XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: SISTEMA HÍBRIDO DE RECOMENDAÇÃO DE PRODUTOS COM USO DE FILTROS COLABORATIVOS E NÚMEROS FUZZY Autor: MIGUEL ANGELO GASPAR PINTO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
RICARDO TANSCHEIT - ORIENTADOR
MARLEY MARIA BERNARDES REBUZZI VELLASCO - COORIENTADOR
Nº do Conteudo: 55937
Catalogação: 17/11/2021 Liberação: 17/11/2021 Idioma(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55937&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55937&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.55937
Resumo:
Título: SISTEMA HÍBRIDO DE RECOMENDAÇÃO DE PRODUTOS COM USO DE FILTROS COLABORATIVOS E NÚMEROS FUZZY Autor: MIGUEL ANGELO GASPAR PINTO
MARLEY MARIA BERNARDES REBUZZI VELLASCO - COORIENTADOR
Nº do Conteudo: 55937
Catalogação: 17/11/2021 Liberação: 17/11/2021 Idioma(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55937&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55937&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.55937
Resumo:
O varejo virtual tem sido um importante setor para dinamização da economia, cujo valor das transações em 2010 ficou em torno de R$10,6 bilhões. As lojas nesse segmento não possuem restrição de clientes ou de estoque, porém possuem consumidores pouco pacientes com várias outras lojas a sua disposição,
sendo necessário que o item de seu interesse seja encontrado visível rapidamente. Buscando resolver este problema, foram desenvolvidos algoritmos de recomendação capazes de gerar listagens de produtos que fossem direcionados ao usuário. Os algoritmos de filtragem colaborativa são amplamente usados no varejo
virtual, porém eles apresentam problemas devido a escala e esparsidade do banco de dados. Algoritmos baseados em conteúdo podem apresentar menor sensibilidade ao tamanho da base de dados, porém sua efetividade depende da existência de dados de usuários que comumente não estão presentes. Nesta tese,
propõe-se um algoritmo híbrido que utiliza tanto a filtragem colaborativa quanto um algoritmo baseado em conteúdo para permitir boas recomendações em bases de dados esparsas e de grande porte. O algoritmo baseado em conteúdo faz uso de números fuzzy e técnicas de marketing para guiar sua recomendação apenas com base nos itens comprados pelo usuário, sem necessidade de quaisquer outros dados pessoais do usuário. O algoritmo proposto foi testado em bases de dados sintética e real, sendo comparado com um filtro colaborativo padrão para avaliar seu desempenho.Os resultados obtidos demonstram que o algoritmo híbrido proposto apresentou um desempenho superior ao do filtro colaborativo padrão em ambas as base de dados, apresentando invariância à esparsidade da base de dados.