INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC



Título: OTIMIZAÇÃO TOPOLÓGICA USANDO MALHAS POLIÉDRICAS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): REGIS SANTOS THEDIN

Colaborador(es):  IVAN FABIO MOTA DE MENEZES - Orientador
MARCIO DA SILVEIRA CARVALHO - Coorientador
Catalogação:  22/02/2019 Idioma(s):  INGLÊS - ESTADOS UNIDOS

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=37112@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=37112@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.37112

Resumo:
A otimização topológica tem se desenvolvido bastante e possui potencial para revolucionar diversas áreas da engenharia. Este método pode ser implementado a partir de diferentes abordagens, tendo como base o Método dos Elementos Finitos. Ao se utilizar uma abordagem baseada no elemento, potencialmente, cada elemento finito pode se tornar um vazio ou um sólido, e a cada elemento do domínio é atribuído uma variável de projeto, constante, denominada densidade. Do ponto de vista Euleriano, a topologia obtida é um subconjunto dos elementos iniciais. No entanto, tal abordagem está sujeita a instabilidades numéricas, tais como conexões de um nó e rápidas oscilações de materiais do tipo sólido-vazio (conhecidas como instabilidade de tabuleiro). Projetos indesejáveis podem ser obtidos quando elementos de baixa ordem são utilizados e métodos de regularização e/ou restrição não são aplicados. Malhas poliédricas não estruturadas naturalmente resolvem esses problemas e oferecem maior flexibilidade na discretização de domínios não Cartesianos. Neste trabalho investigamos a otimização topológica em malhas poliédricas por meio de um acoplamento entre malhas. Primeiramente, as malhas poliédricas são geradas com base no conceito de diagramas centroidais de Voronoi e posteriormente otimizadas para uso em análises de elementos finitos. Demonstramos que o número de condicionamento do sistema de equações associado pode ser melhorado ao se minimizar uma função de energia relacionada com a geometria dos elementos. Dada a qualidade da malha e o tamanho do problema, diferentes tipos de resolvedores de sistemas de equações lineares apresentam diferentes desempenhos e, portanto, ambos os resolvedores diretos e iterativos são abordados. Em seguida, os poliedros são decompostos em tetraedros por um algoritmo específico de acoplamento entre as malhas. A discretização em poliedros é responsável pelas variáveis de projeto enquanto a malha tetraédrica, obtida pela subdiscretização da poliédrica, é utilizada nas análises via método dos elementos finitos. A estrutura modular, que separa as rotinas e as variáveis usadas nas análises de deslocamentos das usadas no processo de otimização, tem se mostrado promissora tanto na melhoria da eficiência computacional como na qualidade das soluções que foram obtidas neste trabalho. Os campos de deslocamentos e as variáveis de projeto são relacionados por meio de um mapeamento. A arquitetura computacional proposta oferece uma abordagem genérica para a solução de problemas tridimensionais de otimização topológica usando poliedros, com potencial para ser explorada em outras aplicações que vão além do escopo deste trabalho. Finalmente, são apresentados diversos exemplos que demonstram os recursos e o potencial da abordagem proposta.

Descrição Arquivo
NA ÍNTEGRA  PDF
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui