XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: SISTEMAS AUTÔNOMOS EXPLICÁVEIS POR MEIO DE PROVENIÊNCIA DE DADOS Autor: TASSIO FERENZINI MARTINS SIRQUEIRA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
CARLOS JOSE PEREIRA DE LUCENA - ORIENTADOR
Nº do Conteudo: 48782
Catalogação: 25/06/2020 Liberação: 25/06/2020 Idioma(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=48782&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=48782&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.48782
Resumo:
Título: SISTEMAS AUTÔNOMOS EXPLICÁVEIS POR MEIO DE PROVENIÊNCIA DE DADOS Autor: TASSIO FERENZINI MARTINS SIRQUEIRA
Nº do Conteudo: 48782
Catalogação: 25/06/2020 Liberação: 25/06/2020 Idioma(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=48782&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=48782&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.48782
Resumo:
Determinar a proveniência dos dados, isto é, o processo que levou a
esses dados, é vital em muitas áreas, especialmente quando é essencial que
os resultados ou ações sejam confiáveis. Com o crescente número de aplicações
baseadas em inteligência artificial, criou-se a necessidade de torná-las
capazes de explicar seu comportamento e responder às suas decisões. Isso é
um desafio, especialmente se as aplicações forem distribuídas e compostas de
vários agentes autônomos, formando um Sistema Multiagente (SMA). Uma
maneira fundamental de tornar tais sistemas explicáveis é rastrear o comportamento
do agente, isto é, registrar a origem de suas ações e raciocínios,
como em uma depuração onisciente. Embora a ideia de proveniência já
tenha sido explorada em alguns contextos, ela não foi extensivamente explorada
no contexto de SMA, deixando muitas questões para serem compreendidas
e abordadas. Nosso objetivo neste trabalho é justificar a importância
da proveniência dos dados para SMA, discutindo quais perguntas
podem ser respondidas em relação ao comportamento do SMA, utilizando
a proveniência e ilustrando, através de cenários de aplicação, os benefícios
que a proveniência proporciona para responder a essas questões. Este estudo
envolve a criação de um framework de software, chamado FProvW3C,
que suporta a coleta e armazenamento da proveniência dos dados produzidos
pelo SMA, que foi integrado a plataforma BDI4JADE (41), formando
o que denominamos de Prov-BDI4JADE. Por meio desta plataforma, utilizando
exemplos de sistemas autônomos, demostramos com rigor que, o
uso da proveniência de dados em SMA é uma solução sólida, para tornar
transparente o processo de raciocínio e ação do agente.
Descrição | Arquivo |
NA ÍNTEGRA |