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Abstract

Imada Barcelos,Erika; Naccache, Mônica (Advisor); Luis Lopes Maia,
João Manuel (Co-Advisor). Coupling Machine Learning and
Mesoscale Modeling to study the flow of semi-dense and dense
suspensions. Rio de Janeiro, 2022. 92p. Tese de Doutorado – Departa-
mento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio
de Janeiro.

Suspensions correspond to a class of materials vastly used in a large set of
applications and industries. Due to its extreme versatility, they have been the
focus of numerous studies over the past decades. Suspensions are also very flex-
ible and can display different rheological properties and macroscopic responses
depending on the choice of parameters used as input in the system. More
specifically, the rheological response of suspensions is intimately associated to
the microstructural arrangement of the particles composing the medium and
external factors, such as how strongly they are confined and particle rigidity.
In the present study, the effect of particle rigidity, confinement and flow rate on
the microstructure of highly concentrated suspensions is studied using Core-
Modified Dissipative Particle Dynamics. Preceding this main study, two other
steps were necessary to guarantee a reliable and realistic simulation system,
which consisted, essentially, on performing parametric studies to understand
and estimate the appropriate values for wall-particle interaction parameters.

The present work address parametric studies performed to assist the
input parameters choice to prevent particle penetration in a wall-bounded
system. Initially a simpler system, composed of solvent and walls, is built and
the interaction parameters and wall densities were adjusted. Following, the
interactions are set for suspensions. In the latter case multiple parameters
play a role in penetration and the traditional way to investigate these effects
would be exhaustive and time consuming. Hence, we choose to use a Machine
Learning approach to perform this study. Once the parameters were adjusted,
the study of confinement could be carried out. The main goal of this study
was to understand how the microstructure of concentrated suspensions is
affected by flow rate, particle rigidity and confinement. It was found that
very soft particles always form a giant cluster regardless the confinement
ratio; the difference being on how packed the particles are. In the rigid
case, a stronger confinement leads the formation of larger clusters. The final
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study addresses a machine learning study carried out to predict the rheology
of unconfined suspensions. The main contribution of this work is that it
was possible to understand and adjust simulation parameters and develop a
computational domain that enables to systematically study confinement effects
on suspensions.

Keywords
Dissipative Particle Dynamics; Machine Learning; Suspensions.
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Resumo

Imada Barcelos,Erika; Naccache, Mônica; Luis Lopes Maia, João Manuel
. Interligando aprendizado de máquina e simulação em meso-
escala para estudar o escoamento em suspensões semi-densas e
densas. Rio de Janeiro, 2022. 92p. Tese de Doutorado – Departamento
de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Ja-
neiro.

Suspensões correspondem a uma classe de materiais amplamente utili-
zada em uma grande variedade de aplicações e indústrias. Devido à sua ex-
trema versatilidade, elas têm sido foco de inúmeros estudos nas últimas dé-
cadas. Suspensões também são muito flexíveis e podem apresentar diferentes
propriedades reológicas e respostas macroscópicas dependendo da escolha dos
parâmetros usados como entrada no sistema. Mais especificamente, a resposta
reológica de suspensões está intimamente associada ao arranjo microestrutural
das partículas que compõem o meio e a fatores externos, como o quão confina-
das elas se encontram e a rigidez das partículas. No presente estudo, o efeito
da rigidez, confinamento e vazão na microestrutura de suspensões altamente
concentradas é avaliado usando Dinâmica Dissipativa de Partículas com Nú-
cleo Modificado. Precedento este estudo principal, foram necessárias outras
duas etapas para garantir um sistema de simulação confiável e representa-
tivo, que consistiu, essencialmente, na realização de estudos paramétricos para
compreender e estimar os valores adequados para os parâmetros de interacção
parede-partícula.

O presente trabalho aborda estudos paramétricos realizados para auxiliar
na escolha dos parâmetros de entrada para evitar a penetração de partículas
em um sistema delimitado por paredes. Inicialmente um sistema mais simples,
composto por solvente e paredes é construído e os parâmetros de interação e
densidades de parede foram ajustados. Em seguida as interações são definidas
para suspensões. Neste último caso, vários parâmetros desempenham um
papel na penetração e a maneira tradicional de investigar esses efeitos seria
exaustiva e demorada. Por isso, optamos por usar uma abordagem de Machine
Learning para realizar este estudo. Uma vez ajustados os parâmetros, o
estudo de confinamento pôde ser realizado. O objetivo principal deste estudo
foi entender como a microestrutura de suspensões concentradas é afetada
pela vazão, rigidez das partículas e confinamento. Verificou-se que partículas
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muito flexíveis sempre formam um aglomerado gigante independente da razão
de confinamento; a diferença está em quão compactadas são as partículas.
No caso de partículas rígidas, um confinamento mais forte leva à formação
de aglomerados maiores. O estudo final aborda um estudo de aprendizado
de máquina realizado para prever a reologia de suspensões não confinadas.
Com este trabalho foi possível entender e ajustar parâmetros de simulação e
desenvolver um domínio computacional que permite estudar sistematicamente
efeitos do confinamento em suspensões.

Palavras-chave
Dinâmica Dissipativa de Partículas; Aprendizado de Máquina; Suspen-

sões.
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1
Introduction

Suspensions are probably one of the most popular and studied system in
the soft matter community. Due to its versatility and flexibility, they are, still,
in the core development on many academic and industrial research. The vast
range of potential applications is possible due to the rich variety of physical
properties and macroscopic responses that can be obtained by tuning different
parameters at flow and particle level.

A particular property of central importance in suspensions applications is
its flow and deformation behavior. Typically, when one wants to study different
materials and flow properties a systematic study must be carried out, giving
a special attention to the intrinsic particle parameters at play. A particular
important feature that needs to be taken into account is particle concentration,
which is intimately connect to the hydrodynamic interactions and particles
microstructure arrangements (MEWIS; WAGNER, 2011).

At very low particle concentration the particles do not see one another
and the motion induced by a particle does not influence its distant neighbors.
Random motion, in this case, drives the motion in system. As concentration
increases, a second particle starts feeling the presence of its close neighbors
and the flow around them is affected; at his point hydrodynamic interactions
become non-negligible. If concentration raises even more multi-body hydrody-
namic interactions start taking place and understanding and studying those
systems become more challenging; the rheology becomes strongly affected by
the microstructure (MEWIS; WAGNER, 2011). Innumerous works have ad-
dressed the rheology and microstructure of suspensions at different flow condi-
tions and particle concentration (BIAN et al., 2014; RAMASWAMY et al.,
2017; JAMALI; YAMANOI; MAIA, 2013; JAMALI et al., 2015b; BORO-
MAND et al., 2018)

Size ratio difference (MAI-DUY; PHAN-THIEN; KHOO, 2015; JAMALI;
YAMANOI; MAIA, 2013), particle rigidity (JAMALI et al., 2015b; KUMAR;
Henríquez Rivera; GRAHAM, 2014; MEHRABADI; KU; AIDUN, 2016), shape
(KUMAR; Henríquez Rivera; GRAHAM, 2014; MEHRABADI; KU; AIDUN,
2016; BROWN et al., 2011), polydispersity (RAMASWAMY et al., 2017) and
confinement (GALLIER et al., 2016; BIAN et al., 2014; PEYLA; VERDIER,
2011; RAMASWAMY et al., 2017) are also proven factors that might influence
particle migration and fluid macroscopic properties.

Particle rigidity, in particular, has been proven in experimental and com-
putational works to affect the rheology of suspensions as previously reported
by (JAMALI; YAMANOI; MAIA, 2013; JAMALI et al., 2015b; COULOMB
et al., 2017). Thermodynamic, diffusion behavior and structure of suspensions
made of soft particles can differs significantly of the rigid ones as observed
experimentally by (ECKERT; RICHTERING, 2008). Most of the available
literature relies on the effect of rigidity in bulk and low concentration condi-
tions(CHEN, 2014; KILIMNIK; MAO; ALEXEEV, 2011). When concentration
and confinement are introduced additional physical effects become non negli-
gible.
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In addition to particle rigidity, confinement is also a very relevant
topic since many real world suspensions applications are confined by physical
restrictions. Although studies investigating confinement effects date from
a long time ago, there is still room for further investigation in the field,
specially when walls are present in highly concentrated soft suspensions.
Walls can enhance difference rheological and flow behavior that divers from
bulk systems as verified experimentally (ERAL et al., 2009; LYON; LEAL,
1998b; ??; RAMASWAMY et al., 2017), and in numeric works (BIAN et al.,
2014; PEYLA; VERDIER, 2011; GALLIER et al., 2016; GROSS; KRÜGER;
VARNIK, 2014; DOYEUX et al., 2016; KOMNIK; HARTING; HERRMANN,
2004).

Particularly in highly concentrated confined suspensions studies, a nu-
merical approach is usually preferred due to the complexity in setting an ex-
perimental setup. Computer simulations, in this case, represent an alternative
approach to target those systems. Different numerical methods can be used as
reviewed in (Van Der Sman, 2009). A particle-based method that has gained
considerable attention in the past decades and has been successfully used to
model complex fluids confined in walls geometries is mesoscale is Dissipative
Particle Dynamics.

Modelling geometrical constraints imposed by walls in DPD dates from
earlier 1995 (KONG et al., 1994), just a few years after the method was
first introduced. Since then, many studies targeting wall slip, density fluc-
tuations and unwanted layering effects have been published (PIVKIN; KAR-
NIADAKIS, 2006; PIVKIN; KARNIADAKIS, 2005; WILLEMSEN; HOEFS-
LOOT; IEDEMA, 2000; MEHBOUDI; SAIDI, 2014; LITVINOV et al., 2010).
Many of them were able to eliminate those spurious effects by using modifica-
tions and improvements of the traditional approach. These methods, however,
are in its majority focused on solvent systems merely, without any incorpo-
ration of particles. An exception is the work published in (DARIAS et al.,
2003) in which colloidal particles were modeled in a confined geometry using
DPD. In that particular study the walls were not modeled using the tradi-
tional wall-frozen procedure, instead, only bounce back boundary conditions
were applied at the wall to prevent particle penetration. The colloidal parti-
cles were modelled as neutrally buoyant particles interacting by soft repulsion
potentials.

Later on, some works modelling the colloidal particles using a freezing
approach(CHATTERJEE; WU, 2008; BOEK et al., 1997) as well explained in
(BOEK et al., 1997) were published. Following this methodology, DPD par-
ticles are aggregated after a collision and have their momenta redistributed
and subsequently move as single entity. That methodology enables the repre-
sentation of solid object with desirable shapes and sizes (BOEK; COVENEY;
LEKKERKERKER, 1996; BOEK et al., 1997), however modelling completely
smooth surfaces is a challenge. Another alternative approach to model suspen-
sions was introduced recently by (PHAN-THIEN; MAI-DUY; KHOO, 2014)
and was posteriorly used by (MAI-DUY; PHAN-THIEN; KHOO, 2015) which
considers a spring model to represent the colloidal particles. In this approach,
a few DPD particles are connected though very stiff springs to reference some
sites, which will, in a subsequent step, move as a rigid body.

18
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To overcome the constraints associated to the lower surface definition
arising from the freezing-related procedures, single particle models consid-
ering the colloidal particles as individual entities have been proposed. In
some cases, DPD forces are modified to account for particle-particle interac-
tions (PRYAMITSYN; GANESAN, 2005; PAN; CASWELL; KARNIADAKIS,
2010). Another possibility relies on the usage of pairwise colloidal forces be-
tween the particles, as proposed initially by (WHITTLE; TRAVIS, 2010) in
a model named Core-Modified Dissipative Particle Dynamics CM-DPD. Fol-
lowing this methodology, the colloidal particles are represented as a smooth
and repulsive hard core having attached a dissipative coat. In this model the
repulsive nature is provided by the core force and hydrodynamic interactions
are accounted by a a short-range lubrication potential.

Since its first introduction, Core-Modified DPD has been successfully
employed to model suspensions at different flow strengths and different vol-
ume fractions (JAMALI; YAMANOI; MAIA, 2013; BOROMAND et al., 2018;
JAMALI; BRADY, 2019; JAMALI et al., 2015b). Nevertheless, as far as we
are aware, a systematic study on the combined effects of confinement, parti-
cle rigidity, high volume fraction and flow rate in suspensions using CM-DPD
has not been addressed yet. The main study of this thesis addresses flow rate,
particle rigidity and confinement effects on the microstructure of suspensions
that are investigated in detail in systems at different concentrations, focusing
on the semi-dense and dense regimes. Before this main study, two other addi-
tional studies were performed to guarantee a reliable simulation domain which
were based on setting up the appropriate interactions of the computational
domain. In Chapter 2 a brief literature review of the topic in study will be
introduced. In Chapter 3 the computational method as well as the Machine
Learning model applied are described. In Chapter 4 the results of all the stud-
ies are presented followed by some conclusions and suggestions for potential
future works.
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2
Previous Work

2.1
Colloids

Since Thomas Graham official definition of the term "colloids", and par-
ticularly from 1861, when a systematic study on colloidal particles was per-
formed, a large number of research studies comprising those systems have been
carried out. (DHONT, 1996). Nowadays, colloids preserve its popularity mostly
due to its extremely vast range of potential applications. They are present in
many aspects of everyone’s routine life, in products such as food,cosmetics,
pharmaceuticals, chemicals, paints, oil and gas, etc.

The term ’colloids’ refers to the dispersed phase in a mixture of two com-
ponents. According to the particle size in a colloidal mixture it can be classified
in three different categories. In a solution, the size of the suspending particle
is smaller than 1nm, these particles do not scatter light and for this reason
the mixture is transparent and therefore, particles cannot be distinguished one
another visually. The second category is the colloidal dispersion, where the par-
ticles suspending size has a maximum size of 1 µm. It is popularly defined as
a heterogeneous mixture and although the size is smaller than in suspensions,
they are still small enough to do not settle and remain suspended. Suspensions
are the third type of colloidal mixture in which the particles’ size is greater
than 1 µm. In many cases, suspensions are treated as colloidal dispersion, and
in literature many times the terms are interchangeable (MEWIS J.; WAGNER,
).

The physics of suspensions is highly dependent on some parameters at the
particle level, as for instance, volume fraction, shape and size of the particles.
Among them, the concentration of particles in the system is a key factor in
determining the rheological behavior of suspensions, and depending on the load
of particles in the system different behaviors can be observed. Suspensions
classification according to the concentration will be later addressed in this
Chapter.

A topic of high importance in suspensions world is the governing forces
and interaction potential between the particles.

2.1.1
Colloidal Forces

In general terms, the forces present in a colloidal system at a macroscopic
and microscopic level can be divided in: external forces (such as electrical,
gravitational and centrifugal forces), contact forces(found, for example in
pastes and granular medium (COUSSOT; ANCEY, 1999; Van Der Sman,
2009)), hydrodynamic force and colloidal forces. The latter is significantly
important when the particle diameter is smaller than 1 µm and some examples
of it are depletion, electrostatic, Brownian forces, Van der Walls and structural
forces (Van Der Sman, 2009; RUSSEL, 1980).

DBD
PUC-Rio - Certificação Digital Nº 1622014/CA



Herein we are focusing on colloidal forces. Among them, electrostatic
interactions, observed when charged species are present, are the strongest ones
and are able to induce different surface properties. Van der Waals interactions
are composed of three components: a dipole-dipole force, dipole-induced and
dispersion(London) forces. The latter has the most important contribution
due to its universal nature and it arises from quantum mechanics of the
species present in the system. They are essentially long-range forces and can
be attractive or repulsive (MYERS, 1999). Depletion forces is an attractive
force resultant from when particles are not able to access the space separating
them. Brownian forces arise from the random thermal collision between the
particles. It is governed by diffusion and can be represented as:

F B = kBT/a (2-1)
Where kB is the Boltzmann constant, T the temperature and a the

particle radius. The presence of Brownian motion induces a stress that can
be reduced according to the characteristic of the system, for example, bigger
particles induce a weaker stress. Furthermore, Brownian motion acts smoothing
gradients in particle concentration, helping particles in a more concentrated
region move towards lower concentration zones(MEWIS J.; WAGNER, ).

Hydrodynamic interactions arise from particles interactions promoted by
the fluid presence. It is originated from a disturbance in the flow induced by the
existing particles which are affected by the neighboring particles. They can be
divided into short and long-range hydrodynamics forces. A clear explanation of
the hydrodynamic interactions origin is given by (DHONT, 1996): A particle
that is moving in a certain velocity induces the flow motion, which in turn
propagates through the solvent until it encounters another particle, affecting
their motion. That interaction is determined by the velocities and positions of
these particles (as shown in Figure 2.1) and can be described by the Navies
Stokes equation.

Figure 2.1: Flow disturbance by particle A in particle B through the solvent
(DHONT, 1996)

2.1.2
Concentration

It is primordial to divide suspensions into separate groups when it comes
to concentration to fully understand their physics and rheological behavior.
In a very dilute suspension the system can be observed as a simple viscous
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fluid while for a concentrated suspension the material approaches a granular
material behavior. In fact, above a certain volume fraction, called maximum
packing factor, the suspensions can no longer flow. In general therms, one can
classify suspensions in dilute, semi-dilute and concentrated regimes.

In dilute system the particles do not see one another and the eventual
collision between them can be neglected. Although there are a few particles,
the flow is still disturbed by their presence, and as a consequence, the energy
dissipation increases and the viscosity raises. This energy addition can be
calculated by the classic Einstein equation (MEWIS J.; WAGNER, ):

η = ηm(1 + 2/5ϕ) (2-2)
ηm is the medium viscosity and ϕ is the concentration. As shown

in the equation, the contribution of the particles to the viscosity is linear
with concentration. As the particle load increases, the semi-dilute regime,
characterized by a volume fraction above 0.1, is reached. In this case, the
presence of a second particle is felt by the first one, i.e. there is a local
disturbance and the flow around them and the energy dissipation is strongly
altered. Viscosity for that particular case can be described as a Taylor
expansion of Einstein equation, as shown in equation 2-3:

η = ηm(1 + 2/5ϕ) + c2ϕ
2 + c3ϕ

3 + ..... (2-3)
c2 is a coefficient that depends on the type of flow and it governs the

interactions. The other coefficients accounts for many-body interactions and
their calculation is not trivial.

When the concentration increases, some major challenges arise. At high
load of particles the volume fraction is high enough for short-range interactions
become important. Multi-body hydrodynamic interactions take place and
its calculation is extremely hard. In effect, at this point, hydrodynamic
interactions become predominant and affect strongly the suspension behavior.

Many challenges emerge from the many-body interactions affecting hy-
drodynamic interactions. The first of them in related to lubrication forces,
which correspond to the short-range hydrodynamic contribution from interac-
tions and it is resultant of the viscous force acting between two nearly touching
spheres separated by an interstitial fluid. That force goes to zero when the sur-
faces gets too close and computations at this point become intensive. Selecting
a model that can capture these effects is extremely important and crucial for
an accurate suspensions characterization (MEWIS J.; WAGNER, ).

Apart from lubrication forces, the long-range character of the hydrody-
namic interactions is also another issue that has to be addressed and that
poses difficulty. The high concentration of particles may lead to a non con-
vergence of the sum of interactions, and a screen in the interactions can take
place (BRADY; BOSSIS, 1988).

Most of these difficulties are nowadays addresses specially with the
support of computational models, such as Stokesian Dynamics (BRADY;
BOSSIS, 1988) that can addressed both long and short-range hydrodynamic
interactions. Some other popular computational methods will be introduced
later in this Chapter.

As mentioned previously, some factors are known to alter the behavior
and structure of suspensions, such as particle shape, size distribution and the
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presence of physical constraints. Some of these issues will be later addressed.
When it comes to the research and development of suspensions, a key aspect in
the characterization of those systems is the rheological properties associated.

2.2
Rheology

Rheology is the field of study focused primarily on understanding the
phenomena involved in the flow of matter, which is extremely important in
materials characterization and engineering applications since the rheology of a
given system relates to its macroscopic structural properties. The rheology of
suspensions has a crucial importance in the research and development of new
materials and in improving and adjusting the material characteristics based
on a desirable application. In pure fluids, the Newton’s law that correlates the
flow kinematics and stresses is satisfied according to the equation:

τxy = µ
dvx

dy
= µγ̇xy (2-4)

Where τxy represents the xy component of the stress tensor, µ the viscos-
ity and γ̇xy the shear rate. The fluids in which this equations holds are called
Newtonian Fluids. In the majority of suspensions, a non-Newtonian behavior
is seen, i.e. the stress is not proportional to the strain and viscosity varies non-
linearly with the shear rate. Two non-Newtonian behaviors very often observed
in suspensions is shear-thinning and shear-thickening. In the former case, the
suspension viscosity decreases as the applied shear rate increases, mostly due
to the formation of particle layering that reduces the energy dissipation and
therefore the viscosity. In the latter case the opposite behavior is seen. As the
flow rate becomes stronger, particle aggregation and cluster formation start
taking place, that will retard the flow and increase the energy dissipation, con-
sequently the system viscosity. Figure 2.2 illustrates these transitions. In both
cases, the non-linear nature of the relation stress/shear rate requires a modifi-
cation of Newton’s law. A common expression that generalizes the stress-shear
rate relation is given by the power law expression(2-5)

σ = kγ̇n (2-5)
n is known as power law index. σ represents the stress and γ̇ the shear

rate. When n < 1 a shear-thinning behavior can be identified and shear-
thickening is seen for any n > 1. The fluid behavior is commonly dependent on
many flow and particle properties, such as the flow rate, particle concentration,
polydispersity, shape of particles, size, etc. An example of a study in which
a shear-thickening behavior preceded by shear-thinning regime is observed
in Figure 2.3. It shows the relative viscosity variations at different volume
fractions for increasing flow rates. ηr corresponds to the relative viscosity with
respect to the solvent.

Suspensions at high concentration can display an abrupt increase in the
viscosity if a force sufficiently large enough is applied; that transition is known
as discontinuous shear-thickening DST. Many works in the literature have
reported discontinuous shear-thickening (MARI et al., 2015; SETO et al., 2013;
LIN et al., 2015; BROWN; JAEGER, 2012; FERNANDEZ et al., 2013),in the
majority of them, a requirement to observe such transition is the presence of
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Figure 2.2: Schematic representation of the correlation viscosity and microstructure
for different shear regimes, ranging from equilibrium to Shear-Thickening(MEWIS
J.; WAGNER, )

Figure 2.3: Evolution of the viscosity of suspensions at different volume fraction
with the applied shear rate represented in terms of the Peclet number. (JAMALI
et al., 2015b)

frictional forces. However some more recent work has shown that DSC can be
reached even when only hydrodynamics is used (JAMALI; BRADY, 2019). As
illustrated in Figure 2.4, a clear transition from Continuous shear-thickening to
Discontinuous-shear thickening is observed at volume fraction 0.52 and surface
covered from 0.25; in this case, no frictional forces are applied.

24

DBD
PUC-Rio - Certificação Digital Nº 1622014/CA



Figure 2.4: Viscosity changes at increasing Pe and different surface coverage.
(JAMALI; BRADY, 2019)

2.3
Confinement

Many suspensions works focus on fluid bulk properties, however, in real
applications materials are limited in space by physical constraints. Because of
that, research of fluids under confinement remains as a large and important
area of study. With the development and advancement of new experimental
tools and computational resources, the research of confined geometries has
became a topic increasingly explored.

Confinement is a multi-scale field of study encompassing different length
and time scales due to the diversity of the components in the system such as
colloidal particle size, solvent size and dimensions of the channels. Simulation
methods are an interesting alternative over traditional experimental research
to study a particular phenomenon present within a specific time and length
scale. Depending on the choice of the method different information can be
obtained from the systems in study.

Several studies targeting confinement effects on suspensions are reported
in the literature. Confinement is a relatively rich and well explored area. For
example, in a study from around 20 years ago (NOTT; BRADY, 1994), Stoke-
sian dynamics simulations were performed to investigate confinement effect in
systems where the ratio between the channel height and the particle diame-
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ter (y/d) as well as volume fraction were varied. They observed that in order
for suspensions to present a constant pressure perpendicular to the flow, the
particles need to migrate towards the center of the channel leading to an in-
homogeneous distribution of the particle velocity and formation of clusters,
which are broken when short-range repulsive forces are included. Those migra-
tion effects increase with the volume fraction. From the same date as (NOTT;
BRADY, 1994), (KOH; HOOKHAM; LEAL, 1994) proposed an experimen-
tal study in order to investigate suspensions flow in a rectangular channel and
reached a similar conclusion. A blunt in the velocity profile in the middle of the
channel was seen in the flow of concentrated suspensions. The inhomogeneity
increases as volume fraction and the ratio particle size/confinement gap of the
channel raises.

A common and relatively well established suspensions behavior observed
in many experimental and numerical works (YEO; MAXEY, 2010b; GALLIER
et al., 2016) is particle ordering induced by the presence of walls. (YEO;
MAXEY, 2010a), for example, reported and extensive work investigating the
ordering structure evolution of suspensions at different gap ratios for a range
of volume fractions. They separated the study in three regions according to
the dominant microstructure in place, which they called wall, buffer and core
zones. Depending on the volume fraction a strong layering at the wall is seen,
following by a region that is similar to an homogeneous unbounded shear flow
(core region). The buffer phase presented characteristics from the other two
regions, displaying asymmetry in the microstructure.

In a following work (YEO; MAXEY, 2010b), the same group investigated
ordering transition at different volume fractions and channel heights and
concluded that both volume fraction and the channel gap influence the ordering
mechanism. One of their conclusion was that for VF = 0.48 and ratios h/a
(h representing the channel height and a the particle radius) above 40 a
disordered phase is much bigger than the ordered one, approaching a bulk
behavior. In stronger confinement conditions( h/a < 10) the commensurability
of the particles with the free space determines the ordering of the system.
For intermediate gaps, ( h/a < 15) an hexagonal structure was seen. Those
transitions are dependent on the volume fraction. For VF=0.6, for example,
a structural transition from triangular to rectangular was observed. Most
importantly, the flow behavior is a consequence of the non-linear relationships
between the gaps and the volume fraction.

More recently, (BIAN et al., 2014) in 2014 studied confinement in
suspensions using Smoothed Particle Hydrodynamics (SPH). Simulations were
performed for channel gaps from 8 to 256 and particle concentration of
0.589. They observed that confinement changes the hydrodynamic interactions
between particles and that a percolating network at the onset of hydrodynamic
shear-thickening is seen at strong confinement conditions. Slip at the wall was
observed and increasing confinement gaps and the volume fraction resulted in
a stronger suspension viscosity and formation of larger clusters, as observed in
Figure 2.5. σ∗ illustrates the critical shear stress, which is the minimum stress
where shear stress emerges.

(GALLIER et al., 2016) and co-workers in 2016 studied the wall effects
in the rheology and velocity of suspensions with gap ratios of 20 for volume
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Figure 2.5: Suspensions viscosity as a function of the critical shear stress for volume
fraction of 0.589. (BIAN et al., 2014)

fractions ranging from 0.1 to 0.5. They noted the presence of an hexagonal
structure whose thickness was dependent on the volume fraction. They also
observed that ordering has not a significant impact on the viscosity and second
normal stress difference. The first normal stress is, however, greatly affected
and that confinement can lead to positives N1.

In 2017, (RAMASWAMY et al., 2017) proposed a systematic study
combining experiments and simulations to track rheological changes and mi-
crostructure of suspensions at different confinement ratios and volume frac-
tions. They divided viscosity changes in three categories according to the con-
finement ratio. The first one they called moderate confinement, for 15>h/2a>6
(where a is the particle radius and h the channel height), characterized by a
strong particle layering. For 3< h/2a<6, corresponding to a strong confinement
region, fluctuations in viscosity are due to the formation of a bucket structure.
The third phase is in extreme confinement conditions, when h/2a < 3. In this
case, a sharp increase in the viscosity was reported. Those observations were
only evidenced for volume fraction of 0.52. If volume fraction was reduced,
layering and bucked structure were no longer seen.

All these works reported so far target stiff particles, however the particle
rigidity is an important parameter that can affect fluid behavior and particle
ordering. In the case of soft and deformable particles, in addition to the dis-
turbance in the motion promoted by the particles, one also need to account for
the deformation effects and the perturbations in the hydrodynamic interactions
due to particle deformation.
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2.4
Deformable Particles

Deformable particles are an interesting topic of study and have been
investigated in many works. (PAKULA, 1991) for example, studying dense
colloidal suspensions observed different dynamic structural states of particles
when density and particle stiffness were tuned. (COULLIETTE; POZRIKIDIS,
1998) and co-workers observed in their work that deformable particles in a
cylindrical tube tend to migrate towards the center of the channel after a period
of deformation. That migration is mainly driven by a deformation-induced lift.

Another interesting study was proposed by (HSU; CHEN, 2010), in which
volume fraction, gap and flow rate were investigated in a system composed of
deformable particles. A migration of particles towards the center was seen due
to the asymmetry in the hydrodynamic interactions caused by the particles
deformability at the wall vicinity. At high volume fraction, particles can pack
in the center of the channel.

On the confinement front, particle rigidity is also highlighted in some
works. In (KILIMNIK; MAO; ALEXEEV, 2011), cross-migration of de-
formable particles was studied in a pressure-driven flow. The authors found
that particles equilibrium position depends on several factor such as channel
height, Reynolds number and elasticity. However, in general, softer particles
tend to reach equilibrium positions at the channel mid-plane. In other words,
the lift force responsible for particle displacement is enhanced by deformability.

(CHEN, 2014) published a work aiming to understand the effects of
deformation and inertia of soft particles in both shear and Poiseuille flows.
According to the authors, migration is driven by shear forces, inertial stresses
and elastic contraction. In the case of Poiseuille flow they concluded that the
particles concentrate in the channel mid-plane and that the effect is stronger
as deformability and shear rate increases. That migration depends on particle
inertia and deformability, while for hard particles, migration does not depend
on the shear rate. In the latter case the steady state position that the particles
adopt is weakly dependent on Reynolds.

Recently, in 2016, (MEHRABADI; KU; AIDUN, 2016) investigated
the effect of particle rigidity among other factors in margination ( particle
migration towards the walls). They concluded that stronger margination is
lead by particles that are smaller and less deformable.

Although many experimental studies of both rigid and soft particles
can be found in the literature, the majority of works employ simulations
techniques to explore and characterize those systems. That is true especially
for concentrated and highly confined suspensions, where there exists important
equipment’s limitations that can pose a challenge to those studies.

2.5
Computational methods

Several computational approaches for modeling suspensions can be found
in the literature. The development of such techniques is motivated by the
increase and improvement of computational power and resources which enables
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the study of systems that were a challenge before, as for example, suspensions
at strong confinement conditions.

There are some studies that explore comparisons between the techniques
and highlight some important parameters in the design of a system according
to the desirable time and length scales.

(PADDING; LOUIS, 2006) introduces some key dimensionless numbers
describing the physics of suspensions that should be accounted for before se-
lecting a computational method. Although the authors focus on stochastic
rotation dynamics methods SRD, some important insights about other simu-
lations techniques are described. Most importantly, they summarize the main
dimensionless numbers, showed in Figure 2.6, responsible for the governing
physical process in each system - the table has been adapter for this work.
Those are extremely important in the choice of the most suitable technique to
be employed in order to describe correctly the physics of the system of interest.

Figure 2.6: Main dimensionless number governing the physics of suspensions.
Adapted from (PADDING; LOUIS, 2006)

(Van Der Sman, 2009) in a more recent study also presents some
numerical methods for suspensions modeling and classify them according
to the physics and dimensionless number. In general terms, the physics of
suspensions is described by Reynolds, Stokes and Peclet numbers. A choice for
a specific computational method depends specially on the Rep and Pe. Figure
2.7 summarizes their proposed methods based on the dimensionless numbers
for each system.

More recently (BOLINTINEANU et al., 2014) published a review about
some of the off-lattices and particle-based methods, those were: fast lubrication
dynamics (Bybee, 2009), multi-particle collision dynamics (MPCD) (GOMP-
PER et al., 2008) and Dissipative Particle Dynamics (HOOGERBRUGGE;
KOELMAN, 1992; GROOT; WARREN, 1997). Each one them have their own
particularities and advantages/limitations.

A very powerful technique that has been broadly used to model sus-
pensions is Stokesian Dynamics SD. SD accounts for high-order terms in the
hydrodynamics interactions making the technique one of the most appropri-
ate to target multi body hydrodynamics. However, it is limited to particles
moving very slowly ( that are in the Stokes regime), brings some difficulties in
setting the boundary conditions and mostly spherical particles can be repre-
sented (Van Der Sman, 2009). In addition, a high computational cost makes
it difficult to study long-time diffusion(BOLINTINEANU et al., 2014).
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Figure 2.7: Simulations methods mapped according to the dimensionless Particle
Reynolds and Peclet. LB stands for Lattice Boltzmann, DPD Dissipative Partice
Dynamics, SD Stokesian Dynamics, BD Brownian Dynamics, SRD Multi-Particle
Collision Dynamics, DLM distributed, Lagrangian multiplier, IBM - Immersed
Boundary Method.

Brownian Dynamics is another pretty popular simulation technique
used to model suspensions.The main limitation of the method is that long-
range hydrodynamic interactions and momentum transport are ignored in the
traditional approach(PADDING; LOUIS, 2006). Lattice-based methods, such
as lattice Boltzmann have became pretty popular due to its implementation
simplicity and versatility to work with Peclet numbers above 1 (Van Der Sman,
2009). A limitation of the method is when dealing with a system having more
than one length scale. (PADDING; LOUIS, 2006)

An innovative method that accounts for both hydrodynamic and Brown-
ian interactions, conserves the momentum locally and globally, translates the
correct hydrodynamics due to the presence of a thermostat and employs soft
potentials, which enable the usage of larger time steps, is called Dissipative
Particle Dynamics (HOOGERBRUGGE; KOELMAN, 1992; GROOT; WAR-
REN, 1997).

Dissipative Particle Dynamics is an off-lattice simulation method exten-
sively used to model systems in the mesoscale such as suspensions, polymers,
surfactants, blends, etc.

Inspired by Molecular Dynamics, in DPD the Newton equation of motion
is solved for pairwise interacting particles. Each one of these particles is rep-
resented by several atoms using the coarse-graining technique, which consists
of a clustering approach to reach higher time and length scales. DPD intro-
duces some advantages compared to other mesoscales simulation techniques:
the introduction of soft potentials, allowing to reach higher time scales, shorter
equilibration time and the presence of a thermostat that preserves momentum.
DPD will be latter described in more details in this document.
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2.6
Modelling walls with DPD

DPD has also been successfully employed to model different mesoscale
systems such as polymers (LIU et al., 2016; ZHAO et al., 2014; YAMANOI;
POZO; MAIA, 2011; KHANI et al., 2015) suspensions (JAMALI; YAMANOI;
MAIA, 2013; JAMALI et al., 2015b; BOROMAND et al., 2018), surfactants
(GINZBURG et al., 2011; ANDERSON et al., 2018), nanocomposites (CUD-
JOE et al., 2017), gels(BOROMAND; JAMALI; MAIA, 2017) and Janus par-
ticles (PAIVA et al., 2019; PAIVA et al., 2020a; PAIVA et al., 2020b).

A remaining challenge in DPD is imposing the correct boundary con-
dition when physical boundaries are present. Since the interactions between
DPD particles are soft the free particles in the system may penetrate the wall.
A very popular strategy to prevent particle penetration is artificially increase
the wall density and/or the repulsion exerted by the walls to the solvent par-
ticles. However, a consequence of that break in the forces balance is density
oscillation and layering (MEHBOUDI; SAIDI, 2014; KOMNIK; HARTING;
HERRMANN, 2004).

The most classic approach to model walls is by frozen DPD particles at
the edges of the simulation domain. The particles are fixed and not allowed
to move, however they are free to interact with the solvent particles free in
the system. Imposing the correct boundary condition at the wall is closely
related to the model’s ability to prevent particles to penetrate the wall while
the formation of a depletion layer is controlled.

Several numerical studies for wall models using DPD can be found
in the literature (WILLEMSEN; HOEFSLOOT; IEDEMA, 2000; LI et al.,
2018; BOROMAND; JAMALI; MAIA, 2015; FEDOSOV; PIVKIN; KARNI-
ADAKIS, 2008a; PIVKIN; KARNIADAKIS, 2005). The earliest ones model
the wall as a single layer of DPD particles and to keep them away from the
wall its density is artificially increased, as for example in (KONG et al., 1994).
In that study, although particles did not penetrate the wall, large density fluc-
tuations at the wall vicinity were observed.

From the nineties on, numerous studies targeting the development of
models, able to simultaneously avoid wall penetration while reducing density
fluctuations and promoting no-slip boundary conditions have been proposed.
One of the initial ones was introduced by Pivkin and co-authors (PIVKIN;
KARNIADAKIS, 2005). In their work, wall particles were shifted and the force
field around the wall was corrected to estimate an ideal conservative force of
the wall particles. The authors were able to reach non-slip boundary condition,
however some density fluctuations at the wall proximity were detected.

Posteriorly, the same group (PIVKIN; KARNIADAKIS, 2006) intro-
duced a new method to reduce density fluctuations based on a new modifi-
cation of the force field around the wall in order to reach the desirable density.
Using the same approach, they also adjusted the temperature at the wall by
correcting the dissipative coefficient and successfully managed to reach an uni-
form density profile. More recently, some new studies targeting the creation
wall-models with arbitrary shaped geometries have been published (LI et al.,
2018; ZHANG; SHANGGUAN; WANG, 2018).
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Apart from theoretical works, DPD wall-models have been broadly
explored in the field of nanofluids (KASITEROPOULOU; KARAKA-
SIDIS; LIAKOPOULOS, 2011; GUBBIOTTI; CHINAPPI; CASCIOLA, 2019;
GOONEIE; HUFENUS, 2019; SMIATEK; SCHMID, 2011; ABU-NADA,
2017). The study of these models is motivated by the increasing development
of nano-bases systems, which require a fundamental understanding of the flow
phenomena that is distinct from the bulk behavior. For example, nanoconfined
fluids can depict additional surface forces, phase transitions (CUMMINGS
et al., 2010) and layering effects(NOORIAN; TOGHRAIE; AZIMIAN, 2014;
BECKER; MUGELE, 2005).

A crucial step in the development of a successful study in confined
geometries evolves the creation of a wall model capable of reproducing, as
accurately as possible, the physical phenomena observed in real physical
systems. The occurrence of density oscillations and layering at the wall
vicinity, for example, are physically important and proven to happen, as
observed in many studies (MEHBOUDI; SAIDI, 2014; KOMNIK; HARTING;
HERRMANN, 2004; NOORIAN; TOGHRAIE; AZIMIAN, 2014; PERRET et
al., 2010). Therefore, a better understanding of the factors and parameters that
influence those phenomena is essential in the establishment of more accurate
wall models.

Increasing wall density or/and the repulsion between wall and solvent
particles are the most common approaches to prevent nonphysical effects. In
a real systems, particle penetration inside the wall is not possible and we need
to use artificial methods to achieve a non penetration condition. We are aware
that those artifacts are synthetically induced and could not be directly applied
in real physical systems.

2.7
Modeling Suspensions with DPD

Posterior to its first introduction, DPD has been used for modeling dis-
persed systems, as in suspensions and polymer solutions. The first report of
DPD usage to model suspensions dates from one year after its initial intro-
duction by (SCHLIJPER; HOOGERBRUGGE; MANKE, 1995; KOELMAN;
HOOGERBRUGGE, 1993). In the work of (KOELMAN; HOOGERBRUGGE,
1993), more specifically, suspensions of hard spheres in a steady shear flow
were modeled using DPD and their proposed approach is still used nowadays.
It consists of a freezing procedure of the fluid particles in order to represent
solid objects. Those particles move and the propagation steps are modified
in a way that after a collision the momenta of particles composing the solid
object are redistributed and they move together as a single unit. Figure 2.8
illustrates a snapshot obtained by the simulations using this approach (KOEL-
MAN; HOOGERBRUGGE, 1993).

A few years later, (BOEK; COVENEY; LEKKERKERKER, 1996;
BOEK et al., 1997) employed the same technique to study the rheology of
suspensions at different shapes ( rods, disks and spheres) at 30% of concentra-
tion. More recently, in 2008 (CHATTERJEE; WU, 2008), a comparative study
between experiments and simulations using the same technique was carried out
and a good comparison between the two approaches was obtained.
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Figure 2.8: Snapshot of colloidal particles obtained by (KOELMAN; HOOGER-
BRUGGE, 1993). Spheres are concentrated at 30%. Dots represent fluid particles
comprising colloidal particles (bigger spheres) .

The freezing approach main advantage is that modeling suspensions is
not only limited to spherical objects, arbitrary shapes can also be represented.
The downside of the technique is the lower surface definition of the particles,
density oscillations and maintaining temperature is difficult. Some alternatives
have been proposed to overcome those constraints, such as the usage of stiff
spring forces between DPD particles to represent solid objects as first reported
by (PHAN-THIEN; MAI-DUY; KHOO, 2014) and later used by (MAI-DUY;
PHAN-THIEN; KHOO, 2015).

To overcome the constraints associated to a lower surface definition
arising from the freezing-related procedures, single particle models considering
the particles as single entities have been proposed. In this case, DPD particles
are represented as a hard objects and the forces are modified to account for
particle-particle interactions (PRYAMITSYN; GANESAN, 2005).

Another possibility relies on the usage of pairwise colloidal forces between
the particles, as proposed initially by (WHITTLE; TRAVIS, 2010) in a model
named Core-Modified Dissipative Particle Dynamics CM-DPD. Following this
methodology, the colloidal particles are represented as a smooth and repulsive
hard core having attached a dissipative shell that is included to reproduce
suspensions in a more realistic way. In this model the repulsive nature is
provided by the core force and hydrodynamic interactions are accounted by a
a short-range lubrication potential.

2.8
Challenges in modeling Walls in Suspensions

As a mesoscale particle-based method, Dissipative Particle Dynamics has
been extremely successful in the modeling soft matter and has successfully
captured physics of complex fluids(PAIVA et al., 2019; JAMALI; YAMANOI;
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MAIA, 2013; JAMALI et al., 2015b; WANG; JAMALI; BRADY, 2020; KHANI
et al., 2015; BOROMAND; JAMALI; MAIA, 2015; BOROMAND; JAMALI;
MAIA, 2017).

By utilizing soft potentials, DPD has shown extremely versatility and
flexibility in the modeling of different soft matter systems including but
not limited to polymers (SCHLIJPER; HOOGERBRUGGE; MANKE, 1995;
SPENLEY, 2000; LAHMAR; ROUSSEAU, 2007; NARDAI; ZIFFERER, 2009;
ZHAO et al., 2014; KHANI et al., 2015; PAIVA et al., 2019; PAIVA et al.,
2020a), gels (YONG et al., 2013; BISWAS et al., 2017; BOROMAND; JA-
MALI; MAIA, 2017), suspensions(JAMALI; YAMANOI; MAIA, 2013; JA-
MALI et al., 2015b; BOROMAND et al., 2018; WANG; JAMALI; BRADY,
2020) and walls (REVENGA et al., 1998; PIVKIN; KARNIADAKIS, 2005;
PIVKIN; KARNIADAKIS, 2006; FEDOSOV; PIVKIN; KARNIADAKIS,
2008b; MEHBOUDI; SAIDI, 2014). In most industrial, biomedical, pharmaceu-
tical applications and many biological systems such as blood flow, fluid is flown
through a confined geometry. DPD despite its advantages could be associated
with artifacts when modelling wall-bounded systems. This matter has been a
subject of study and many solutions have been developed for parametrizing
DPD to avoid numerical artifacts(PIVKIN; KARNIADAKIS, 2005; PIVKIN;
KARNIADAKIS, 2006; MEHBOUDI; SAIDI, 2014; FEDOSOV; PIVKIN;
KARNIADAKIS, 2008b; LI et al., 2018; BARCELOS et al., 2021). Different
boundary conditions have been proposed for realistic modeling of fluid mo-
tion in between the walls (??ZHANG; SHANGGUAN; WANG, 2018; LI et al.,
2018; RANJITH; PATNAIK; VEDANTAM, 2013; VISSER; HOEFSLOOT;
IEDEMA, 2005). However, traditionally, the walls are made out of frozen par-
ticles which are still free to interact with the fluid particles. This approach is
associated with challenges which are mainly due to the soft inter-particle in-
teractions. Penetration of fluid particles in the walls is inevitable and avoiding
penetration and controlling density fluctuations in the vicinity of the walls is
an extremely difficult task which requires extensive theoretical and parametric
studies.

Preventing wall penetration in DPD-based walls was first addressed
nearly three decades ago by (KONG et al., 1994). Posterior to this initial
study, Pivkin and co-workers proposed a series of relevant studies target-
ing the nonphysical phenomena taking place at the wall (PIVKIN; KARNI-
ADAKIS, 2005; PIVKIN; KARNIADAKIS, 2006; FEDOSOV; PIVKIN; KAR-
NIADAKIS, 2008b). In those studies, several alternative strategies were intro-
duced, including testing different boundary conditions, modifying wall forces,
controlling density fluctuations and evaluating different wall densities and re-
pulsion interactions. Posterior to these works, some theoretical and parametric
studies have explored quantitatively repulsion at the wall (BARCELOS et al.,
2021). Additionally, walls adopting different geometries have also been ad-
dressed in the past years (LI et al., 2018; ZHANG; SHANGGUAN; WANG,
2018).Previously, we explored (BARCELOS et al., 2021) the effect of fluid-wall
interactions and wall density on controlling wall penetration and density fluc-
tuations as these two parameters have been shown to have the most impact in
determining a realistic physics-based simulation set up.

In the current study we expand upon our previous investigations of wall-
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bounded flows and we would like to propose a model for simulating flow of
colloidal suspensions in a confined geometry. For this purpose, we have em-
ployed the framework proposed by Whittle and Travis(WHITTLE; TRAVIS,
2010) named Core-Modified Dissipative Particle Dynamics CM-DPD, which
represents colloidal particles with a rigid core and a soft hydrodynamic shell.
This method has been evaluated and expanded by our group in multiple stud-
ies and has been found to be very advantageous and promising in capturing
the full spectrum of suspension rheology with much lower computational cost
compared to models based on standard DPD simulations.

Reports of DPD applied to complex fluids in wall geometries can be
found in the literature (KONG et al., 1994; MALFREYT; TILDESLEY, 2000;
FAN et al., 2003; FAN et al., 2006). In suspensions, however, the number of
works is not as extensive, maybe because an additional complexity appears in
setting the interactions since there are parameters at the particle level, such
as rigidity and concentration, that may also play an unknown role in particle
penetration. In other words, setting the wall-particle interactions might not be
as trivial as in the case of pure solvent and wall system.

Adjusting colloid and solvent interactions in suspensions in a way that it
prevents nonphysical effects is a key aspect in creating a successful simulating
system for studying fluid properties. Since there are other parameters, in
addition to wall repulsion, which play a role in the interactions a systematic
study about the individual and collective effect of those variables is essential
to a better understanding of the problem and to the creation of a more reliable
system.

Understanding the extension to which particle parameters and flow
properties impact particle migration and wall penetration in DPD-based
suspensions has not been addressed yet even though it is essential in the
establishment of a geometry that can be posteriorly used to study the physical
properties of a system. Adjusting colloidal and solvent interactions to avoid
penetration is a key aspect in creating a successful simulating geometry for a
reproducible study.

Exploring the essential relationships and associations between the pa-
rameters affecting penetration is a challenge in two aspects. First, there might
exist interactions between the parameters that influence the response variable,
thus, not only individual effects must be taken into account but also possible
interactions between them. Secondly, particle penetration potentially varies in
a non-linear way depending on the levels of the parameters adopted. Therefore,
developing a strategy to quantify penetration would be an extremely complex
task.

Due to the vast variety of data and the great number of machine learn-
ing algorithms, today it is possible to solve an enormous range of problems.
Therefore, Machine Learning algorithms can be used as a powerful tool for
understanding correlations between different parameters and hidden patterns
withing data through statistical analysis and decoupling of combined effect.
Machine Learning, in a time efficient manner, provides a systematic under-
standing of individual effects and combined responses especially in cases when
the response variable depends in an unknown and complex way on the original
variables. There has been a plethora of interest in using Machine Learning
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in material science for making fast predictions about materials’ behavior [refs
]. ML has also been combined with DPD simulations for modelling different
fluid properties(INOKUCHI et al., 2018; CHEN; YONG, 2019; INOKUCHI;
OKAMOTO; ARAI, 2020; ZHAO et al., 2021; WANG; OUYANG; WANG,
2021a).

2.9
Machine Learning

Machine learning ML corresponds to a sub-field of Artificial Intelligence
consisting of a series of algorithms that are able to learn from data, find pat-
terns and make future predictions (MITCHELL, 1997). The basic idea behind
ML and data driven approaches is that instead of explicitly programming a
computer to perform specific tasks one can show examples and let the com-
puter work on its own to discover information and find patterns and insights
in the data. There are a very large number of choices of algorithms avail-
able depending on the type of problem and data. Tabular data is one of the
most traditional and highly used type of data in ML. Many engineering ap-
plications involves this type of data such as time series and in predictions of
materials properties and functionalities. ML can also be used in text and im-
age data, which are advanced applications that are responsible for many of the
smart services we have access today such as instantaneous translations, speech
recognition, image recognition etc. Figure 2.9 displays the most used models
categorized by the type of learning problem.

Figure 2.9: Some popular ML models
(GAO et al., 2020)

In general terms, there are two main types of problems: supervised
and unsupervised learning. In the former case, the model is trained under
supervision, meaning that a label is provided for the algorithm to use to
evaluate its performance. In unsupervised problems, on the other hand, no
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label is given and the model is free to work on is own to discovery information
- the goal is, therefore, to find patterns and structure in the data. In supervised
learning tasks, on the other hand, the objective is to make predictions from an
input set of data. On can categorize supervised algorithms in two main classes
of models:

a) Parametric: Parametric models are the ones that the learning function
mapping inputs to outputs is learnt by the algorithm and is expressed as
a mathematical expression in which the coefficients are adjusted as more
data in fed in the model. In short, the way it works is that initially the
model receives inputs and makes random predictions. These predictions are
subsequently compared to the true values using a loss function. The goal of the
training process is to minimize the error in the loss function, i.e. the difference
between predictions and true values. Traditionally, that can be done by using
least squares method or more optimal techniques such as gradient descent.
Those methods goals are to find the minimum of the loss function. When that
happens, the model becomes accurate and performant in terms of making right
predictions. Some common parametric models are: linear regression, logistic
regression and multi-layer perceptron.

b) Non-parametric: Non parametric models do not make assumptions
between the mapping function between the problem input and outputs, which
give them some additional flexibility for learning any functional form of the
data. They are particularly good when there are a lot of data available and
no prior knowledge about it. Because of their extra learning flexibility, these
model usually present higher performances, especially for non-linear data. As
a drawback they can overfit easily and are slower compared to parametric
models. Some examples of non-parametric models are: K-Nearest neighbors,
support vector machines and decision trees.

There are many studies that used DPD combined with machine learning
models in the literature and it has been proven to be a successful approach
to complement computational studies. (INOKUCHI et al., 2018) for instance,
used machine learning to predict viscosity and dispersion in a surfactant solu-
tion. Two years later, the same group (INOKUCHI; OKAMOTO; ARAI, 2020)
compared different regression models ability to predict phase transition order-
ing and temperature of a liquid crystal. (CHEN; YONG, 2019) employed two
supervised learning problems to build a microstructure phase diagram based
on the particle concentration and radius. More recently,(WANG; OUYANG;
WANG, 2021b) in a very interesting work used ML to perform lubrication cor-
rections in suspensions. These works used conventional data-driven approaches,
where the learning process occurs as the algorithm is fed with more data. The
challenge, and many times limitation of ML, is that gathering the necessary
data for the model to be able to learn is not always possible, specially in ex-
perimental studies. To overcome this, physics-based deep learning models can
be used and have been gaining a lot of attention lately. In these approaches,
some previous knowledge of the physics of the system is included when design-
ing the architecture of the neural net and as a result,the number of necessary
data for the model to learn is significantly reduced (RAISSI; PERDIKARIS;
KARNIADAKIS, 2019; MAHMOUDABADBOZCHELOU et al., 2021; MU-
RALIDHAR et al., 2019).
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2.9.1
Predictive Modeling

Machine learning consists of data-driven approaches to support the
decision-making process in a recurrent problem. Basically, a model can learn
and understand how to solve complex problems from data reflecting past
experiences [42]. Essentially, an input matrix containing the features and their
associated values is fed in a pre-determined machine learning algorithm and the
model will make predictions from it. To compute how accurate the predictions
are a performance metric is used, in which the differences between true values
and predictions are computed. At first the predictive power will be poor and
the outputs will be the result of a random guess, but as the model keeps
receiving new data it starts learning from it and eventually it will improve the
output prediction.

Depending on the problem to be solved and the type of data different
ML approaches can be used. Supervised learning, which corresponds to the
class of algorithms with the goal of making predictions, can be classified into
two tasks according to desired predicted output. In classification tasks, the
algorithm predicts a categorical variable from the independent variables while
in regression tasks the response is a continuous value. Several ML models can
be applied to a specific problem and the choice of the most appropriate one
depends, essentially, on the type of data and type of problem.

Decision learning tree is one of the Machine Learning algorithms that
enables developing predictive models via data observation. Herein, we train
a Random Forest (RF), which is a learning method that is mostly used for
classification and regression constituted of ensembles of decision trees. RF are
used to predict solvent and wall penetration value from a collection of input
parameters. A detailed description of the method is given in following.

2.9.2
Random Forests

Random forests RF, introduced in 1995 (HO, 1995) and extended in 2001
by (BREIMAN, 2001) is a very popular machine learning model able to solve
regression and classification problems. As an ensemble method, RF combine
decisions trees that work as weak learners and return predictions based on the
average results returned by the individual trees. The fundamental concept is
that these uncorrelated trees when combined will most frequently outperform
the individual components and will yield more accurate predictions.

RF are essentially a modification of the bagging technique (BREIMAN,
1996), which is particularly useful in reducing the model variance and therefore,
it is very effective in preventing overfitting. The overall idea behind bagging
is that by combining multiple and uncorrelated predictors a more stable and
assertive prediction can be obtained. Bagging is often used in decision trees,
that are considered high variance algorithms.Figure 2.10 presents a schematic
representation of a Random Forest

Decision trees are the constituents of RF. The fundamental idea behind
them is that if a model can learn certain rules from the training data it will
be able to make predictions on new and unseen data. In short, they are built
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Figure 2.10: Scheme of a Random Forest

from the root node, corresponding to the attribute that best separates the
observations. From the root nodes the tree is split in smaller subsets (nodes)
until it reaches a decision node. An important step in building a decision tree
is selecting the attribute to be used in the root node as well as in the branches.
A random selection would yield bad accuracy results, thus, a common criterion
for splitting the trees is the Gini index and Entropy.

The most used performance metrics to evaluate how accurate the model
predictions are, which, in regression, means how close the predictions made by
the model are compared to the simulated results are mean squared error MSE,
root mean squared error RMSE and R2.
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3
Proposal

3.1
Dissipative Particle Dynamics

Dissipative Particle Dynamics (HOOGERBRUGGE; KOELMAN, 1992)
is a particle-based simulation approach popularly employed to model complex
fluids. One of the main advantages of DPD is the flexibility and versatility
in modeling a large variety of structures. DPD particles in its essence are
not actual real particles, but points in the space having an interaction range
defined as rc, representing the maximum distance in which particle interactions
are active and it is commonly set to rc =1. DPD was first introduced by
Hoogerbrugge and Koelman (HOOGERBRUGGE; KOELMAN, 1992) and
has posteriorly received major contributions from works of Groot and Warren
(GROOT; WARREN, 1997). As a particle-based method, in DPD the entire
simulation domain is filled by homogeneous particles, representing the solvent,
that are momentum carriers. In DPD the local linear and angular momentum
is preserved and navie-stokes hydrodynamics is reproduced. Those particles
interact by short-range soft potentials according to the Newton equation of
motion:

Fi =
∑
i̸=j

F C
ij + F D

ij + F R
ij (3-1)

The interactions are pairwise and the range in which these forces are
active is determined by the cut-off distance rc, commonly set as 1. The
interaction is maximum when the particles are completely overlapped and
vanishes when then distance between the centers is beyond one. Figure 3.1
introduces a schematic representation of DPD interactions.

Figure 3.1: Schematic representation of DPD particles. Interaction is active as long
as the center-to-center distance is smaller than 1rc

.
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In DPD the forces are symmetric and composed of three components.
The first one is a conservative force F C

ij , which is a soft repulsion potential
that accounts for the interactions of the particles and governs the thermo-
dynamics of the system. The values adopted for aij are mapped to the fluid
compressibility and it is set as 25 for water(GROOT; WARREN, 1997). The
conservative force expression is given by:

FC
ij = aijw

C
ij(rij)eij (3-2)

Where aij gives the repulsion potential coefficient between the particles i
and j, rij =|ri| and |rij| = |ri| − |rj|, is the distance between the particles, the
unit vector eij is represented by eij=rij/rij and wC

ij is the weight function.
Groot and Warren (GROOT; WARREN, 1997), in their pioneer work in

DPD, employed an equation of state to map the repulsion parameters to the
compressibility of different systems. In order to keep the water compressibility,
the repulsion parameter between DPD particles have to be set at a=25kBT
when system density ρs is constant at 3.

The second contribution comes from the random force which is associated
to the thermal energy added to the system and represents the Brownian
motion. The energy added by the random force F R

ij is removed by the
Dissipative force F D

ij , which acts as a heat sink, dissipating the energy.
Combined, the random and dissipative force act as a thermostat, keeping the
temperature of the system constant.

FR
ij = σijω

R
ij(rij)θijeij (3-3)

FD
ij = −γijω

D
ij (rij)(eij · vij)eij (3-4)

γij and σij are respectively, the dissipative and random coefficients, vij
is the relative velocity of the pair of particles i and j vij = vi − vj and θij

represent the white noise with Gaussian distribution .
The weight functions frequently take the form: wC

ij = 1/rC , wD =
w2

R = (1 − r/rC)2 and 0 for any rij > rc.
Random and dissipative forces are related one another by the fluctuation-

dissipation theorem, which assures that the momentum is conserved and
hydrodynamic is preserved. To achieve that, the relation between the random
and dissipative coefficients as well as the weight functions must obey the
following expressions(ESPANOL; WARREN, 1995):

ωD(rij) =
[
ωR(rij)

]2
(3-5)

σ2
ij = 2γijkBT (3-6)

In DPD the force and velocities calculations are updated at discrete
time steps. To integrate and solve DPD equations of motion and advance the
particles position and velocity a modified velocity Verlet algorithm (GROOT;
WARREN, 1997) is used. In the traditional Velocity Verlet algorithm the forces
depend on particles’ position and not on their velocity, as it is the case for
DPD. For this reason, a modified velocity Verlet algorithm has to be employed.
Modified velocity Verlet has two steps: in part I the particles velocities and
position are updated and the new forces are calculated and in part II, the
velocities are corrected using the updated forces.

41

DBD
PUC-Rio - Certificação Digital Nº 1622014/CA



DPD can be mapped into real physical units as proposed
by (GROOT; RABONE, 2001). Using a system composed of a
phospolipide(phosphatidylethanolamine (PE)), a surfactant and water they
represented the phospolipde molecule in terms of DPD beads, each bead
having 3 carbons. By calculating the volume of each bead they were able
to determine the size of the interaction radius, rc as 6.4633 Å . Based on
that, other properties units were derived. (GHOUFI; MALFREYT, 2012), for
example, introduce a table correlating DPD main parameters to real physical
units as represented in Figure (3.2)

Figure 3.2: rc, ρ, γ, p and a are, respectively, the cutoff radius, density, surface
tension, pressure and energy. M is the water molecular weight and V the volume.
kB is the Boltzmann’s constant, NA the number of Avogadro and Nm represents
the number of water molecules in a bead.(GHOUFI; MALFREYT, 2012)

3.2
Core-Modified Dissipative Particle Dynamics

Initially introduced by White and Travis (WHITTLE; TRAVIS, 2010),
CM-DPD has been used to model suspensions at different flow conditions and
concentrations (JAMALI; YAMANOI; MAIA, 2013; JAMALI et al., 2015a;
BOROMAND et al., 2018).

In this model, the fluid phase is represented as DPD particles that
interact pairwise center-to-center through soft potentials, as traditional DPD.
The colloidal particles, on the other hand, are represented by a spherical,
repulsive and hard core particles having attached a soft shell. As opposite to
DPD interactions, in CM-DPD the interactions are called semi-hard, given
that they are not as hard as the one used in MD (JAMALI; YAMANOI;
MAIA, 2013) neither as soft as DPD interactions. Furthermore, the interaction
between two particles occurs surface-to-surface in contrast to the center-to-
center interaction used in conventional DPD.

The interaction between DPD particles is maximum when they are
completely overlapped and goes to zero at center-to-center distances beyond
rc. In the case of the interaction solvent/ colloidal particles, the force is active
for any distance between the surface of the colloidal particle and the center of
DPD particle, corresponding to rc. That case can be visualized in Figure 3.3.

For a pair of colloidal particles, the DPD forces are no longer applied.
Instead, a repulsive contact force Fcore and a short-range hydrodynamic force
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𝑟𝑐

𝑤𝑖𝑗 = 0𝑤𝑖𝑗 = 1

Figure 3.3: Interactions between solvent DPD Particles and colloidal particles.
White spheres represent DPD particles and colloidal particles can be visualized in
pink. In the left figure the repulsion is maximum and it decreases as the distance
increases. The forces go to zero at any distance above rc, represented in the right
figure.

FHydro, representing a lubrication force, are used. The interaction between
two colloidal forces is pairwise and surface-to-surface. Therefore, naturally,
the center-to-center separation distance rij is replaced by a surface-to-surface
distance hij. Since the interaction is semi-hard as previously stated, the
model does not allow the overlap of the cores. The repulsion between them
is maximum when the cores are in nearly contact and it vanishes for any
distances above the equivalent to rc. Figure 3.4 illustrates the maximum and
minimum interaction between two colloidal particles.

𝑤𝑖𝑗 = 0

ℎ𝑖𝑗

𝑤𝑖𝑗 = 1

Figure 3.4: Interactions between colloidal Particles. The blue particle corresponds
to a colloidal particle having 1.4rc as radius and the pink particle has 1rc. On
the right figure the repulsion is maximum and in the left image the interactions
vanishes, for any hij > rc. The cores thickness for the two types of particles is
fixed at 0.5rc.

For a more comprehensive visualization, Figure 3.6 displays the simu-
lation box with all the types of particles present. Any time a DPD/Solvent
particle interacts with either wall, other DPD and colloidal particles the forces
taking places are DPD forces. These forces are only replaced when the inter-
action is between two colloidal particles.

The core-force in the model is responsible for the rigid and repulsive na-
ture of the colloidal particles and it is included to prevent particle overlapping,
recurrent especially at high shear rates. This force is associated with surface
roughness in real particles, ∆ which would range around 10−3 of the colloidal
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(a) Core force represented as a cubically decay-
ing function between the separation distances.

(b) Hydrodynamic potential

Figure 3.5: Potential graphs of the colloidal forces used in the model. The y axis in
the hydrodynamic potential represents the pair-drag term (SILBERT; MELROSE;
BALL, 1997), △ is the smallest separation distance between the cores and hij is
the surface-to-surface distance.

Figure 3.6: Simulation box.The top right white beads represent the interaction
between two DPD particles. Top left shows the interaction colloid-solvent, bottom
left represents colloid-colloid interactions and bottom left interactions with the
wall.

radius. The force is maximum at surface-surface contact and it vanishes cubi-
cally at very low separation distances, as seen in the following expression:

F Core
ij =


fCore(1 + hij), hij ≤ 0

fCore
(
1 + hij

∆

)3
, < hij ≤ ∆

0, hij > ∆
(3-7)

In addition to the Core Force, the model also accounts for a lubrication
potential. When particles are at close proximity the solvent particles are
expelled and that may originate a break down in the hydrodynamics. To
avoid that, a lubrication potential is included to represent the short-range
hydrodynamic interactions. The force is based on a pair drag term as proposed
by (BALL; MELROSE, 1995). Because of the fact that at the surface-surface
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contact the force is singular, a small gap δ is included in the equations
to truncate the force. For any distances below δ the force is constant and
maximum and it decreases as particles move away from another. Equation
3-8 describes the expression for the force and Figure 3.5 illustrates the core
and hydrodynamic potentials decaying graphs for both hydrodynamic and core
forces.

F H
ij = −fH

ij (vij · eij)eij (3-8)

fH
ij ≡


3πη0R2

2δ
hij < δ

3πη0R2

2hij
hij ≥ δ

(3-9)

3.3
Simulation Conditions

3.3.1
Modeling a Simple Confined Geometry : A Solvent Study

Our system is entirely represented by DPD particles. The solvent, as sin-
gle DPD particles interacting pairwise center-to-center according to Newtons’
equation of motion and the walls are built as frozen DPD particles at the
edges of the simulation box. Our computational domain is 20.36rc x 20.36rc x
20.36rc where rc = 1. The density of the system is 3 and the number of sol-
vent particles was determined as d = mNp/Vbox. m is the mass of the solvent
particles, that for simplicity is assumed to be one, Np is the total number of
solvent particles and Vbox is the volume of the simulation domain. Using that
expression, in order to keep the density of the system at 3, 25325 solvent par-
ticles were used. The interactions between the particles are set in a way that it
ensures the compressibility of the water and for that, it takes the value of 25
(GROOT; WARREN, 1997). KbT=1 and the dissipative γ and random σ coef-
ficients adopted are, respectively, 50 and 10 (BOROMAND; JAMALI; MAIA,
2015). The solvent-wall interactions(aij) in the conservative force range from
10 to 100 and four wall densities were tested ρw = 3, ρw = 6, ρw = 9, ρw = 12
. In order to model an infinite microchannel in the x and z directions, periodic
boundary conditions were employed. In addition, no bounce-back boundary
condition in the y direction was used. The walls were placed at the bound-
aries of the simulation domain and were excluded of the force and velocity
calculations along the y axis.

The walls are formed by a double layer of frozen DPD particles equally
spaced positioned in the z and x directions inside the simulation domain. They
cannot move, but they have the freedom to interact with the free solvent
particles. In order to avoid an extra repulsion of the solvent particles from
the boundaries, the wall particles were shifted one another in a distance in z
and x adjusted according to the desirable wall density, similar to the method
proposed by (PIVKIN; KARNIADAKIS, 2005). The distance between the wall
particles in y is held fixed at 0.5rc, and to calculate wall penetration the box
was divided in 40 layers, each layer having 0.5 rc of thickness.

In addition to the distance, the number of wall particles was also adjusted
to vary wall density, given by ρw = mNw/Vw, where m is the mass, Nw is the
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number of wall particles and Vw the wall volume. Initially, the solvent particles
were randomly generated in the box and were let equilibrate for 100,000 time
steps before the flow begins. A schematic representation of the wall structure
and its main parameters are presented, respectively, in Figure 3.7a and 3.7b.

(a) Simulation box (b) Main simulation parameters

Figure 3.7: Schematic of the simulation system and main parameters employed.
Fluid DPD particles are represented in grey and wall particles in purple.

A code written in C++ is used to model the system. The simulations
were sent to a cluster and took about 30 hours to reach 300,000 time steps.
The time step used is 0.01

√
mr2

c

kBT
.

3.3.2
Predicting Particle Penetration in Suspensions: A machine Learning Study

The simulation box was built by placing the walls at the edges of the
computational domain. The number of solvent DPD particles, colloids, and
wall DPD particles were calculated to ensure a constant density in the entire
system of ρs = 3. The box size used was regulated according to the desired
confinement ratio. Once the y-direction was fixed, the other two dimensions
were set in a way that the in all the cases the box volume remained practically
unchanged. Periodic boundary conditions were applied in the x and z directions
and no wall boundary condition was employed.

The wall design was inspired by the previous works (PIVKIN; KARNI-
ADAKIS, 2005; PIVKIN; KARNIADAKIS, 2006), in which a double layer of
symmetrically spaced DPD particles were frozen to represent it. These parti-
cles are not allowed to move neither interact among themselves, and therefore
are excluded from the calculations. However, they are free to interact with the
remaining particles in the system.

Colloidal particles were built as Core-Modified particles having a size
ratio difference of 1.4 and masses calculated as ds

4
3πR3, where ds is the system

density. A bimodal suspension was used and to achieve the desired global
concentration the number of particles was calculated in a way that:

V Fglobal = V Ftype1 + V Ftype2 (3-10)
given

VFtype1 = V Ftype2(3-11)V Ftype1 and V Ftype2 are, respectively, the volume frac-
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aij Body Force Rigidity y/D VF
25 0.1 100 5 0.08
50 1 1000 7.5 0.28
75 10 25,000 10 0.48
100 20 0.58

Table 3.1: Parameters with the respective levels adopted in the simulations. aij

refers to the interactions between wall/DPD and wall/colloids. y/D represents the
confinement ratio, y is the box width and D is DPD particle diameter. Rigidity is
set by the strength of the core force fcore in colloid-colloid interactions.

tion of colloidal particle type 1 and type 2. The solvent assumes the water
compressibility, and hence the aij between solvent DPD particles remained
fixed at aij=25. For DPD-colloid interactions, the aij used was 100 (BORO-
MAND; JAMALI; MAIA, 2015). The dissipative γ and random σ coefficients
adopted are 50 and 10 (BOROMAND; JAMALI; MAIA, 2015). It is important
to emphasize that the aij that was varied, as shown in Table3.4, is the one be-
tween wall/solvent and wall/colloids. In this work, these two wall interactions
varied by the same proportion. The time step used was 5x10−5(JAMALI; YA-
MANOI; MAIA, 2013) and the simulations ran for 500,000 time steps, prior
to an equilibrium step of 100,000 time steps. Five input variables were used
with varying levels, as showed in Table 3.1. Combining all of them resulted in
the total of 558 simulations.

Wall penetration is calculated as:

Penetration = dn

d100%
(3-12)

where
dndpd

= Ndpd

Vlayer

(3-13)

dncol
= NcolMcol1 + NcolMcol2

Vlayer

(3-14)

Vlayer is the volume of the layer expressed as Vlayer = Vbox/nlayers and
nlayer is the number of layer in which the box is divided, being the first and
last layer of the channel corresponding to the wall. d100% corresponds to the
layer density considering 100% of penetration. Ndpd is the number of DPD
particles; for simplification, since the DPD mass is one, the mass term is not
included in the equation. Ncol is the number of colloids an Mcol is the colloid
mass. In order to compute penetration, the densities were calculated in the
wall layers and penetration was calculated according to Eq. (3-12).

For predictive modeling, the data was randomly split in 80% for training
and 20% for testing. The data was normalized to avoid scaling problems
using MinMaxScaler class in sklearn library and log transformations were
also applied to the output columns. The model performance was measured
by calculating MAE, MSE and RMSE and R2.
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3.3.3
Effect of Particle Rigididy, Flow rate and Confinement in Concentrated
Suspensions

The fluid phase as well as the walls are modelled as DPD particles, the
later being created by freezing DPD particles at the edge of the simulation box.
A double layer of particles is used not only to keep the force field more uniform,
but also to prevent the excess of repulsion from the walls. Wall particles were
uniformly spaced and distributed (PIVKIN; KARNIADAKIS, 2005) and their
number and position were set according to the desirable wall density, in our
case ρw = 3. Wall particles once frozen can not move, however we let them
interact with the free particles in the system by means of the conservative
force. The repulsion interaction between wall and solvent particles as well
as wall and colloids was carefully chosen in a previous study in order to
guarantee, simultaneously, impenetrability and the formation of low depletion
zones(BARCELOS et al., 2021).

A bimodal suspension was used in all the simulations with particle radius
of 1rc and 1.4rc. The number of colloidal particles was selected to ensure
the system density of around 3 and the box volume of approximately 24000,
depending on the confinement ratio. The mass of the particles was calculated
as m = dV → 4πR3

3 ,volume fraction VF = Vcolloid/Vbox → Np14πR3
1

3Vbox
+ Np24πR3

2
3Vbox

. Np1
and Np2 and Rp1 and Rp2 being the number and radii of colloidal particles 1
and 2, respectively. The number of solvent, colloidal particles 1 and 2 was set
according to the desirable volume fraction.

The confinement gaps were set as gap = y/d, in which d is the diameter
of the particle and y is the box height ( y dimension of the simulation domain).
To reach different ratios, the box dimensions proportions were varied (keeping
the approximate same total box volume). Varying the walls volume, one would
expect a difference in the number of wall particles, which were adjusted to
ensure ρs = 3 and a minimum box volume variation. The values of those
simulation parameters are summarized in Table 3.2.

Table 3.2: Simulation Box dimensions for each confinement ratio

y/D Simulation box dimensions
5 28x10x28
7.5 27x15x23
10 20x20x20
12.5 18x25x18
15 16.5x30x16.5
17.5 15x35x15
20 14x40x14

A uniform body force, corresponding to a pressure drop, is applied to the
particles along the y-direction to generate a parabolic flow and periodic bound-
ary conditions were used in z and x directions. In this work, no bounce-back
boundary condition was not used at the wall, and to avoid wall penetration the
wall-solvent and wall-colloidal particle were carefully chosen, according to one
of our previous work. The interaction DPD-DPD is set at 25 and DPD-colloid
at 100 (JAMALI; YAMANOI; MAIA, 2013; BOROMAND et al., 2018).
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All the particles were randomly generated in the box and the system was
let equilibrate for 100,000 time steps. Since we are not capturing contact and
frictional effect, there is no need for a very low time step, hence we used it at
5x10−6. The simulations ran for 4 million timesteps, long enough to ensure that
the microstructures was no longer changing. DPD parameters can be mapped
in to real physical units as proposed in (GHOUFI; MALFREYT, 2012). Based
on that work, (JAMALI et al., 2015b) correlated the contact modules of real
particles to DPD units. An fcoreof100 would correspond a contact modulus
of a 100MPa, representing soft particles, and 25,000, equivalent to a contact
modulus of 100GPa representing the most rigid particles. Table 3.3 illustrates
the main parameters values used in the simulations.

Table 3.3: Parameters used in the simulations

Body Force VF Rigidity Confinement
0.1 0.48 100 5
1 0.58 5,000 7.5
- - 25,000 10
- - - 12.5
- - - 15
- - - 17.5
- - - 20

3.3.4
Predicting Viscosity and N1 in Suspensions using Machine Learning

In this section, a supervised learning approach was used to predict viscos-
ity and first normal stress difference N1 in a bimodal suspension. As input, the
proposed model takes the particle volume fraction, Peclet number and particle
rigidity and as output it returns the viscosity and N1. The simulation system
was built using Core-Modified DPD as previously introduced.

In this particular study, as opposite to the other studies in the thesis,
walls are not included in the simulation domain. That means that the fluid
properties are evaluated in bulk conditions. Lee-Edwards boundary conditions
(LEES; EDWARDS, 1972) is applied in the simulation box as opposite to
traditional periodic boundary conditions. Basically, in Lee-Edwards, particles
that leave a boundary are introduced back in a displaced location of the box
with its velocity modified as a linear function of the difference in velocity
between the two plates (CHATTERJEE, 2007).

The viscosity in the system is calculated using the local stress tensor
according to the Irving-Kirkhood (IRVING; KIRKWOOD, 1950) expression:

P = 1
V

N∑
i=1

mi(vi − u(ri)) ⊗ (vi − u(ri)) +
N∑

j>1

N−1∑
j=1

rij ⊗ F T
ij (3-15)

The above equation account for two main terms. The first one corre-
sponds to the kinetics part of the stress tensor and the second one is relative
to the contribution due to the particle interactions. The stress tensor is given
by S = −P and the shear viscosity can be calculated as the xy component:
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η = ⟨Sxy/γ̇⟩ (3-16)
The first normal stress difference is calculated as:

N11 = S11 − S22 (3-17)
The dimensions of the simulation box are 25rc x 25rc x 25rc. The fluid

phase is composed of traditional DPD particles while the colloidal particles
are built as Core-Modified particles. A bimodal suspension with size ratio
difference 1.4 is used and volume fraction, rigidity and flow rate are varied.
To induce the flow, a shear rate is applied on the top and bottom edges of
the simulation box and the flow strength is given by varying the magnitude
of the shear rate. Particle volume fraction is calculated as VF = Vcolloid/Vbox

→ Np14πR3
1

3Vbox
+ Np24πR3

2
3Vbox

. Index 1 and 2 refers, respectivley, to particle type 1 and
2.

Rigidity Volume Fraction Peclet
100 0.08 0.1
500 0.18 0.5
1000 0.28 1
5000 0.38 5
10000 0.48 10
25000 0.58 50

100
500
1000

Table 3.4: Parameters used and values adopted for each variable

The interaction between the particles is 25 for fluid-fluid (DPD-DPD)
and 100 for DPD-colloids(JAMALI; YAMANOI; MAIA, 2013). The time step
used in the simulations was 5x10−6 and the simulations ran for 1 million time
step, time long enough to ensure the system was in steady state.

The input data of the model, comprising the variables and the levels
tested is described in Table 3.4. Combining all these parameters and levels
resulted in a total of 324 simulations.
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4
Results

4.1
Modeling a Simple Confined Geometry : A Solvent Study

4.1.1
Setting simulation parameters

When a pressure drop is imposed to an incompressible liquid in the
laminar regime, a parabolic profile, i.e, simple Poiseuille flow is developed. In
our simulations, a body force fB, corresponding to a pressure drop, is imposed
to all solvent particles to generate the parabolic profile. Figure 4.1 introduces
the velocity profile developed when a body force of fB= 0.01 is applied. In
red it is presented the Poiseuille flow solution that fits pretty satisfactory our
computational data. The simulation ran for 300,000 time steps, long enough
to ensure a fully developed velocity profile.

Figure 4.1: Fit of Poiseuille solution to the computational data. Interaction wall-
solvent is aij=100 to ensure no-slip condition and wall impenetrability.

Next, it is important to define the body force fB to be used in the
simulations. The fluctuation-dissipation theorem behind the DPD thermostat
ensures that the temperature of the system remain unaltered. The dissipative
force depends on the relative velocity of the particles, as a consequence, at
higher forces the random force might not be able to compensate the energy
dissipated by the dissipative force. As a result, the temperature of the system
might increase in a way that the fluctuation-dissipation theorem is no longer
valid, which is undesirable. Figure 4.2 introduces the velocity profile for
different body forces.
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Figure 4.2: Temperature variations for different body forces.

According to Figure 4.2, for body forces fB above 0.01 the temperature
is no longer constant at the value of 1. For this reason, for all the remaining
simulations a body force constant and equal to fB = 0.01 will be used.

Another important parameter in the simulations is the time required to
reach the steady state. It is important to stop the simulations as soon as the
steady state is reached to have a lower computational cost, but care has to
be taken to guarantee that a good signal-to-noise is obtained. In Figure 4.3a
the velocity profile curves are plotted for time steps ranging from 10,000 up
to 300,000. Figure 4.3b shows a clearer visualization on how the maximum
velocity varies according to the time step.

(a) Velocity Profiles (b) Maximum Velocities(middle of the channel

Figure 4.3: Time step required to reach the steady state.

The velocity profile stabilizes around 30,000 time steps. However, some
fluctuations are seen and have to be minimized. For this reason, the remaining
simulations will be run for 300,000 time steps, when low dispersion of values
is seen, as observed in Figure 4.3

Here the phenomena taking place at the wall vicinity is explored. Den-
sities and velocities are studied over a wide range of repulsion interactions aij

and wall densities ρw. The fraction of particles inside the wall(wall penetration)
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and in the first adjacent layer(depletion) is quantified and their evolution in
number as repulsion and wall density increase is tracked. Several simulations
varying the two independent variables, wall density and wall-solvent interac-
tions, were performed. Initially it is investigated which of these two parameters
is stronger in preventing particles to get close to the wall. The velocity profile
results are depicted in Figure 4.4.

(a) Velocity profiles for aij fixed at 25 (b) Velocity profile for ρw fixed at 3

Figure 4.4: Velocity profiles of the solvent particles. a) Repulsion aij= 25 and wall
density varying 2, 3 and 4 times the solvent density. b) Velocity profiles for the
case of wall density constant at ρw=3 and repulsion coefficient aij varying in the
same proportion as a).

When the repulsion interaction increases, no significant changes in the
velocity profiles can be seen, as illustrated in Figure 4.4b. On the other hand,
wall densities 3 and 4 times the fluid density promotes a stronger repulsion
of the particles from the wall area. When wall density is 3 or 4 times bigger,
large slip at the walls is observed( 4.4a).

Density distribution enables the detection of the number of solvent
particles present in each layer and therefore, quantify the fraction of particles
inside the walls and in the depletion layer. In order to compute the density
profile, the simulation domain was divided in 40 layers and the average number
of particles detected in each layer per time step was calculated. The densities
were averaged over the last 20,000 time steps and particle penetration and
depletion were computed according to the expressions:

Φw = 100 dwall

dcenter

(4-1)

Φd = 100 ddeplet

dcenter

(4-2)
dwall represents the density of the particles in the first layer (correspond-

ing to the wall) and ddeplet is the density at the depletion layer(adjacent layer).
dcenter is the density of the solvent in the middle of the channel. Figure 4.5a
introduces the density profiles for the case where the wall density varies and
the repulsion interaction is constant at 25, while in Figure 4.5b densities are
given for different repulsion values when wall density is equal to 3.

For both cases depicted in Figure 4.17, the density takes the value of
around 3 in the middle of the channel and does not fluctuate significantly
during all the simulation time. It can be noted that increasing repulsion leads
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(a) Density Profile for aij fixed at 25 (b) Density Profile for ρw fixed at 3

Figure 4.5: Density profiles as a function of the layers of simulation box. a)
Repulsion aij is kept at 25 and wall densities varying 2, 3 and 4 times the solvent
density. b) Density profiles when wall density ρw = 3 and repulsion varies the same
proportion as the a) case.

to a decrease in the number of particles inside the wall and in the depletion
layer.

At large repulsion solvent particles are excluded from the wall area and
migrate towards the center, justifying the increase in density in the middle
and a decrease in the wall region. In fact, the density curves are very alike for
both scenarios (Figure ??), suggesting that increasing wall density or repulsive
interactions have a similar influence on the final response.

An artifact frequently observed in wall models is the presence of density
fluctuations at the wall close vicinity, which has been observed both experimen-
tally(PERRET et al., 2010) and computationally (GUBBIOTTI; CHINAPPI;
CASCIOLA, 2019; KASITEROPOULOU; KARAKASIDIS; LIAKOPOULOS,
2011). For the purpose of investigating the presence of density oscillations in
our system, the simulation box was divided into bins of 0.2 rc, except for the
wall layers, which were fixed at 0.5rc. Figure 4.6 shows the local density evolu-
tion plotted as a function of wall distance for all the cases evaluated previously.

(a) Fluid density for aij= 25 (b) Fluid density for ρw= 3

Figure 4.6: Fluid density plotted as function of the distance from the wall, given
in rc units

When particles are at the wall vicinity, the forces are cut by the wall
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presence, giving rise to a force imbalance and as a result, the particles are
pushed towards the wall. The latter, in response, push them back in the
opposite direction due to its artificially imposed repulsive character. That
combination of low and high density areas leads to layering and strong density
oscillations effects (MEHBOUDI; SAIDI, 2014).

Our results are in partial agreement with previous works (KA-
SITEROPOULOU; KARAKASIDIS; LIAKOPOULOS, 2011; PIVKIN; KAR-
NIADAKIS, 2005) in which stronger density oscillations were observed for
larger wall repulsion. In our case, however, for ratios wall/fluid from 2, the
oscillations tend to stop increasing, which could be due to a different selection
of parameters used in our system.

In order to investigate further density related phenomena, the fraction of
particles in the wall and depletion layers is quantified. The results are plotted
as a function of the ratio wall/solvent for both interactions and wall density,
and are subsequently presented in Figure 4.7.

(a) Density and penetration. aij=25 (b) Density and penetration. ρw = 3

Figure 4.7: Fluid density at the wall and depletion areas with the respective fraction
of particles in each one of these two layers.

Results reveal that increasing wall density is slightly more efficient in
keeping particles outside the wall area compared to the case when repulsion is
increased.

Next, a quantitative study about particle-wall migration is performed.
For that, simulations were run for a broader range of repulsion interactions,
going from aij = 10 to aij = 100 and combined with the four wall densities
evaluated. The results are shown in Figure 4.8.

The decaying function for the wall case Figure 4.8a is steeper than the
case for depletion, which is expected since repulsion becomes weaker further
away from the wall. The effect of both wall density and repulsion are additive,
which means that for larger wall densities the wall-solvent interaction necessary
to reach wall impenetrability is smaller. Depletion is undesirable depending on
the application and for those cases the best combination of parameters would
be the ones in which there is no wall penetration and depletion minimized. For
example the case of ρw = 3 and aij = 55 where there is only 0.16% of particles
in the wall and 95% in the depletion layer.
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(a) Penetration in the wall (b) Penetration in the depletion layer

Figure 4.8: Fraction of particles in the wall and in the depletion layer. aij considered
from 10 to 100 are combined with the four wall densities evaluated.

4.2
Predicting Particle Penetration in Suspensions: A machine Learning Study

4.2.1
Exploratory and Statistical Data Analysis

As previously stated, solvent particles represented as DPD beads, are,
in reality, single points in space with a rc interaction range. Hence, there is
no direct particle parameter that could be affecting particle penetration. Yet,
the presence of colloidal particles in the system is likely to influence the way
solvent particles move across the channel and migrate towards the walls. In
this case, although there is no direct relationship, colloidal particles properties
may impact solvent penetration in different levels.

Fig. 4.9 illustrate penetration of colloidal particle at two different body
forces, all rigidities and volume fractions evaluated. For simplicity, only col-
loidal penetration is shown her; a similar behavior for solvent penetration was
also observed.

Figure 4.9: Mean colloidal penetration shown for different VF and particle rigidities.
The right figure corresponds to a fB = 0.1 and left fB = 1. The data points are
averages over all repulsion and confinement ratios for the parameter at interest.
That explain the large error bars. For this analysis, only the mean values should
be, therefore, considered for comparison.
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It can be clearly observed that colloidal penetration is strongly dependent
on the VF. Colloidal particles, as opposite to DPD particles have masses and
sizes and the force necessary to keep them away from the walls has to be greater
than in fluid DPD particles. Particle rigidity also affect penetration, specially
evidenced at a stronger volume fraction. Rigid particles are more viscous and
the energy necessary to avoid their penetration has to be higher comparative
to the soft ones. In terms of body force comparison, it seems that the change
in magnitude is not significantly affecting particle penetration.

A second analysis was carried out varying, this time, the repulsion
between wall and colloidal particles and the results are displayed in Fig. 4.10.
As expected, an increasing in the repulsion(aij) has a significant effect on
particle penetration. Regardless the particle rigidity of body force employed,
when a strong interaction is applied a low number of particles will migrate
towards the walls. Stronger repulsion combined with small rigidities leads to
an nonexistent particle penetration.

Figure 4.10: Mean colloidal penetration shown for different aij at different rigidities.
The right figure corresponds to a fB = 0.1 and left fB = 1. As in the previous
Figure, the data points are averages over all VF and confinement ratios for the
parameter at interest, explaining the large error bars. Only the mean values should
be considered for comparison.

In order to complement and extend this analyses to all parameters and
levels for the two different cases, a correlation analysis can be performed to
gain more insights about the relationship between input parameters and final
outcomes (penetration).

Correlations and statistical analysis are extremely useful when one wants
to investigate associations and dependencies between variables. Spearman cor-
relation [46] represented in Eq. 4-3 is a bivariate analysis based on creating
ranks in the variables and measuring the strength of the monotonic relationship
between pairs of them. In the Spearman correlation, as opposite to the tradi-
tional Pearson correlation, the association does not need to be linear neither
normally distributed, as it expresses only the direction of the relationship. The
correlations coefficients for all the pairs of variables is illustrated as a heatmap
in Fig. 4.11.

rs = 1 − 6 ∑
D2

n(n2 − 1) (4-3)
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Figure 4.11: Heatmap showing the Spearman correlation coefficients obtained for
pairs of variables

Where D2 is the difference between ranks of the variables and n the total
number of observations.

It can be observed that while a moderate negative correlation exists
between aij and colloid penetration in the solvent case it is negatively strong.
The closer the coefficient values are to +1 or -1, the stronger the correlation.
That means that the higher the aij the weaker the penetration. Volume
fraction is moderately correlated with penetration for both solvent and colloids,
being stronger in the colloidal case. Particle rigidity, on the other hand, only
correlates moderately with colloidal penetration and does not have a very
strong effect in solvent penetration. Confinement and body forces do not show
a significant correlation with neither of the response variables.

4.2.2
Machine Learning Modeling

Tuning the parameters to obtain a desired penetration is not a trivial
task since several factors may play a role in particle penetration. ML offers
a very good alternative to track and predict penetration given a set of
initial parameters. It learns the non-linear dependencies between the variables
and how they operate together to return the final predictions. Initially the
predictions are not accurate but as more data is fed in the model, the
performance improves gradually and eventually the model become highly
performant. In addition to adding more data, there are alternative techniques
to improve a model overall accuracy. One of the most important and popular
is hyperparameters tuning, which is based on selecting the best parameters
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Metric Solvent Colloid
Train Test Train Test

MSE 0.05 0.18 0.12 0.34
RMSE 0.22 0.43 0.35 0.35

r2 0.97 0.92 0.95 0.89

Table 4.1: Model performance obtained for the train and test sets in each estimator

that optimize a given model response. A key parameter in random forest is the
number of trees, especially if one considers the computational cost associated
in the modeling step. Usually, the higher the number of trees the better the
model performance, but when a threshold is reached the addition of more trees
has no further influence on the model predictive power.

The results of the training process for both cases with the optimized
hyperparameters selection is depicted in Table 4.1. For a better visualization
Fig. 4.12 illustrates the predicted versus true values for the train and test sets.
The errors found are considerably low for both cases, and the fit of the data to
the model is pretty satisfactory. Some data dispersion is seen in the two cases,
being more evident in the colloid penetration model, where the performance
was slightly worse. r2 for the training set was above 0.95 and for the test set
0.89, which indicate that the results are valid although a slightly overfitting is
taking place. That is not the case for solvent penetration, where not overfitting
is observed as the r2 as well as the errors between train and test sets were not
very high.

(a) Solvent (b) Colloids

Figure 4.12: Predicted outputs x true values

Tree based methods calculates internally the feature importance, which
expresses the magnitude of the contribution of a variable in predicting the
output. The main idea behind the concept is that a variable that affects sig-
nificantly the error when permuted is assumed to be important. Consequently,
features that do not influence the error are seen as not relevant for making
predictions. RF assigns a score to each feature based on how big the errors in
the predictions are. Fig. 4.13 shows the ranking of the top features for solvent
and colloids returned by the model.
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(a) Solvent (b) Colloids

Figure 4.13: Feature importance ranked by Random Forest model. a) Solvent, b)
Colloids.

.

In the solvent case, aij is the most useful attribute in predicting penetra-
tion. This result is expected once solvent particles do not have any parameters
other than the repulsive interactions that can affect penetration directly. Col-
loid volume fraction is the second most relevant variable in predicting solvent
penetration. By having a rigid core, colloidal particles may push the solvent
ones towards the wall leading to an increase in penetration, as previously high-
lighted. In colloidal penetration, more parameters come to play. The concen-
tration of particles in the system is the most important attribute determining
penetration. As more particles are added the repulsive interaction needs to be
higher to compensate for the increase in particle number and to prevent their
migration inside the wall. VF is followed by aij and rigidity.

Body force does not seem to be a relevant attribute in predicting
penetration, not being the case for confinement. From the correlations analysis
previously discussed (Fig. 4.11), it was seen that there is no monotonic
relationship between confinement and penetration, and yet, herein it is clear
that confinement does play a role in predicting penetration. The effects of
confinement in a system depends on many factors, such as particle volume
fraction, confinement ratios, particle rigidity, shape, etc (COHEN; MASON;
WEITZ, 2004; GALLIER et al., 2016; RAMASWAMY et al., 2017). Particle
aggregation might be taking place specially in highly concentrated systems and
in some confinement ratios; therefore the agglomerated structures formation
will depend on many factors ant those might be affecting indirectly the model
predictive power. A more in depth study on the confinement effect on the
physics of the system is necessary; this will be addressed in a future work.

4.2.3
Concluding Remarks

Setting up the appropriate parameters in a computational system is a
crucial step in the development of a successful simulated system. Particularly,
in DPD based models, preventing wall penetration from all the components
present in the system is a fundamental step towards reproducing real physical
phenomena in confined geometries. The traditional methodologies adopted to
prevent DPD penetration are well studied and understood. In the presence of
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a second component, such as colloidal particles, additional phenomenological
effects might take place that can impact the way particles penetrate the
walls. Understanding the factors associated and tune them in order to control
penetration is a challenge task due to the complex relationships between the
parameters. Statistical analysis and ML represents a very powerful approach to
deal with those challenges, providing a deeper understanding of the data and
the relationships between the input parameters. With ML it is possible to make
penetration predictions based on the selection of numerical values of the input
parameters. Using RF, we were able to develop successfully a highly performant
predictive model displaying low errors and low overfitting. Additionally, it was
possible to understand the most relevant features in predicting outputs. This
study showed the enormous potentially of data-driven models and ML tools to
systematically study complex systems. In effect, the model developed in this
study will be employed to set up properly our wall-solvent and wall-particle
interactions in the subsequent works.

4.3
Effect of Particle Rigididy, Flow rate and Confinement in Concentrated
Suspensions

4.3.1
Effect of Flow Rate

In a pressure driven flow, a pressure drop is the driven force that promotes
the system motion. It can be fairly expressed by means of a body force,
which is a force applied to the particles to promote their displacement along
the channel. A stronger body force is equivalent to a higher pressure drop.
Intuitively, one would expect that the particles motion in a stronger body
force condition would lead to a faster flow, which is, in effect, observed, as
seen in the velocity profile curves in Figure 4.15. The microstructure evolution
of these suspensions, however, does not seem to be significantly affected by
the difference in magnitude of the applied forces. Figure 4.14 expresses the
evolution in time of the number links per particle and number of clusters from
the beginning of the flow stage until the point when it reaches the steady state
condition, at 4 million time steps.

It is important to mention that the clustering algorithm used
(OLIVEIRA et al., 2020) considers that each individual particle in the
system is a cluster and the number decreases as new aggregates are formed.
The suspensions evaluated are highly concentrated and their size is relatively
big. Therefore at the initial steps of the flow stage the cluster presence is
already detected. The number of colloidal particles in the system is 562. If
no aggregation was seen the initial number of clusters would be 562, however
this number is significantly lower. As time goes by the number of clusters
decreases while the number of particle connections increases. That means
that additional clusters that were not form on equilibrium are being formed
over time when flow is applied. At around 2 million time steps there is a
stabilization in microstructure indicating that particles arrangements are no
longer changing. In fact, the velocity profile tends to become uniform and the
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[a]

[b]

Figure 4.14: Microstructure evolution of suspensions at y/d = 10, VF = 0.48 and
Rigidity=100. a) Number of links normalized by the total number of particles and
b) Number clusters

Figure 4.15: Velocity profile comparison between the two body forces evaluated
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parabolic shape is merely seen. This velocity profile is characteristic of a plug
flow, which is probably a consequence of the clusters that are formed possibly
in the middle of the channel, which would decrease the maximum velocity in
the center of the box. As one would expect, when a stronger body force is
applied the particles have more energy to flow and will displace faster in the
channel, as seen in Figure 4.14. Since the kinetics of cluster formations has
shown to be independent of body force for the following sections the body
force will be kept constant at fB = 1. It is important to mention that a higher
body force was not used because we are interested, primarily, in the flow in
the laminar regime.

4.3.2
Effect of Concentration

This work focus on two main concentration of particles: VF = 0.48,
corresponding to a semi-dense system, and VF = 0.58, relative to a dense one.
In the two cases evaluated the trends found for cluster kinetics were similar. In
both cases, clusters could be detected in the equilibrium step. In Figure 4.16
it can be seen that the number of clusters decreases rapidly and at time step
about 2 million it becomes very small, meaning that a large cluster is likely
to be formed. The number of links per particle is higher in the dense case
- the number of colloidal particles is higher consequently, there will be more
particles to pack resulting in larger aggregates.

In the dense case there is a local concentration peak of particles in the
mid plane between the center and the bottom wall as seen in the density profile
curve (Figure 4.17a). This local increase of particles density leads to a weaker
velocity profile at this point. In the semi-dense suspension, on the other hand,
the clusters are distributed all over the channel. At higher volume fraction
the dynamics of the system is slowed down, the interactions increase and the
free volume available per particle decreases. The later, specially, will cause a
decrease in motion since these particles will be more restricted in space and
that will lead to a slower velocity profile, as observed in Figure 4.17b.

4.3.3
Effect of Particle Rigidity

Rigidity in our computational system is controlled by the strength of
the core force applied between pairs of colloidal particles. Rigid particles
are naturally more repulsive and will make the particles approximation less
likely; as a consequence, the formation of aggregates will be smaller compared
to the system where a weaker force is applied. Even though the repulsion
force between the particles is strong, cluster formation is observed when rigid
particles are used which is a result of the high suspension volume fraction and
potentially the large particle size. By comparing soft and rigid systems, it can
observed that rigidity leads to a decrease in the number of links per particle,
indicating less connections and likely smaller clusters. The number of clusters
is low for lower and intermediate rigidities, suggesting less aggregates. For the
highest rigidity case the number of clusters is higher indicating a larger number
of individual particles, as seen in Figure 4.18. At around 3.5 million timesteps
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[a]

[b]

[c]

Figure 4.16: Microstructural changes of suspensions made of soft particles and
fB = 1, y/D=10 a) number of clusters, b) number of links per particle c) initial
number of links per particle
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(a) Velocity Profile

(b) Density Profile

Figure 4.17: Velocity and density profiles for semi-dense and dense suspensions at
y/D = 10, soft particles and fB = 1.

there is no more observable changes in the number of clusters and links per
particle which suggests that once the giant cluster if formed its microstructure
remain unaltered.

Figure 4.19, presents the snapshots for the particles with different rigidi-
ties. Although deformation can not be fairly represented in the snapshots some
insights can be drawn. Soft particles form a more anisotropic structure as a
results of the particles deformability. When rigidity increases the particle dis-
tribution is mostly symmetrical in the channel.

Rigid particles are naturally more viscous and have a stronger resistance
to flow which will leads to a deceleration in the motion. That can be clearly
observed in the velocity profile curves displayed in Figure 4.20. In addition one
can note that the profile is not parabolic as a result of the particles presence
that breaks up the parabolic symmetry.
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[a]

[b]

Figure 4.18: a)Number of clusters and b)number of links normalized by the number
of total particles

.

Figure 4.19: Snapshot of the particles at different rigidities. the left image (pink)
represents the rigidity or 100, center image 5,000 and the right figure the stiffest
particles( rigidigy = 25,000)

.

4.3.4
Effect of Confinement

The effect of walls in suspensions is a topic widely studied and reported in
the literature. In concentrated suspensions, the majority of the cases relies on
rigid particles. Herein, the effect of seven confinement ratios was evaluated in
suspensions made of very for soft particles. Figure 4.21 presents the evolution
of the number of links per particle for all range of confinement ratios studied.
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Figure 4.20: Velocity Profiles for all range of the rigidities evaluated
.

[a]

[b]

Figure 4.21: Number or links per particle(a) and radial distribution function(b)
for soft particles in all confinement ratios. The values were averaged over the last
100,000 time steps, when no more detected changes changes in the microstructure
was detected

In all cases a giant cluster containing all the colloidal particles of the
system is detected, and yet, the number of links per particle is different
according to the confinement ratio. That is possibly happening due to a
difference in the clusters shape and deformability induced by confinement.
In our strongest ratio the number of links per particle is the highest one and
it decreases until the confinement y/D = 12.5. When confinement is reduced
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even more the number of links raises again. The same trend is also observed
in the radial distribution function, as displayed in Figure 4.21. The peaks
intensity, indicating the number of particles around the reference particle is
higher for 5 followed by 20, 7.5 and 15 - that suggests that a more packed
structure is seen in those cases. It is interesting to note that for y/d=5 there
is an additional peak at distances below 1. Considering that the radius of the
particles is one, that would suggests that the particles are highly deformed and
that confinement is potentially enhancing that effect as well as it is affecting
the hydrodynamic interactions and the contacts number. In fact, the snapshots
displayed in Figure 4.22 show a different trend in cluster shape.

Figure 4.22: Snapshots of the particles at time step 4 million. From left to right,
top to bottom the images displayed correspond to, respectively, the confinement
ratios 5, 7.5, 10, 12.5, 15, 17.5 and 20

.

The cluster shape is clearly different as one migrate across different
confinement ratios. For the extreme ratios (5 and 20) the cluster shape is
denser, while for intermediate ratios the cluster forms a percolated network.
Our hypothesis is that there is a combined effect of particle rigidity and
confinement which alters the hydrodynamic interactions, particle deformation
and therefore, the cluster structure. At weak confinement the particles do
not deform significantly and the clusters form a packed network, similar to
what happens when rigid particles are used. As confinement increases, the
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deformability increases and a transition to a percolating network is observed.
As a consequence of this cluster structure, the number of particles in contact is
smaller and it reaches its minimum at y/d=12.5. Increasing confinement leads
the particles to deform even more; the number of connections and the surface
area of the particles are higher which enhances the hydrodynamic interactions
and as a result, the formation of a packed structure is observed again.

According to the Poiseuillle law, in a broader channel the particles will
move faster, as wall effects retarding the motion weaker. In effect, it is observed
that our systems obey this condition, as seen in 4.23 which shows that the flow
is faster as confinement ratio is weaker. That behavior is seen regardless the
particles rigidities.

Figure 4.23: Maximum velocity displayed for all rigidities
.

4.3.5
Conclusions

Particle microstructure in suspensions has a fundamental role in the
observable physical properties of different materials, which has a primordial
importance in many engineering applications. Some particles properties can
impact the way particles self-organize in the system which in turn may affect
the final macroscopic response. In this work, a systematic study of the effect
of flow rate, particle rigidity, volume fraction and confinement on inducing
the formation of aggregated structures was carried out. Flow rate was found
not to be a relevant factor in cluster formation. Particle rigidity, on the other
hand, showed some relevant differences in terms of cluster formation. Although
aggregate formation starts on equilibrium in both cases, when rigid particles
are used the number of links per particle is significantly higher than when
rigid particles are employed. Volume fraction was also found to play a role:
more concentrated suspensions leads to more connections per particles and
potentially larger clusters. In terms of confinement it could be concluded that
the microstructure changes across confinement ratios. For strong and weak
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confinement a denser network was detected while intermediate ratios leads to
the formation of a percolating network instead.

4.4
Predicting Viscosity and N1 in Suspensions using Machine Learning

4.4.1
Exploratory Data Analysis

Exploratory Data Analysis consist of exploring, understanding, finding
patterns in the data and making visualisations using a statistical approach. It
enables to gain more insights about the data, understand and capture potential
correlations and associations between variables that can lead to smarter, more
accurate and optimized decisions.

Rheology The viscosity and first normal stress evolution at different flow
rates,for different particle rigidities and volume fraction is expressed in Figure
4.24, and for a cleared visualization the average viscosity values are illustrated
in the bar plots in Figures 4.25 and 4.26.

Figure 4.24: Viscosity evolution at three different VF, Pe number and particle
rigidity

Increasing the flow strength, i.e. Peclet number, leads to an increase in the
flow resistance, therefore, the viscosity. Even when VF=0.08, shear-thickening
can be observed at high Pe. Rigid particles for being more viscous tends
to generate stronger viscosity, as see in the Figures 4.24. When the volume
fraction increases the viscosity is stronger, and at very high Peclet number
the curve has an abrupt increase, which suggest that discontinuous regime
is reached, even though there is no frictional forces in the system (JAMALI;
BRADY, 2019).

It is well known and reported in the literature that suspensions in the
shear-thickening regime display negative first normal stresses difference. As it
can be evidenced in Fig 4.27, increasing volume fraction, rigidity and Peclet
leads to more negatives values, suggesting a stronger shear-thickening behavior.

4.4.1.1
Microstructure

Microstructure is strongly connected to rheology, specially in highly con-
centrated suspensions. Very commonly, suspensions at strong concentrations
and shear rates will display the formation of larger clusters that depending on

70

DBD
PUC-Rio - Certificação Digital Nº 1622014/CA



Figure 4.25: Viscosity evolution at different Pe number

Figure 4.26: Bar plots showing the viscosity changes at all VF and rigidity evaluated
and a function of Pe

the conditions will percolate the channel leading to a strong shear-thickening
response (BOROMAND et al., 2018).

In this work, the microstrucure algorithm applied is described in
(OLIVEIRA et al., 2020). Essentially, it considers that each individual particle
is assumed to be a cluster and as aggregates start being formed the number of
cluster decreases. If the final stage is composed of a single cluster it means that
the number of clusters will be one. The number of links express the number
of connections between particles. In general, higher the number of links means
more connections and if it comes associated to a decrease in number of clusters
it suggests the formation of bigger aggregates.
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Figure 4.27: N1 evolution at different VF and Pe.

In the next three Figures it is shown the number of clusters(Figure 4.28)
and number of links (4.29) when Peclet and rigidity are varied for two volume
fraction.

Figure 4.28: Number of clusters at different Pe and particle rigidities for VF=0.38
and VF=0.48.

Figure 4.29: Number of links at different Pe and particle rigidities for VF=0.38
and VF=0.48

It can be clearly seen that at moderate and high concentration the
number of clusters is small and the number of links is high. Softer particles
lead to an even stronger effect. In effect, when particles are extremely soft
(blue curves), the number of clusters is smaller than in the other curves for all
Pe evaluated. That suggests that the cluster presence can be detected. When
Pe > 100 the number of clusters is very small, indicating that at this flow rate
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bigger clusters are seen regardless the volume fraction or particle rigidity. The
number of links at this point is higher as the the particles are softer, which
suggest the formation of larger clusters.

4.4.2
Correlation Analysis

Correlation is a statistical measure of association between variables. The
magnitude of this relationship can be expressed in terms of the correlation
coefficient, that ranges from -1 to +1. Coefficients closer to -1 or +1 indicates
a strong correlation between the variables, while when it is closer to zero it
means no relationship. Two of the most important correlation coefficients in
statistics are Pearson and Spearman. Person expresses the linear correlation
between two variables while Spearman only give insights about the monotonic
relationship between them, i.e. if one increase one so does the other, but it
doesn’t necessary have to be in a linear way as the case of Pearson. In the
Figures 4.30 and 4.31 it is shown Pearson and Spearman correlation coefficients
for the combination of all variables.

Figure 4.30: Pearson Correlation coefficient

It can be observed that there is a strong positive correlation between
viscosity and Pe and viscosity and number of links. That means that the
higher the Pe the higher the number of links and viscosity. Analogously, the
number of links is also strongly related to volume fraction, meaning that if the
concentration increase more links are seen. In Pearson correlation the same
trend can be observed, however the coefficient are weaker suggesting that the
relationship of those variables is not completely linear. It is worth to highlight
that viscosity does not show a correlation with rigidity. A possible reason for
that is that larger clusters are seen in softer particles, which are likely to
increase the system viscosity. Rigid particles, on the other hand, are less likely
to form large clusters, specially at low Pe, but are naturally more viscous than
the soft ones. Those two effects would balance the viscosity dependency on
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Figure 4.31: Spearman Correlation coefficients

particle rigidity and could explain the non correlation between rigidity and
viscosity.

4.4.3
Predictive modeling

In this study the Machine Learning model chosen was Gradient Boosting
GB, which is an ensemble and non-parametric ML model. Ensemble models,
in general, present higher performances and one of the reasons for it is that
they combine individual models and when averaging the results the errors
are partially cancelled out. As in the case of Random Forest, GB are built
from week learners, in this case decision trees. Decision tress were described
in previous chapter and for the sake of simplicity they wont be detailed in
this Chapter. The main difference between RF and GB is that in RF the
threes are independent and the final prediction is the result of an average of
the individual trees. In GB the trees building process takes place sequentially;
each tree is built on the errors generated by the previous tree; the learning
process is therefore built along the way.

Before training the model it is important to guarantee that the data obey
certain requirements. One of the most important ones is to make sure that the
data is approximately normally distributed and therefore that the performance
results are reliable. There are some strategies used to improve data distribution,
one of the most popular ones is applying log transformations. Log transform
was applied and the distributions of the target variables can be identified in
Fig 4.32.

It is also important to normalize the data since it has varying scales and
ranges of values. If normalization is not performed, the model might take into
account the absolute values and the difference in scales may lead to inaccurate
predictions. All the input variables were normalized. The training set, which
corresponds to the set of data used to allow the model to learn, corresponds
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(a) Viscosity

(b) N1

Figure 4.32: Data distribution for the target variables. a) Viscosity and b) N1

to 70% of the simulation data. To evaluate the model performance it was used
r2, RMSE, MAE and MSE as previously described in Chapter 3.

The results of the training process is shown in Figure 4.33 and the Tables
4.2 and 4.3 summarizing the results for Viscosity and N1 is also presented.

The errors obtained were very low and the r2, which expresses how good
is the fit of the data to the model, is very high for both train and test sets
in the Viscosity and N1 predictions. That means that the model was able
to successfully learn from the data and did not memorize, which can be
evidentiated by the low errors obtained in the train and test sets. It other
words, overfitting is not taking place here. Tree based methods enable the
calculation of the feature importance, which in basically a score that is assign
to a feature according to how helpful this variable is in predicting the output.
The features importance is displayed in Figure 4.34.

In the two models evaluated the most important feature for making
predictions are Peclet number. In the viscosity case, the volume fraction is
also playing a role in helping the predictions while for N1 the volume fraction
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Viscosity
MSE MAE RMSE R2

Train 0.19 0.27 0.52 0.98
Test 0.23 0.31 0.48 0.97

Table 4.2: Performance metrics for Viscosity

N1
MSE MAE RMSE R2

Train 0.33 0.38 0.62 0.98
Test 0.93 0.62 0.96 0.96

Table 4.3: Performance metrics for N1 Model

(a) Solvent (b) Colloids

Figure 4.33: Predictions versus ground truth for Viscosity(a) and N1(b) predictions.

(a) Solvent (b) Colloids

Figure 4.34: Feature importance in making predictions. a) Viscosity and b) N1

contribution is not very relevant. Rigidity in the two cases is not a significant
feature for the predictions.

4.4.4
Conclusion

In this chapter, a ML model was proposed to predict viscosity and N1 in
suspensions based on VF, Pe and particle rigidity. In exploratory data analysis
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some insights and observations about the data could be drawn. Suspensions
even at low volume fraction can display shear-thickening if a sufficiently high
shear rate is applied. Increasing rigidity, flow rate and volume fraction leads
to an increase in viscosity and a more negative first normal stress difference,
indicating a stronger shear-thickening response. When soft particles are used,
even at very low Pe clusters are already formed, not being the case for the
other particle rigidities, in which aggregates start to be formed only at Pe >
1. Correlations analysis enabled to investigate potential relationships between
the variables and it was found that rigidity does not have a correlation with
viscosity while a strong correlation between Viscosity, Pe and number of links
was found. GB was the machine learning algorithm selected to train the data
and the predictions on the test set were very accurate. No overfitting was
observed, which guarantee that the model was able to effectively learn form
the data. The errors obtained were very low for both viscosity and N1 models,
which shows that machine learning can successfully be used to maker rheology
predictions in suspensions rheology.
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5
Conclusion and future work

5.1
Conclusion

In this work, concentrated suspensions were studied using a computa-
tional approach. The principal goal of this research was to systematically
study the effect of confinement and particle rigidity on the microstructure of
highly concentrated suspensions. Before performing the confinement study it-
self, some additional steps were necessary to guarantee a reliable system, which
encompasses the definition of the simulation domain and the right selection of
repulsion parameters.

DPD is a very popular approach to study fluids in the mesoscale and it
has been extensively used in the modelling of complex fluids. As a particle-
based method, in DPD the entire system is made of particles. The fluid ones
are commonly expressed as single traditional DPD particles. If one wishes to
model solid structures, the most classical approach is to represent the desirable
shape by freezing the particles that will behave as a single unit. Although this
approach is very compelling, since it enables the modeling arbitrary particle
shapes, it has a higher computational cost associated.

Herein we choose to use an alternative approach to represent colloidal
particles in which they are built as solid spheres having a hard core and
a dissipative coat in a method called Core-Modified Dissipative Particle
Dynamics(WHITTLE; TRAVIS, 2010). In CM-DPD, as opposite to traditional
DPD, the interactions are surface-to-surface and the DPD forces as replaced by
a core force, giving the repulsion nature of the interactions and a lubrication
force, expressing the short-range hydrodynamic interactions. In our system,
DPD particles represent the solvent, colloidal particles are modelled as core-
modified particles and the wall is build by equally spaced DPD particles that
are frozen at the edges of the simulation box in accordance to the work of
(PIVKIN; KARNIADAKIS, 2005).

The first step in this research was setting the simulation parameters
in order to obtain a representative system in which nonphysical phenomena
are not taking place. A very important requirement in the development of
this system is adjusting wall-solvent interactions; DPD interactions are soft,
therefore particles can penetrate each other, which is undesirable at the wall
level.

Preventing wall penetration has been highlighted in many previous works.
Those were focused mainly on preventing wall penetration while density
oscillations at the wall are minimised. Different approaches were used to
achieve impenetrability, such as correcting the forces at the wall and modifying
the dissipative coefficient. Although many of these works were successful in
controlling density oscillations, they are all qualitative studies. A quantitative
study to understand deeper the role of interactions and wall density was lacking
in the literature and was carried out here, as a first part of the study.
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In this study, a large range of interaction parameteres between wall and
fluid particles was vary simultaneously for four different wall densities. The
initial goal was to understand which one of these two parameters is more
effective in preventing wall penetration. It could be seen that although the
effects were similar, wall density has shown a slightly stronger effect. The
second goal of this study was to quantify penetration and depletion by plotting
the decaying functions of penetration when both aij and wall densities varied.
The curve was steeper in depletion than in penetration case and it could be
concluded that the effect of wall density and wall interactions combined are
additive.

Once established the interaction parameters in the case of a wall-
DPD geometry, one could move to a more complex and realistic system,
when colloidal particles are incorporated. This study is more challenging
because there are more parameters affecting penetration, for example, the
concentration of particles, particle rigidity, flow rate and confinement ratio.
Understanding and quantifying the magnitude in which those parameters affect
penetration is a complex task, since they all might play an individual and
collective role. Decouple those effects in a way to develop a mathematical
expression encompassing all the parameters would be a solution. However
it would required to run a large number of simulations. In addition, some
parameters might influence others and decouple them to set interactions would
be a very difficult task. In this context, statistics and machine learning appears
as a more practical solution to address those problems.

The idea behind ML is that instead of expressing the relationship between
dependent and independent variables in a form of a conventional mathematical
expression, that could be exhaustive to do, one can feed a model with examples
and let the algorithm learns from experience. Machine learning has becoming
very popular to tacked specially problems with variables presenting complex
and non-linear relationships that are hard to quantify. Herein, ML is a very
interesting approach since is enables to make predictions about solvent and
particle penetration based on the selection of the parameters.

As a second part of this work, a supervised learning approach was used to
train a Random Forest model using around 550 simulations in which particle
volume fraction, flow rate, particle rigidity and confinement were varied. Using
statistical analysis it could be seen that volume fraction and wall repulsion
are strongly correlated to particle penetration for both solvent and colloidal
penetration. The performance metrics used were r2, MSE and RMSE. An
r2 > 0.92 was obtained for the training set and for the test set above 0.9.
These results suggest that the model is not overffiting and our predictions are
valid. Low errors were also obtained for all the cases, meaning that random
forest with the proposed parameters can be safely used to make penetration
predictions within the range of the input variables.

Once stabilised the ideal range of parameters for the simulations, we
could move forward to the confinement study. In this study, seven confinement
ratios were varied when two flow rates were applied ( fB = 0.1 and fB = 1) in
rigid ( core coefficient 25,000), moderate (5,000) and soft (100) particles at two
particle concentrations(semi dense, VF = 048 and dense, VF=0.58). The main
goal of this work was to understand which parameters and in which extension
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they affect particle aggregation and microstucture.
It was found that flow rate does not affect the kinetics of cluster formation

and that most of clusters are formed at equilibrium regardless the particle
rigidity. As particle concentration increases the free volume per particle in
the channel decreases, consequently, the cluster formation is facilitated in a
denser system. It was also found that when soft particle are used at the end
of the simulation all particles belong to a single cluster. However, the number
of links per particle was different according to the confinement ratio, which
suggest that the way the particles pack and are arranged differs.

In the last part of this work, a machine leaning study was carried out
to evaluate if viscosity and first normal stresses can be predicted based on
particle volume fraction, Pe and particle rigidity. Using gradient boosting,
a non-parametric ML model, we were able to achieve very low errors and
very accurate predictions for both Viscosity and N1 models, validating our
hypothesis that we can predict rheological properties on suspensions using
ML.

5.2
Future Work

In this study, the strategies used to prevent wall penetration consisted
on tuning the wall density and interactions between wall and the particles.
However, we are aware that it exists other approaches that might be more
suitable to control better density oscillations. In order to complement this
work, it would be desirable to perform a study testing alternative strategies
do prevent density oscillations and evaluate how this implementation would
change the results.

To gain computational efficiency, it would be interesting to remove one
of the wall of the simulation box and apply regular boundary conditions at
the y-direction. This way, all the calculations at the wall, that slow down the
code, could be prevented.

In the confinement study, for a more complete work, it would be im-
portant to include other colloidal forces, specially frictional ones. Although
discontinuous shear thickening have already been observed in frictionless sys-
tems (JAMALI; BRADY, 2019), most works in the literature reports the need
or a frictional force to observe such phenomenon. Colloidal forces when added
require a very low time step to capture all the underlying physics. The code
use in this project is single shredded and the computations would take several
months if a friction force was added. Although most of the physics we are in-
terested in see can be capture with short-range hydrodynamic forces, adding
a long-range hydrodynamic interactions would be interesting to compare, also
to make the study and the system more realistic.

Some additional functions to obtain more information about the cluster
formation process and microstructure are necessary, as for example, for the
calculation of the cluster radius of gyration.

Studies of extensional flows are also important to be carried out in the
near future. Many industrial applications involved not only shear flows, but
also a combination of both extensional and shear. Therefore, understanding
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how confinement affect the flow of suspensions in such situations has a vital
importance in the development of new products and technologies.
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