$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Formato DC |



Título: CHARGE TRANSFER COMPLEXES WITH HIGH SURFACE AREA BASED ON TIO2 NANOPARTICLES MODIFIED WITH BIDENTATE LIGANDS: SYNTHESIS, CHARACTERIZATION AND PHOTOCATALYTIC ACTIVITY UNDER LOW-POWER VISIBLE LIGHT
Autor: LUCAS ARAUJO LIMA ALMEIDA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  BOJAN MARINKOVIC - ADVISOR
Nº do Conteudo: 65010
Catalogação:  21/11/2023 Idioma(s):  ENGLISH - UNITED STATES
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=65010@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=65010@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.65010

Resumo:
Visible light-sensitive TiO2-based nanomaterials are among the most promising alternatives for photocatalytic applications, such as environmental remediation. The charge transfer complexes (CTCs) between nano-TiO2 and bidentate ligands, an alternative, have been widely studied. However, the photodegradation efficiency and role of reactive oxidizing species (ROS) are not fully understood. In addition, the development of CTCs based on TiO2 modified with malonic acid (MoA) have not yet been investigated, as far as the authors know. In this study, TiO2-Acetylacetone (ACAC) and TiO2-MoA CTCs with high surface area were synthesized via sol-gel route. Both as-prepared TiO2-based CTCs were subjected to tetracycline and chlorophenol photocatalytic degradation tests with and without ROS scavengers under low-power visible light (26 W). The TiO2-MoA CTCs were fully characterized by XRPD, MS-TGA, FTIR, N2 adsorption-desorption, DRS, PL, EPR and XPS analysis. The sol-gel synthesis and the calcination process adopted produced CTCs of nano-TiO2 anatase strongly bond (covalent bond) with acetylacetone and malonic acid, capable of absorbing along the visible spectrum when calcined at 300 degrees C (TiO2-ACAC-300) and 270 degrees C (TiO2- MoA-270). Both calcined CTCs present single electron trapped in oxygen vacancy (SETOV / F +color center). The TiO2-MoA-270 CTCs showed very high surface areas (>306 m2.g-1), mesopore volumes (>0.339 mL.g-1) and the highest photocatalytic activity, degrading approximately 100 percent of the TC after 6 h. The TiO2-MoA-270 and TiO2-A300 CTCs were an efficient source of *O2- radicals and inefficient generation of OH* radicals. The findings of this research can be applied to the synthesis, via sol-gel, of other CTCs, such as dicarboxylic acids, and explored in further studies on air purification and hydrogen production.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui