$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC | MARC |



Título: INTERLIGANDO APRENDIZADO DE MÁQUINA E SIMULAÇÃO EM MESOESCALA PARA ESTUDAR O ESCOAMENTO EM SUSPENSÕES SEMI-DENSAS E DENSAS
Autor: ERIKA IMADA BARCELOS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  MONICA FEIJO NACCACHE - ORIENTADOR
JOAO MANUEL LUIS LOPES MAIA - COORIENTADOR

Nº do Conteudo: 58901
Catalogação:  09/05/2022 Liberação: 09/05/2022 Idioma(s):  INGLÊS - ESTADOS UNIDOS
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=58901&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=58901&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.58901

Resumo:
Suspensões correspondem a uma classe de materiais amplamente utilizada em uma grande variedade de aplicações e indústrias. Devido à sua extrema versatilidade, elas têm sido foco de inúmeros estudos nas últimas décadas. Suspensões também são muito flexíveis e podem apresentar diferentes propriedades reológicas e respostas macroscópicas dependendo da escolha dos parâmetros usados como entrada no sistema. Mais especificamente, a resposta reológica de suspensões está intimamente associada ao arranjo microestrutural das partículas que compõem o meio e a fatores externos, como o quão confinadas elas se encontram e a rigidez das partículas. No presente estudo, o efeito da rigidez, confinamento e vazão na microestrutura de suspensões altamente concentradas é avaliado usando Dinâmica Dissipativa de Partículas com Núcleo Modificado. Precedento este estudo principal, foram necessárias outras duas etapas para garantir um sistema de simulação confiável e representativo, que consistiu, essencialmente, na realização de estudos paramétricos para compreender e estimar os valores adequados para os parâmetros de interacção parede-partícula. O presente trabalho aborda estudos paramétricos realizados para auxiliar na escolha dos parâmetros de entrada para evitar a penetração de partículas em um sistema delimitado por paredes. Inicialmente um sistema mais simples, composto por solvente e paredes é construído e os parâmetros de interação e densidades de parede foram ajustados. Em seguida as interações são definidas para suspensões. Neste último caso, vários parâmetros desempenham um papel na penetração e a maneira tradicional de investigar esses efeitos seria exaustiva e demorada. Por isso, optamos por usar uma abordagem de Machine Learning para realizar este estudo. Uma vez ajustados os parâmetros, o estudo de confinamento pôde ser realizado. O objetivo principal deste estudo foi entender como a microestrutura de suspensões concentradas é afetada pela vazão, rigidez das partículas e confinamento. Verificou-se que partículas muito flexíveis sempre formam um aglomerado gigante independente da razão de confinamento; a diferença está em quão compactadas são as partículas. No caso de partículas rígidas, um confinamento mais forte leva à formação de aglomerados maiores. O estudo final aborda um estudo de aprendizado de máquina realizado para prever a reologia de suspensões não confinadas. Com este trabalho foi possível entender e ajustar parâmetros de simulação e desenvolver um domínio computacional que permite estudar sistematicamente efeitos do confinamento em suspensões.

Descrição Arquivo
NA ÍNTEGRA  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui