As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: ESTIMATIVA DE CURVA DE ESTADO DE SAÚDE DE BATERIAS DE ÍON-LÍTIO: UMA ABORDAGEM USANDO REDES NEURAIS RECORRENTES Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO Autor(es): RAFAEL SAADI DANTAS TEIXEIRA
Colaborador(es): RODRIGO FLORA CALILI - Orientador
DANIEL RAMOS LOUZADA - Coorientador
Número do Conteúdo: 53183
Catalogação: 10/06/2021 Idioma(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53183@1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53183@2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.53183
Resumo:
Título: ESTIMATIVA DE CURVA DE ESTADO DE SAÚDE DE BATERIAS DE ÍON-LÍTIO: UMA ABORDAGEM USANDO REDES NEURAIS RECORRENTES Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO Autor(es): RAFAEL SAADI DANTAS TEIXEIRA
Colaborador(es): RODRIGO FLORA CALILI - Orientador
DANIEL RAMOS LOUZADA - Coorientador
Número do Conteúdo: 53183
Catalogação: 10/06/2021 Idioma(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53183@1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53183@2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.53183
Resumo:
Por conta dos rápidos avanços tecnológicos, percebe-se uma mudança nos hábitos e das necessidades das pessoas. Há uma dependência cada vez maior de aparelhos eletrônicos como smartphones, notebooks etc. Construir baterias com grande capacidade energética é um dos desafios atuais para aumentar a autonomia dos aparelhos eletrônicos. Entretanto, uma alternativa que pode ajudar a manter aparelhos eletrônicos por mais tempo longe das tomadas é o compartilhamento de baterias. Existem na literatura muitos estudos envolvendo o compartilhamento de baterias no contexto de veículos elétricos, porém não são encontradas aplicações em smartphones. Um parâmetro importante a ser monitorado neste contexto é o estado de saúde (SoH). Até o momento, não há um consenso na literatura acerca do melhor modelo para estimar o SoH de baterias devido à falta de métodos bem estabelecidos. Assim, o objetivo geral desta dissertação foi construir um modelo para estimar a curva de estado de saúde, por meio do estado de carga, com vistas a estimar a saúde de baterias de íon-lítio. O modelo proposto foi baseado em redes neurais recorrentes. Para treinar e validar o modelo, foi construído um sistema para a realização de ensaios destrutivos, sendo possível estudar o comportamento de baterias de íon-lítio ao longo de toda vida útil. O modelo proposto foi capaz de estimar o SoH das baterias estudadas com boa exatidão, sob diferentes parâmetros de carga/descarga. O diferencial do modelo são baixa complexidade computacional, mesmo envolvendo modelos de redes neurais, e serem adotados parâmetros de entrada de fácil medição.
Descrição | Arquivo |
NA ÍNTEGRA |