$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: SISTEMA HÍBRIDO NEURO-FUZZY-GENÉTICO PARA MINERAÇÃO AUTOMÁTICA DE DADOS
Autor: MANOEL ROBERTO AGUIRRE DE ALMEIDA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  MARLEY MARIA BERNARDES REBUZZI VELLASCO - ORIENTADOR
MARCO AURELIO CAVALCANTI PACHECO - ORIENTADOR

Nº do Conteudo: 5303
Catalogação:  20/08/2004 Liberação: 20/08/2004 Idioma(s):  PORTUGUÊS - BRASIL
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=5303&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=5303&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.5303

Resumo:
Esta dissertação apresenta a proposta e o desenvolvimento de um sistema de mineração de dados inteiramente automático. O objetivo principal é criar um sistema que seja capaz de realizar a extração de informações obscuras a partir de bases de dados complexas, sem exigir a presença de um especialista técnico para configurá-lo. O sistema híbrido neuro-fuzzy hierárquico com particionamento binário (NFHB) vem apresentando excelentes resultados em tarefas de classificação de padrões e previsão, além de possuir importantes características não encontradas em outros sistemas similares, entre elas: aprendizado automático de sua estrutura; capacidade de receber um número maior de entradas abrangendo um maior número de aplicações; e geração de regras lingüísticas como produto de seu treinamento. Entretanto, este modelo ainda necessita de uma complexa parametrização inicial antes de seu treinamento, impedindo que o processo seja automático em sua totalidade. O novo modelo proposto busca otimizar a parametrização do sistema NFHB utilizando a técnica de coevolução genética, criando assim um novo sistema de mineração de dados completamente automático. O trabalho foi realizado em quatro partes principais: avaliação de sistemas existentes utilizados na mineração de dados; estudo do sistema NFHB e a determinação de seus principais parâmetros; desenvolvimento do sistema híbrido neuro-fuzzy-genético automático para mineração de dados; e o estudo de casos. No estudo dos sistemas existentes para mineração de dados buscou-se encontrar algum modelo que apresentasse bons resultados e ainda fosse passível de automatização. Várias técnicas foram estudadas, entre elas: Métodos Estatísticos, Árvores de Decisão, Associação de Regras, Algoritmos Genéticos, Redes Neurais Artificiais, Sistemas Fuzzy e Sistemas Neuro-Fuzzy. O sistema NFHB foi escolhido como sistema de inferência e extração de regras para a realização da mineração de dados. Deste modo, este modelo foi estudado e seus parâmetros mais importantes foram determinados. Além disso, técnicas de seleção de variáveis de entradas foram investigadas para servirem como opções para o modelo. Ao final, foi obtido um conjunto de parâmetros que deve ser automaticamente determinado para a completa configuração deste sistema. Um modelo coevolutivo genético hierárquico foi criado para realizar com excelência a tarefa de otimização do sistema NFHB. Desta forma, foi modelada uma arquitetura hierárquica de Algoritmos Genéticos (AG s), onde os mesmos realizam tarefas de otimização complementares. Nesta etapa, também foram determinados os melhores operadores genéticos, a parametrização dos AG s, a melhor representação dos cromossomas e as funções de avaliação. O melhor conjunto de parâmetros encontrado é utilizado na configuração do NFHB, tornando o processo inteiramente automático. No estudo de casos, vários testes foram realizados em bases de dados reais e do tipo benchmark. Para problemas de previsão, foram utilizadas séries de carga de energia elétrica de seis empresas: Cerj, Copel, Eletropaulo, Cemig, Furnas e Light. Na área de classificação de padrões, foram utilizadas bases conhecidas de vários artigos da área como Glass Data, Wine Data, Bupa Liver Disorders e Pima Indian Diabetes. Após a realização dos testes, foi feita uma comparação com os resultados obtidos por vários algoritmos e pelo NFHB original, porém com parâmetros determinados por um especialista. Os testes mostraram que o modelo criado obteve resultados bastante satisfatórios, pois foi possível, com um processo completamente automático, obter taxas de erro semelhantes às obtidas por um especialista, e em alguns casos taxas menores. Desta forma, um usuário do sistema, sem qualquer conhecimento técnico sobre os modelos utilizados, pode utilizá-lo para realizar mineração de banco de dados, extraindo informações e até mesmo conhecimento que podem auxiliá-lo em processos de tomada de decisão, o qual é o objetivo final de um processo de Knowledge Data Discovery.

Descrição Arquivo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS  PDF
CAPÍTULO 1  PDF
CAPÍTULO 2  PDF
CAPÍTULO 3  PDF
CAPÍTULO 4  PDF
CAPÍTULO 5  PDF
CAPÍTULO 6  PDF
CAPÍTULO 7  PDF
REFERÊNCIAS BIBLIOGRÁFICAS  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui