XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: STAGED VECTOR STREAM SIMILARITY SEARCH METHODS WITH AN APPLICATION TO CLASSIFIED AD RETRIEVA Autor: BRUNO FRANCISCO MARTINS DA SILVA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
MARCO ANTONIO CASANOVA - ADVISOR
Nº do Conteudo: 66060
Catalogação: 22/02/2024 Liberação: 22/02/2024 Idioma(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=66060&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=66060&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.66060
Resumo:
Título: STAGED VECTOR STREAM SIMILARITY SEARCH METHODS WITH AN APPLICATION TO CLASSIFIED AD RETRIEVA Autor: BRUNO FRANCISCO MARTINS DA SILVA
Nº do Conteudo: 66060
Catalogação: 22/02/2024 Liberação: 22/02/2024 Idioma(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=66060&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=66060&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.66060
Resumo:
A vector stream can be modeled as a sequence of pairs ((v1, t1). . .(vn, tn)),
where vk is a vector and tk is a timestamp such that all vectors are of the
same dimension and tk less than tk+1. The vector stream similarity search problem is
defined as: Given a (high-dimensional) vector q and a time interval T, find a
ranked list of vectors, retrieved from a vector stream, that are similar to q and
that were received in the time interval T. This dissertation first introduces
a family of vector stream similarity search methods that do not depend on
having the full set of vectors available beforehand but adapt to the vector
stream as the vectors are added. The methods generate a sequence of indices
that are used to implement approximated nearest neighbor search over the
vector stream. Then, the dissertation describes an implementation of a method
in the family based on Hierarchical Navigable Small World graphs. Based on
this implementation, the dissertation presents a Classified Ad Retrieval tool
that supports classified ad retrieval as new ads are continuously submitted.
The tool is structured into a main module and three auxiliary modules, where
the main module is responsible for coordinating the auxiliary modules and for
providing a user interface, and the auxiliary modules are responsible for text
and image encoding, vector stream indexing, and data storage. To evaluate the
tool, the dissertation uses a dataset with approximately 1 million records with
descriptions of classified ads and their respective images. The results showed
that the tool reached an average precision of 98 percent and an average recall of 97 percent.
Descrição | Arquivo |
COMPLETE |