$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC | MARC |



Título: E-AUTOMFIS: MODELO INTERPRETÁVEL PARA PREVISÃO DE SÉRIES MULTIVARIADAS USANDO COMITÊS DE SISTEMAS DE INFERÊNCIA FUZZY
Autor: THIAGO MEDEIROS CARVALHO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  MARLEY MARIA BERNARDES REBUZZI VELLASCO - ORIENTADOR
JOSE FRANCO MACHADO DO AMARAL - COORIENTADOR

Nº do Conteudo: 53316
Catalogação:  17/06/2021 Liberação: 10/05/2022 Idioma(s):  PORTUGUÊS - BRASIL
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53316&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53316&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.53316

Resumo:
Por definição, a série temporal representa o comportamento de uma variável em função do tempo. Para o processo de previsão de séries, o modelo deve ser capaz de aprender a dinâmica temporal das variáveis para obter valores futuros. Contudo, prever séries temporais com exatidão é uma tarefa que vai além de escolher o modelo mais complexo, e portanto a etapa de análise é um processo fundamental para orientar o ajuste do modelo. Especificamente em problemas multivariados, o AutoMFIS é um modelo baseado na lógica fuzzy, desenvolvido para introduzir uma explicabilidade dos resultados através de regras semanticamente compreensíveis. Mesmo com características promissoras e positivas, este sistema possui limitações que tornam sua utilização impraticável em problemas com bases de dados com alta dimensionalidade. E com a presença cada vez maior de bases de dados mais volumosas, é necessário que a síntese automática de sistemas fuzzy seja adaptada para abranger essa nova classe de problemas de previsão. Por conta desta necessidade, a presente dissertação propõe a extensão do modelo AutoMFIS para a previsão de séries temporais com alta dimensionalidade, chamado de e-AutoMFIS. Apresentase uma nova metodologia, baseada em comitê de previsores, para o aprendizado distribuído de geração de regras fuzzy. Neste trabalho, são descritas as características importantes do modelo proposto, salientando as modificações realizadas para aprimorar tanto a previsão quanto a interpretabilidade do sistema. Além disso, também é avaliado o seu desempenho em problemas reais, comparando-se a acurácia dos resultados com as de outras técnicas descritas na literatura. Por fim, em cada problema selecionado também é considerado o aspecto da interpretabilidade, discutindo-se os critérios utilizados para a análise de explicabilidade.

Descrição Arquivo
NA ÍNTEGRA  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui