XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: RDS - RECUPERANDO AMOSTRAS DESCARTADAS COM RÓTULOS RUIDOSOS: TÉCNICAS PARA TREINAMENTO DE MODELOS DE DEEP LEARNING COM AMOSTRAS RUIDOSAS Autor: VITOR BENTO DE SOUSA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
MARCO AURELIO CAVALCANTI PACHECO - ORIENTADOR
MANOELA RABELLO KOHLER - COORIENTADOR
Nº do Conteudo: 66770
Catalogação: 20/05/2024 Liberação: 20/05/2024 Idioma(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=66770&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=66770&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.66770
Resumo:
Título: RDS - RECUPERANDO AMOSTRAS DESCARTADAS COM RÓTULOS RUIDOSOS: TÉCNICAS PARA TREINAMENTO DE MODELOS DE DEEP LEARNING COM AMOSTRAS RUIDOSAS Autor: VITOR BENTO DE SOUSA
MANOELA RABELLO KOHLER - COORIENTADOR
Nº do Conteudo: 66770
Catalogação: 20/05/2024 Liberação: 20/05/2024 Idioma(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=66770&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=66770&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.66770
Resumo:
Modelos de Aprendizado Profundo para classificação de imagens alcançaram o
estado da arte em um vasto campo de aplicações. Entretanto, é frequente deparar-se com amostras ruidosas, isto é, amostras contendo rótulos incorretos, nos
conjuntos de dados provenientes de aplicações do mundo real. Quando modelos
de Aprendizado Profundo são treinados nestes conjuntos de dados, a sua
performance é prejudicada. Modelos do estado da arte, como Co-teaching+ e
Jocor, utilizam a técnica Small Loss Approach (SLA) para lidar com amostras
ruidosas no cenário multiclasse. Nesse trabalho, foi desenvolvido uma nova
técnica para lidar com amostras ruidosas, chamada Recovering Discarded
Samples (RDS), que atua em conjunto com a SLA. Para demostrar a eficácia da
técnica, aplicou-se o RDS nos modelos Co-teaching+ e Jocor resultando em dois
novos modelos RDS-C e RDS-J. Os resultados indicam ganhos de até 6 por cento nas
métricas de teste para ambos os modelos. Um terceiro modelo chamado RDS-Contrastive também foi desenvolvido, este modelo superou o estado da arte em
até 4 por cento na acurácia de teste. Além disso, nesse trabalho, expandiu-se a técnica
SLA para o cenário multilabel, sendo desenvolvido a técnica SLA Multilabel
(SLAM). Com essa técnica foi desenvolvido mais dois modelos para cenário
multilabel com amostras ruidosas. Os modelos desenvolvidos nesse trabalho para
multiclasse foram utilizados em um problema real de cunho ambiental. Os
modelos desenvolvidos para o cenário multilabel foram aplicados como solução
para um problema real na área de óleo e gás.
Descrição | Arquivo |
NA ÍNTEGRA |