$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: OTIMIZAÇÃO DA PROGRAMAÇÃO DA PRODUÇÃO EM REFINARIAS DE PETRÓLEO UTILIZANDO ALGORITMOS GENÉTICOS E CO-EVOLUÇÃO COOPERATIVA
Autor: LEONARDO MENDES SIMAO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  MARCO AURELIO CAVALCANTI PACHECO - ORIENTADOR
CARLOS ROBERTO HALL BARBOSA - COORIENTADOR

Nº do Conteudo: 5969
Catalogação:  28/02/2005 Liberação: 28/02/2005 Idioma(s):  PORTUGUÊS - BRASIL
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=5969&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=5969&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.5969

Resumo:
Esta dissertação investiga a aplicação de Algoritmos Genéticos e de Co-Evolução Cooperativa na otimização da programação da produção em refinarias de petróleo. Refinarias de petróleo constituem um dos mais importantes exemplos de plantas contínuas multiproduto, isto é, um sistema de processamento contínuo gerador de múltiplos produtos simultâneos. Uma refinaria, em geral, processa um ou mais tipos de petróleo, produzindo uma série de produtos derivados, como o GLP (gás liquefeito de petróleo), a nafta, o querosene e o óleo diesel. Trata- se de um problema complexo de otimização, devido ao número e diversidade de atividades existentes e diferentes objetivos. Além disso, neste problema, algumas atividades dependem de que outras atividades já tenham sido planejadas para que possam então ser planejadas. Um caso típico é o das retiradas de produtos de uma unidade de processo, que dependem de que a carga já tenha sido planejada, assim como em qual campanha a unidade estará naquele instante. Por isso, o uso de modelos revolucionários convencionais, como os baseados em ordem, pode gerar muitas soluções inválidas, que deverão ser posteriormente corrigidas ou descartadas, comprometendo o desempenho e a viabilidade do algoritmo. O objetivo do trabalho foi, então, desenvolver um modelo evolucionário para otimizar a programação da produção (scheduling), segundo objetivos bem definidos, capaz de lidar com as restrições do problema, gerando apenas soluções viáveis. O trabalho consistiu em três etapas principais: um estudo sobre o refino de petróleo e a programação da produção em refinarias; a definição de um modelo usando algoritmos genéticos e co-evolução cooperativa para otimização da programação da produção e a implementação de uma ferramenta para estudo de caso. O estudo sobre o refino e a programação da produção envolveu o levantamento das várias etapas do processamento do petróleo em uma refinaria, desde o seu recebimento, destilação e transformação em diversos produtos acabados, que são então enviados a seus respectivos destinos. Neste estudo, também foi levantada a estrutura de tomada de decisão em uma refinaria e seus vários níveis, diferenciando os objetivos destes níveis e explicitando o papel da programação da produção nesta estrutura. A partir daí, foram estudadas em detalhes todas as atividades que normalmente ocorrem na refinaria e que são definidas na programação, e seus papéis na produção da refinaria. A decisão de quando e com que recursos executar estas atividades é o resultado final da programação e, portanto, a saída principal do algoritmo. A modelagem do algoritmo genético consistiu inicialmente em um estudo de representações utilizadas para problemas de scheduling. O modelo coevolucionário adotado considera a decomposição do problema em duas partes e,portanto, emprega duas populações com responsabilidades diferentes: uma é responsável por indicar quando uma atividade deve ser planejada e a outra é responsável por indicar com quais recursos essa mesma atividade deve ser realizada. A primeira população teve sua representação baseada em um modelo usado para problemas do tipo Dial-A-Ride (Moon et al, 2002), que utiliza um grafo para indicar à função de avaliação a ordem na qual o planejamento deve ser construído. Esta representação foi elaborada desta forma para que fosse levada em conta a existência de restrições de precedência (atividades que devem ser planejadas antes de outras), e assim não fossem geradas soluções inválidas pelo algoritmo. A segunda população, que se responsabiliza pela alocação dos recursos para a execução das atividades, conta com uma representação onde os operadores genéticos podem atuar na ordem de escolha dos recursos que podem realizar cada uma das atividades. Finalmente, desenvolveu-se uma ferramenta para implementar estes modelos e tratar de um estudo de caso, que oferecesse as características necessárias para testar a qualidade das representações e avaliar os resultados. Foi criada uma refinaria bem simples, mas que contasse com todos os tipos de equipamentos, atividades e restrições presentes em uma refinaria real. As restrições existentes são tanto as de precedência, que são incorporadas através do grafo utilizado pela primeira espécie, quanto às restrições operacionais inerentes ao problema e à planta escolhida. Com isso, foi possível validar o processo de decodificação dos cromossomos em soluções viáveis, respeitando as restrições do problema. Foram realizados vários testes que demonstraram a capacidade dos modelos desenvolvidos em gerar soluções viáveis, sem a necessidade de heurísticas de correção, e os resultados obtidos foram comparados com os de um processo de busca exaustiva. Foram criados três cenários de teste com demandas, restrições e tamanhos diferentes. Em todos os casos, os resultados obtidos pelos modelos foram sempre muito superiores aos da busca exaustiva.

Descrição Arquivo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS  PDF
CAPÍTULO 1  PDF
CAPÍTULO 2  PDF
CAPÍTULO 3  PDF
CAPÍTULO 4  PDF
CAPÍTULO 5  PDF
CAPÍTULO 6  PDF
REFERÊNCIAS BIBLIOGRÁFICAS  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui