XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: OTIMIZAÇÃO DA PROGRAMAÇÃO DA PRODUÇÃO EM REFINARIAS DE PETRÓLEO UTILIZANDO ALGORITMOS GENÉTICOS E CO-EVOLUÇÃO COOPERATIVA Autor: LEONARDO MENDES SIMAO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
MARCO AURELIO CAVALCANTI PACHECO - ORIENTADOR
CARLOS ROBERTO HALL BARBOSA - COORIENTADOR
Nº do Conteudo: 5969
Catalogação: 28/02/2005 Liberação: 28/02/2005 Idioma(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=5969&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=5969&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.5969
Resumo:
Título: OTIMIZAÇÃO DA PROGRAMAÇÃO DA PRODUÇÃO EM REFINARIAS DE PETRÓLEO UTILIZANDO ALGORITMOS GENÉTICOS E CO-EVOLUÇÃO COOPERATIVA Autor: LEONARDO MENDES SIMAO
CARLOS ROBERTO HALL BARBOSA - COORIENTADOR
Nº do Conteudo: 5969
Catalogação: 28/02/2005 Liberação: 28/02/2005 Idioma(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=5969&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=5969&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.5969
Resumo:
Esta dissertação investiga a aplicação de Algoritmos
Genéticos e de Co-Evolução Cooperativa na otimização da
programação da produção em refinarias de petróleo.
Refinarias de petróleo constituem um dos mais importantes
exemplos de plantas contínuas multiproduto, isto é, um
sistema de processamento contínuo gerador de múltiplos
produtos simultâneos. Uma refinaria, em geral, processa
um
ou mais tipos de petróleo, produzindo uma série de
produtos derivados, como o GLP (gás liquefeito de
petróleo), a nafta, o querosene e o óleo diesel. Trata-
se
de um problema complexo de otimização, devido ao número
e
diversidade de atividades existentes e diferentes
objetivos. Além disso, neste problema, algumas
atividades
dependem de que outras atividades já tenham sido
planejadas para que possam então ser planejadas. Um caso
típico é o das retiradas de produtos de uma unidade de
processo, que dependem de que a carga já tenha sido
planejada, assim como em qual campanha a unidade estará
naquele instante. Por isso, o uso de modelos
revolucionários convencionais, como os baseados em
ordem,
pode gerar muitas soluções inválidas, que deverão ser
posteriormente corrigidas ou descartadas, comprometendo
o
desempenho e a viabilidade do algoritmo. O objetivo do
trabalho foi, então, desenvolver um modelo evolucionário
para otimizar a programação da produção (scheduling),
segundo objetivos bem definidos, capaz de lidar com as
restrições do problema, gerando apenas soluções viáveis.
O trabalho consistiu em três etapas principais: um
estudo
sobre o refino de petróleo e a programação da produção
em
refinarias; a definição de um modelo usando algoritmos
genéticos e co-evolução cooperativa para otimização da
programação da produção e a implementação de uma
ferramenta para estudo de caso. O estudo sobre o refino
e
a programação da produção envolveu o levantamento das
várias etapas do processamento do petróleo em uma
refinaria, desde o seu recebimento, destilação e
transformação em diversos produtos acabados, que são
então
enviados a seus respectivos destinos. Neste estudo,
também
foi levantada a estrutura de tomada de decisão em uma
refinaria e seus vários níveis, diferenciando os
objetivos
destes níveis e explicitando o papel da programação da
produção nesta estrutura. A partir daí, foram estudadas
em
detalhes todas as atividades que normalmente ocorrem na
refinaria e que são definidas na programação, e seus
papéis na produção da refinaria. A decisão de quando e
com
que recursos executar estas atividades é o resultado
final
da programação e, portanto, a saída principal do
algoritmo.
A modelagem do algoritmo genético consistiu inicialmente
em um estudo de representações utilizadas para problemas
de scheduling. O modelo coevolucionário adotado
considera
a decomposição do problema em duas partes e,portanto,
emprega duas populações com responsabilidades
diferentes:
uma é responsável por indicar quando uma atividade deve
ser planejada e a outra é responsável por indicar com
quais recursos essa mesma atividade deve ser realizada.
A
primeira população teve sua representação baseada em um
modelo usado para problemas do tipo Dial-A-Ride (Moon et
al, 2002), que utiliza um grafo para indicar à função de
avaliação a ordem na qual o planejamento deve ser
construído. Esta representação foi elaborada desta forma
para que fosse levada em conta a existência de
restrições
de precedência (atividades que devem ser planejadas
antes
de outras), e assim não fossem geradas soluções
inválidas
pelo algoritmo. A segunda população, que se
responsabiliza
pela alocação dos recursos para a execução das
atividades,
conta com uma representação onde os operadores genéticos
podem atuar na ordem de escolha dos recursos que podem
realizar cada uma das atividades. Finalmente, desenvolveu-se uma ferramenta para implementar estes
modelos e tratar de um estudo de caso, que oferecesse as características
necessárias para testar a qualidade das representações e avaliar os resultados.
Foi criada uma refinaria bem simples, mas que contasse com todos os tipos de
equipamentos, atividades e restrições presentes em uma refinaria real. As
restrições existentes são tanto as de precedência, que são incorporadas através
do grafo utilizado pela primeira espécie, quanto às restrições operacionais
inerentes ao problema e à planta escolhida. Com isso, foi possível validar o
processo de decodificação dos cromossomos em soluções viáveis, respeitando
as restrições do problema.
Foram realizados vários testes que demonstraram a capacidade dos
modelos desenvolvidos em gerar soluções viáveis, sem a necessidade de
heurísticas de correção, e os resultados obtidos foram comparados com os de
um processo de busca exaustiva.
Foram criados três cenários de teste com demandas, restrições e tamanhos
diferentes. Em todos os casos, os resultados obtidos pelos modelos foram
sempre muito superiores aos da busca exaustiva.
Descrição | Arquivo |
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS | |
CAPÍTULO 1 | |
CAPÍTULO 2 | |
CAPÍTULO 3 | |
CAPÍTULO 4 | |
CAPÍTULO 5 | |
CAPÍTULO 6 | |
REFERÊNCIAS BIBLIOGRÁFICAS |