$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: 3D GEOLOGICAL AND STRUCTURAL GEOLOGY MODELING AND 2D OPEN PIT MINE SLOPE STABILITY ANALYSIS BY THE SYNTHETIC ROCK MASS (SRM) METHOD
Autor: CARLOS ENRIQUE PAREDES OTOYA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  SERGIO AUGUSTO BARRETO DA FONTOURA - ADVISOR
Nº do Conteudo: 55643
Catalogação:  04/11/2021 Idioma(s):  PORTUGUESE - BRAZIL
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55643@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55643@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.55643

Resumo:
In an open pit mine, stability of rock slope is one of the most challenges in rock mechanics due to geodynamic processes that formed the ore deposit, making each deposit complex and unique. Some of the complexities commonly encountered are: the geology in the vicinity of the deposit, the high variability of properties, the complex structural defects, the rock alteration degree, limited geomechanical data, etc. Before evaluating the slope stability we should characterize the rock mass. To characterize it we have built the geological model, structural model and rock mass model to form the geotechnical model as it recommends the Large Open Pit project (LOP), an international research project related to stability of rock slope in open pit mines. Once constructed geotechnical domains, the stability of rock mass slope can be evaluated for each domain by using some known methods like limit equilibrium, the finite elements and discrete element methods. The use of the method depends of different factors like influence of structural elements (defects), importance of analysis, available information, etc. Limit equilibrium traditional methods like Bishop and Janbu can be used to evaluate the stability of large rock slopes that are susceptible to rotational failure of rock mass. Since the finite element method has developed rapidly and has gained popularity for the slope stability analysis in the case where failure mechanism is not controlled by discrete geological structure. Finite element method is based on constitutive models of stress-strain for intact rocks and has difficulties in simulating sets with a large number of discontinuities within the rock mass. The discrete element method allows to simulate a large number of discontinuities and also allows the simulation of large deformations. This dissertation uses the SRM (Synthetic Rock Mass) model to evaluate the stability of slopes in an open pit mine in Peru. The SRM model is a new technique that allows the simulation of the mechanical behavior of fractured rock mass taking into account propagation of fractures and anisotropic effects. This technique uses two well established techniques like BPM (Bonded Particle Model) for representation of intact rock and the SJM (Smooth-Joint Contact Model) to represent the structural fabric within the PFC program. For structural modeling it was used DFN method (Discrete-Fracture Network). To determine the geological and structural model it was used the Petrel program (Version 2010.1) and for slope stability analysis with the SRM model it was used the version 2D of the PFC 4.0 program.

Descrição Arquivo
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS  PDF
CHAPTER 1  PDF
CHAPTER 2  PDF
CHAPTER 3  PDF
CHAPTER 4  PDF
CHAPTER 5  PDF
CHAPTER 6  PDF
CHAPTER 7  PDF
REFERENCES  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui