$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: UMA ABORDAGEM DE APRENDIZADO SUPERVISIONADO PARA PREVER A DEMANDA DE AJUDA FAMILIAR PARA DESASTRES CLIMÁTICOS RECORRENTES NO PERU
Autor: RENATO JOSE QUILICHE ALTAMIRANO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  ADRIANA LEIRAS - ORIENTADOR
FERNANDA ARAUJO BAIAO AMORIM - COORIENTADOR

Nº do Conteudo: 64971
Catalogação:  21/11/2023 Liberação: 31/10/2024 Idioma(s):  PORTUGUÊS - BRASIL
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=64971&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=64971&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.64971

Resumo:
Esta dissertação apresenta uma abordagem baseada em dados para o problema de predição de desastres recorrentes em países em desenvolvimento. Métodos de aprendizado de máquina supervisionado são usados para treinar classificadores que visam prever se uma família seria afetada por ameaças climáticas recorrentes (um classificador é treinado para cada perigo natural). A abordagem desenvolvida é válida para perigos naturais recorrentes que afetam um país e permite que os gerentes de risco de desastres direcionem suas operações com mais conhecimento. Além disso, a avaliação preditiva permite que os gerentes entendam os impulsionadores dessas previsões, levando à formulação proativa de políticas e planejamento de operações para mitigar riscos e preparar comunidades para desastres recorrentes. A metodologia proposta foi aplicada ao estudo de caso do Peru, onde foram treinados classificadores para ondas de frio, inundações e deslizamentos de terra. No caso das ondas de frio, o classificador tem 73,82% de precisão. A pesquisa descobriu que famílias pobres em áreas rurais são vulneráveis a desastres relacionados a ondas de frio e precisam de intervenção humanitária proativa. Famílias vulneráveis têm infraestrutura urbana precária, incluindo trilhas, caminhos, postes de iluminação e redes de água e drenagem. O papel do seguro saúde, estado de saúde e educação é menor. Domicílios com membros doentes levam a maiores probabilidades de serem afetados por ondas de frio. Maior realização educacional do chefe da família está associada a uma menor probabilidade de ser afetado por ondas de frio. No caso das inundações, o classificador tem 82.57% de precisão. Certas condições urbanas podem tornar as famílias rurais mais suscetíveis a inundações, como acesso à água potável, postes de iluminação e redes de drenagem. Possuir um computador ou laptop diminui a probabilidade de ser afetado por inundações, enquanto possuir uma bicicleta e ser chefiado por indivíduos casados aumenta. Inundações são mais comuns em assentamentos urbanos menos desenvolvidos do que em famílias rurais isoladas. No caso dos deslizamentos de terra, o classificador tem 88.85% de precisão, e é segue uma lógica diferente do das inundações. A importância na previsão é mais uniformemente distribuída entre as características consideradas no aprendizado do classificador. Assim, o impacto de um recurso individual na previsão é pequeno. A riqueza a longo prazo parece ser mais crítica: a probabilidade de ser afetado por um deslizamento é menor para famílias com certos aparelhos e materiais domésticos de construção. Comunidades rurais são mais afetadas por deslizamentos, especialmente aquelas localizadas em altitudes mais elevadas e maiores distâncias das cidades e mercados. O impacto marginal médio da altitude é não linear. Os classificadores fornecem um método inteligente baseado em dados que economiza recursos garantindo precisão. Além disso, a pesquisa fornece diretrizes para abordar a eficiência na distribuição da ajuda, como formulações de localização da instalação e roteamento de veículos. Os resultados da pesquisa têm várias implicações gerenciais, então os autores convocam à ação gestores de risco de desastres e outros interessados relevantes. Desastres recorrentes desafiam toda a humanidade.

Descrição Arquivo
NA ÍNTEGRA  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui