$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC | MARC |



Título: ESTIMAÇÃO DA IMPORTÂNCIA DE ATRIBUTOS COM BASE EM MECANISMO DE ATENÇÃO PARA ATRIBUTOS SÍSMICOS
Autor: HUGO FABIANO ALVES CUNHA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  MARCELO GATTASS - ORIENTADOR
Nº do Conteudo: 69694
Catalogação:  20/03/2025 Liberação: 21/03/2025 Idioma(s):  PORTUGUÊS - BRASIL
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=69694&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=69694&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.69694

Resumo:
A reflexão sísmica é o método geofísico mais empregado na indústria de petróleo e gás para estudar as camadas do subsolo. Com base nos padrões de reflexão das ondas sísmicas, os geocientistas podem inferir a estrutura e a composição das camadas geológicas abaixo da superfície, identificando potenciais reservatórios de petróleo e gás. No entanto, a interpretação dessas informações é desafiadora devido à ambiguidade inerentes dos dados, ou seja, eventos distintos podem ter respostas sísmicas similares. Com a intenção de direcionar e auxiliar esse processo, especialistas frequentemente empregam um grande conjunto de atributos sísmicos. No entanto, o uso de mais informação, em um contexto de aprendizado de máquina, não garante melhoria nos resultados e, em alguns casos, muita das features podem não ser aproveitadas pelo modelo. Sendo assim, a seleção de quais features apresentam maior relevância torna-se essencial. Contudo, uma seleção manual entre centenas de atributos pode apresentar um desafio exponencial. Este trabalho propõe uma abordagem que incorpora o uso de uma camada de atenção customizada para lidar com múltiplas features em conjunto a um modelo Long Short Term Memory (LSTM). Essa abordagem visa ponderar automaticamente os atributos sísmicos, pré-selecionados por especialistas da área, para avaliar quais são aqueles que apresentam para o modelo uma maior importância no processo de detecção de gás natural. Para avaliar a metodologia foram empregados levantamentos sísmicos 2D e 3D onshore e aplicado a técnica de K-fold. Para os resultados de forma quantitativa, foi avaliado a métrica F1-score atingindo uma melhora de até 13,94 por cento.

Descrição Arquivo
NA ÍNTEGRA  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui