classificação prévia feita pela Rede identificaram-se quais e quantos destes tiveram PPH´s realizadas. Para se ter a classificação de um grupo quanto a incidência de consumidores normais, inadimplentes e fraudulentos utilizou-se um processo de Análise Fuzzy, o qual identifica os clusters com os consumidores de cada um dos segmentos. É feita uma análise de desempenho do modelo proposto com dados reais fornecidos pela empresa, na qual os resultados apontaram para uma robustez do método.

Descrição Arquivo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS  PDF
CAPÍTULO 1  PDF
CAPÍTULO 2  PDF
CAPÍTULO 3  PDF
CAPÍTULO 4  PDF
CAPÍTULO 5  PDF
CAPÍTULO 6  PDF
REFERÊNCIAS BIBLIOGRÁFICAS  PDF
ANEXOS  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui