XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: IDENTIFICAÇÃO DE MODELO HÍBRIDO BASEADO EM REDES NEURAIS PARA DINÂMICA LATERAL DE VEÍCULOS MILITARES Autor: CAMILA LEAO PEREIRA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
HELON VICENTE HULTMANN AYALA - ORIENTADOR
Nº do Conteudo: 62898
Catalogação: 19/06/2023 Liberação: 19/06/2023 Idioma(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=62898&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=62898&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.62898
Resumo:
Título: IDENTIFICAÇÃO DE MODELO HÍBRIDO BASEADO EM REDES NEURAIS PARA DINÂMICA LATERAL DE VEÍCULOS MILITARES Autor: CAMILA LEAO PEREIRA
Nº do Conteudo: 62898
Catalogação: 19/06/2023 Liberação: 19/06/2023 Idioma(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=62898&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=62898&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.62898
Resumo:
O estudo da dinâmica lateral é de grande importância para análise
do comportamento de um veículo durante manobras e fundamental para a
implementação de sistemas de controle de estabilidade e de trajetória em
veículos autônomos. Nesse contexto, baseado em medições experimentais de
um veículo militar de três eixos durante manobras de mudança dupla de
faixa a diferentes velocidades, o presente trabalho apresenta métodos de
identificação de sistemas para obtenção de modelos lineares por meio da
ferramenta CONTSID (CONTinuous-Time System IDentification), disponível
no MATLAB; de modelos não lineares baseados em Redes Neurais; e, por
fim, a proposta de emprego de modelos híbridos com o intuito de minimizar
o erro associado à primeira abordagem, somando-se ao modelo linear, o valor
estimado do resíduo com a aplicação de redes neurais. Por se tratarem de
modelos obtidos a partir de dados observados, como parâmetros de entrada
e de saída do sistema, foram selecionados o ângulo do volante e a taxa de
guinada do veículo, respectivamente. Com a utilização do dados observados,
foi realizada a identificação das funções de transferência para cada velocidade,
o que possibilitou a análise da influência dessa variável no comportamento
dinâmico do sistema. Em seguida, empregou-se uma abordagem via redes
neurais ao mesmo conjunto de dados, com a construção de arquiteturas
distintas por meio da modificação do número de neurônios, número de camadas
e função de ativação. Por fim, um modelo híbrido foi combinado utilizando-se
a modelagem linear e não linear para obtenção de melhorias na resposta do
modelo final estimado. De acordo com os resultados, as técnicas empregadas
apresentaram viabilidade de aplicação e resultados satisfatórios, destacando-se
o aprimoramento do modelo linear por meio de sua substituição pelo modelo
híbrido baseado em redes neurais. Do exposto, objetiva-se destacar o potencial
dos métodos apresentados de forma que, posteriormente, esses estudos possam
ser aprofundados para implementação de malhas de controle veicular, com o
intuito de contribuir com o aumento da segurança, melhoria do conforto e no
desenvolvimento de veículos autônomos.
Descrição | Arquivo |
NA ÍNTEGRA |