XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: REDES NEURAIS TEMPORAIS PARA O TRATAMENTO DE SISTEMAS VARIANTES NO TEMPO Autor: CLAVER PARI SOTO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
MARLEY MARIA BERNARDES REBUZZI VELLASCO - ORIENTADOR
MARCO AURELIO CAVALCANTI PACHECO - ORIENTADOR
Nº do Conteudo: 7437
Catalogação: 07/11/2005 Idioma(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7437&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7437&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.7437
Resumo:
Título: REDES NEURAIS TEMPORAIS PARA O TRATAMENTO DE SISTEMAS VARIANTES NO TEMPO Autor: CLAVER PARI SOTO
MARCO AURELIO CAVALCANTI PACHECO - ORIENTADOR
Nº do Conteudo: 7437
Catalogação: 07/11/2005 Idioma(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7437&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7437&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.7437
Resumo:
As RNA Temporais, em função de sua estrutura, consideram o
tempo na sua operação, incorporando memória de curto prazo
distribuída na rede em todos os neurônios escondidos e em
alguns dos casos nos neurônios de saída. Esta classe de
redes é utilizada para representar melhor a natureza
temporal dos sistemas dinâmicos. Em contraste, a RNA
estática tem uma estrutura apropriada para tarefas de
reconhecimento de padrões, classificação e outras de
natureza estática ou estacionária tendo sido utilizada com
sucesso em diversas aplicações.
O objetivo desta tese, portanto foi estudar a teoria e
avaliar o desempenho das Redes Neurais Temporais em
comparação com as Redes Neurais Estáticas, em aplicações
de sistemas dinâmicos. O desenvolvimento desta pesquisa
envolveu 3 etapas principais: pesquisa bibliográfica das
metodologias desenvolvidas para RNA Temporais; seleção e
implementação de modelos para a avaliação destas redes; e
estudo de casos.
A pesquisa bibliográfica permitiu compila e classificar os
principais trabalhos sobre RNA Temporais. Tipicamente,
estas redes podem ser classificadas em dois grupos: Redes
com Atraso no Tempo e Redes Recorrentes.
Para a análise de desempenho, selecionou-se uma redee de
cada grupo para implementação. Do primeiro grupo foi
selecionada a Rede FIR, onde as sinapses são filtros FIR
(Finite-duration Impulse Response) que representam a
natureza temporal do problema. A rede FIR foi selecionada
por englobar praticamente, todos os outros métodos de sua
classe e apresentar um modelo matemático mais formal. Do
segundo grupo, considerou-se a rede recorrente de Elman
que apresenta realimentação global de cada um dos
neurônios escondidos para todos eles.
No estudo de casos testou-se o desempenho das redes
selecionadas em duas linhas de aplicação: previsão de
séries temporais e processamento digital de sinais. No
caso de previsão de séries temporais, foram utilizadas
séries de consumo de energia elétrica, comparando-se os
resultados com os encontrados na literatura a partir de
métodos de Holt-Winters, Box & Jenkins e RNA estáticas. No
caso da aplicação das RNA em processamento digital de
sinais, utilizou-se a filtragem de ruído em sinais de voz
onde foram feitas comparações com os resultados
apresentados pelo filtro neural convencional, que é uma
rede feed-forward multicamada com o algoritmo de
retropropagação para o aprendizado.
Este trabalho demonstrou na prática que as RNA temporais
conseguem capturar as características dos processos
temporais de forma mais eficiente que as RNA Estatísticas
e outros métodos tradicionais, podendo aprender
diretamente o comportamento não estacionário das séries
temporais. Os resultados demonstraram que a rede neural
FIR e a rede Elman aprendem melhor a complexidade dos
sinais de voz.
Descrição | Arquivo |
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS | |
CAPÍTULO 1 | |
CAPÍTULO 2 | |
CAPÍTULO 3 | |
CAPÍTULO 4 | |
CAPÍTULO 5 | |
CAPÍTULO 6 | |
CAPÍTULO 7 E REFERÊNCIAS BIBLIOGRÁFICAS |