XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: OIL REFINERY OPERATIONAL PLANNING UNDER UNCERTAINTY Autor: GABRIELA PINTO RIBAS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
SILVIO HAMACHER - ADVISOR
Nº do Conteudo: 55670
Catalogação: 05/11/2021 Liberação: 05/11/2021 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55670&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55670&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.55670
Resumo:
Título: OIL REFINERY OPERATIONAL PLANNING UNDER UNCERTAINTY Autor: GABRIELA PINTO RIBAS
Nº do Conteudo: 55670
Catalogação: 05/11/2021 Liberação: 05/11/2021 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55670&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55670&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.55670
Resumo:
Oil companies make a great effort to maintain profitability and improve
efficiency, especially given the uncertainties present in this business. Companies
that intend to remain competitive need to plan their operations better and with
greater safety. In light of these opportunities and challenges, this thesis proposes a
stochastic approach to the refinery operational planning problem. In this sense, a
two-stage nonlinear stochastic programming model (NLP) developed. The
proposed model is intended to adequately represent nonlinear processes
encountered in a refinery, such as chemical transformations and calculations of
the properties of the oil derivatives. Due to the high level of complexity of the
NLP problem formulated, five solution methods associated with major
commercial solvers were evaluated. A methodology for generating scenarios and
quality measures for scenarios tree were also defined to properly represent the
uncertainties present in this problem. The stochastic approach proposed in the
present study was evaluated based on actual data from a Brazilian refinery. The
final results of this research should provide advances in the processes of refinery
operational planning exploiting the technique of nonlinear programming (NLP)
and new solvers available for NLP-type problems. Another objective was to
generate contributions in the field of stochastic programming by defining quality
measures for scenario trees that allow a better representation of uncertainties and,
consequently, better use of the stochastic approach.
Descrição | Arquivo |
COMPLETE |