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Abstract

Thedin, Régis S.; Menezes, Ivan Fábio Mota de; Carvalho, Mar-
cio da Silveira. Topology Optimization using Polyhedral
Meshes. Rio de Janeiro, 2014. 126p. Dissertação de Mestrado
— Departamento de Engenharia Mecânica, Pontif́ıcia Universidade
Católica do Rio de Janeiro.

Topology optimization has had an impact in various fields and has

the potential to revolutionize several areas of engineering. This method can

be implemented based on the finite element method, and there are several

approaches of choice. When using an “element-based” approach, every finite

element is a potential void or actual material, whereas every element in

the domain is assigned to a constant design variable, namely, density. In an

Eulerian setting, the obtained topology consists of a subset of initial elements.

This approach, however, is subject to numerical instabilities such as one-node

connections and rapid oscillations of solid and void material (the so-called

checkerboard pattern). Undesirable designs might be obtained when standard

low-order elements are used and no further regularization and/or restrictions

methods are employed. Unstructured polyhedral meshes naturally address

these issues and offer flexibility in discretizing non-Cartesians domains.

In this work we investigate topology optimization on polyhedra meshes

through a mesh staggering approach. First, polyhedra meshes are generated

based on the concept of centroidal Voronoi diagrams and further optimized

for finite element computations. We show that the condition number of the

associated system of equations can be improved by minimizing an energy

function related to the element’s geometry. Given the mesh quality and

problem size, different types of solvers provide different performances and

thus both direct and iterative solvers are addressed. Second, polyhedrons

are decomposed into tetrahedrons by a tailored embedding algorithm. The

polyhedra discretization carries the design variable and a tetrahedra sub-

discretization is nested within the polyhedra for finite element analysis. The

modular framework decouples analysis and optimization routines and variables,

which is promising for software enhancement and for achieving high fidelity

solutions. Fields such as displacement and design variables are linked through a

mapping. The proposed mapping-based framework provides a general approach

to solve three-dimensional topology optimization problems using polyhedrons,

which has the potential to be explored in applications beyond the scope of the
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present work. Finally, the capabilities of the framework are evaluated through

several examples, which demonstrate the features and potential of the proposed

approach.

Keywords
Topology optimization; Polyhedral meshes; Finite element method;

Voronoi diagrams; Direct and iterative solvers.
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Resumo

Thedin, Régis S.; Menezes, Ivan Fábio Mota de; Carvalho, Mar-
cio da Silveira. Otimização Topológica usando Malhas Po-
liédricas. Rio de Janeiro, 2014. 126p. Dissertação de Mestrado
— Departamento de Engenharia Mecânica, Pontif́ıcia Universidade
Católica do Rio de Janeiro.

A otimização topológica tem se desenvolvido bastante e possui potencial

para revolucionar diversas áreas da engenharia. Este método pode ser imple-

mentado a partir de diferentes abordagens, tendo como base o Método dos

Elementos Finitos. Ao se utilizar uma abordagem baseada no elemento, po-

tencialmente, cada elemento finito pode se tornar um vazio ou um sólido, e

a cada elemento do domı́nio é atribúıdo uma variável de projeto, constante,

denominada densidade. Do ponto de vista Euleriano, a topologia obtida é um

subconjunto dos elementos iniciais. No entanto, tal abordagem está sujeita a

instabilidades numéricas, tais como conexões de um nó e rápidas oscilações

de materiais do tipo sólido-vazio (conhecidas como instabilidade de tabuleiro).

Projetos indesejáveis podem ser obtidos quando elementos de baixa ordem são

utilizados e métodos de regularização e/ou restrição não são aplicados. Malhas

poliédricas não estruturadas naturalmente resolvem esses problemas e oferecem

maior flexibilidade na discretização de domı́nios não Cartesianos.

Neste trabalho investigamos a otimização topológica em malhas polié-

dricas por meio de um acoplamento entre malhas. Primeiramente, as malhas

poliédricas são geradas com base no conceito de diagramas centroidais de Vo-

ronoi e posteriormente otimizadas para uso em análises de elementos finitos.

Demonstramos que o número de condicionamento do sistema de equações asso-

ciado pode ser melhorado ao se minimizar uma função de energia relacionada

com a geometria dos elementos. Dada a qualidade da malha e o tamanho do

problema, diferentes tipos de resolvedores de sistemas de equaćões lineares

apresentam diferentes desempenhos e, portanto, ambos os resolvedores dire-

tos e iterativos são abordados. Em seguida, os poliedros são decompostos em

tetraedros por um algoritmo espećıfico de acoplamento entre as malhas. A dis-

cretização em poliedros é responsável pelas variáveis de projeto enquanto a

malha tetraédrica, obtida pela subdiscretização da poliédrica, é utilizada nas

análises via método dos elementos finitos. A estrutura modular, que separa

as rotinas e as variáveis usadas nas análises de deslocamentos das usadas no

processo de otimização, tem se mostrado promissora tanto na melhoria da efi-

ciência computacional como na qualidade das solućões que foram obtidas neste
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trabalho. Os campos de deslocamentos e as variãveis de projeto são relacio-

nados por meio de um mapeamento. A arquitetura computacional proposta

oferece uma abordagem genérica para a solução de problemas tridimensionais

de otimização topológica usando poliedros, com potencial para ser explorada

em outras aplicações que vão além do escopo deste trabalho. Finalmente, são

apresentados diversos exemplos que demonstram os recursos e o potencial da

abordagem proposta.

Palavras–chave
Otimização topológica; Malhas poliédricas; Método dos elementos fini-

tos; Diagramas de Voronoi; Métodos diretos e iterativos.
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“I don’t know anything, but I do know that
everything is interesting if you go into it
deeply enough”

Richard Feynman, 1965 Physics Nobel.
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1
Introduction

The search for optimal design under a variety of specified conditions is

an important and challenging subject. The structural optimization field has

a long history, beginning in the early twentieth century with the Michell’s

research on optimal truss layouts [65]. Starting in the past century, the efficient

use of materials became increasingly important in many different settings.

In this context, structural topology optimization is a current growing field

with many applications in several different industries, such as aerospace [59],

automotive [18], civil [9] and medical [92].

In its most general setting, topology optimization of continuum structures

consist of a determination, for every point in design space, if there is material

in that point or not [11]. In other words, the goal is to find the material

distribution of the system. The unknown is the topology of the structure.

The complexity of typical problems in engineering generally requires

the use of unstructured meshes in order to accurately discretize the domain

and capture the boundary condition, therefore ensuring reliable solutions.

Polyhedral elements provides not only the flexibility in discretizing complex

domain but also lead to optimal topologies that are not biased by the domain

discretization.

This dissertation investigates topology optimization on polyhedral

meshes. We present a technique based on staggering of elements. We employ

a sub-discretization of the polyhedral mesh in order to perform finite element

analysis on common elements, namely, tetrahedrons. The final topology is given

as a subset of the initial polyhedral discretization.

We investigate in detail important steps in the topology optimization

approach, from three-dimensional polyhedral mesh generation to the solution

of the associated system of linear equations.

1.1
Motivation

In some practical engineering problems, two-dimensional approximations

may give adequate and more economical numerical models. In the field of
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Chapter 1. Introduction 21

topology optimization, however, three-dimensional problems not always can be

approximated by two-dimensional representations. Moreover, more attention

had been given to three-dimensional investigations recently in the topology

optimization community.

In an “element-based” approach, the problem parametrization and its

approximate solution are closely linked to the discretization of the domain.

Each element in the domain is assigned to a constant design variable. However,

such approach limits the resolution of the topology and precision of response,

specially if regular elements are used. The final structure connecting the

imposed boundary conditions and external loads is found as a subset of all the

elements of the initially chosen set of finite elements. Thus the characteristics

of the element used in domain discretization plays a major role in topology

optimization problems. Checkerboard patterns are common when low-order

Lagrangian elements are used and no further regularization technique is

employed. Checkerboard instability consists in rapid oscillation of solid and

void material. Additionally, structured meshes are subject to mesh biased

solutions (see Fig. 1.1). Such numerical instabilities, detailed in the work

of Sigmund [84] and Dı́az [28], may, eventually, restrict the areas in which

topology optimization can be used.

Figure 1.1: Example of numerical instabilities in conventional finite elements.
MBB problem [75] using linear quad elements, showing one-node connections
and checkerboard pattern.

In order to avoid numerical instabilities using the element-based ap-

proach, additional restrictions should be applied to the design space or higher

order finite elements should be used. In this setting, polygonal finite elements

have been studied [100]. Talischi et al. [98] have shown that stable solutions

can be achieved using polygonal finite elements.

Authors such as Sukumar [90] and Talischi et al. [98] have studied con-

vex two-dimensional polygonal finite elements. Fully unstructured meshes re-

duce the influence of the simplex geometry on topology optimization solutions.

This is accomplished by means of polygonal meshes based on Voronoi tessel-

lations, which in addition to possessing higher degree of geometric isotropy
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Chapter 1. Introduction 22

allow for flexibility in discretization. Due to its geometry, such elements do

not allow checkerboard and/or one-node connections. Polygonal 2D finite el-

ements showed to be a reliable element not only in topology optimization

problems. Other applications of polygonal finite elements includes fracture me-

chanics [89], biomechanics and coupled electromechanical problems [53]. Ad-

ditionally, Gain [35] demonstrated the capabilities of unstructured polyhedral

meshes in providing pathology-free topologies.

In the present work we deal with unstructured polyhedral-based meshes

for compliance minimization topology optimization problems. We present an

algorithm based on a staggering of elements, containing two separate fields.

The separation of fields have been investigated in the concept of multiple

meshes by Paulino et al. [69] and Nguyen et al. [67]. In [69], a rotated Q4 design

variable mesh and a Q4 displacement mesh are superpositioned (Fig. 1.2 and

1.3); whereas in [67], a design variable mesh is nested within a displacement

mesh. Such investigations yielded higher resolution designs.

258 G.H. Paulino, C.H. Le

a b

Patch 1

Patch 2

Patch 1

Patch 2

Fig. 2 Construction of design space from patches: a patches of
Q4/Q4M elements, b patches of Q4/Q4 elements

Element stiffness matrices are obtained by integrat-
ing their contributions over the element subdomain.
Material property matrix (D) is dependent on the ma-
terial density and, therefore, is variable. In common
practice, numerical (e.g., Gauss) quadrature is used for
the numerical integration. The integration is reduced
to the evaluation and summation of the stiffness ma-
trix integrand at Gauss points. The interpolation of

material density is reduced to a projection of nodal
design variables to Gauss points.

Before going into detail of the shape functions for
the material density of the Q4/Q4M, it is important to
distinguish the two element meshes involved in topol-
ogy optimization with continuous approximation of
material distribution. The first mesh is the one used to
discretize displacement field (assume that displacement
based finite elements are used). This mesh is referred to
as displacement mesh (finite element mesh) and consists
of displacement elements (finite elements). The second
mesh is the one used to discretize material density
and will be referred to as material mesh consisting of
material elements. These two meshes are two distinct
entities, and more importantly, they are not necessarily
coincident, as will be shown later.

For the case of the Q4/Q4M, displacement elements
and material elements may be of the same type. How-
ever, shape functions for material elements and dis-
placement elements are not the same, as locations of
nodes in the two types of elements are different. For
displacement interpolation, well established bilinear
shape functions for the Q4 conforming element are
used. Alternatively, the material density may be inter-
polated using nonconforming shape functions as de-
scribed by Douglas et al. (1999) and used by Jang et al.
(2003). However, nonconforming shape functions can
lead to negative material density and severe numerical
instabilities. Therefore, another approximation scheme
is used and described as follows.

The material mesh is chosen differently from the
displacement mesh. Figure 3 illustrates the displace-
ment mesh and material mesh separately and how they
are superposed. The material mesh also contains Q4
elements, but they are rotated by 45◦. The area of
each element in the material mesh is half the area of
each element in the displacement mesh. Thus, with the
same displacement mesh, the resolution of the solu-
tion generated with Q4/Q4M elements will be higher

Fig. 3 Composition of
displacement and material
meshes: a displacement mesh,
b resulting superposed
meshes, c material mesh

a b c

Figure 1.2: Motivation of the super-element approach: Displacement mesh (left)
and a rotated density mesh (right) together to generate a modified Q4 element
(center) [69].

A modified Q4/Q4 element for topology optimization 261

Fig. 7 Effectiveness of the
internal averaging technique
(discretization level: 90 × 30;
volume constraint = 50%)

Q4/Q4 Q4/Q4M

Q4/Q4 Q4/Q4M

a  Results obtained without internal averaging technique

b  Results obtained using internal averaging technique

sion of the optimality criteria method as described in
Bendsoe and Sigmund (2003); Sigmund (2001) is used
as an optimizer.

5 Demonstrative examples

Variations of the MBB beam (Olhoff et al. 1991) are
solved using various elements and approaches. Results
are contrasted to facilitate the evaluation. Volume con-
straints are taken as 50%. Stiffness tensor of interme-
diate material density is interpolated according to the
SIMP method. Continuation technique is used in all
examples to achieve high resolution of the topology.
Note that the same continuation technique is used in
all cases: penalization is set to 1 at the beginning of the
iteration process and increased by 0.2 when the solu-
tion is sufficiently converged, until final penalization is
reached. Poisson’s ratio is chosen as 0.3. Symmetry of
the MBB beam is employed, and only half of the beam
is modeled. The beam has an aspect ratio of 6:1 corre-
sponding to length over height. Three mesh refinement
levels (45 × 15, 90 × 30, and 150 × 50) are adopted for
each approach. Figure 6 shows the configuration for
half of the MBB beam (Fig. 7).

The first batch of results is from the class of ap-
proaches that assume uniform material density within
each displacement element. Those approaches include

Table 1 Implemented options

Assumptions Elements Approaches
Uniform element density Q4/U Sensitivity filter
(Fig. 8) Q4/Q4 Nodal approach

Q4/Q4M Nodal approach
Variable element density Q4/Q4 CAMD approach
(Fig. 9) Q4/Q4M CAMD approach

element-based approach (Q4/U), nodal approach using
Q4/Q4, and nodal approach using Q4/Q4M. We use
the 99-line Matlab code written by Sigmund (2001)
for the Q4/U option. A filtering radius of 1.2 is used,
which is sufficient to suppress checkerboard patterns
in the solution. For the nodal approach using Q4/Q4,
length scale control parameter rmin is set to 1.0 so
that minimum possible member size is achieved. It is
clear from the results that the new Q4/Q4M element
generates structures with more number of structural
members that are finer. In other words, the resolution
of the solution is higher. The results are in agreement
with the prediction in Section 2 about the resolution of
the new Q4/Q4M element (see Fig. 8).

The second batch of results is obtained with CAMD
approach using Q4/Q4M and Q4/Q4 elements. Each
type of element is also implemented with three mesh
refinement levels (45 × 15, 90 × 30, and 150 × 50).
The internal averaging technique, as described in
Section 3, has been applied to the CAMD implemen-
tation of both the Q4/Q4 and the Q4/Q4M. Again,
higher resolutions for final structures are obtained with
the Q4/Q4M (see Fig. 9). Actually, we can notice from
Fig. 9 that results in items (c) and (e) are almost the
same. That indicates a mesh resolution of 90 × 30 using
the new Q4/Q4M which is equivalent to a mesh reso-
lution of 150 × 50 using the standard Q4/Q4 element
in terms of ability to generate comparable and fine
structural patterns.

The numerical optimization results shown above
agree well with the analytical solution derived by
Lewinski et al. (1994). The vertical bars in several
results (Figs. 8f and h and 9c and e) may bring concerns
about the correctness of the implementation because
of the following reasons. First, the vertical bars are not
present in all results. Second, this type of vertical bars

Figure 1.3: Modified elements can be used to achieve higher resolution results
with same mesh size. In this example is shown a modified Q4 element [69].

Thus this work aims in solving three dimensional topology optimization

problems using special elements in the interest of avoiding numerical insta-

bilities commonly found in standard three dimensional elements, such as the

8-node bricks. These special elements, called here super-elements, are con-

structed embedding tetrahedrons within polyhedrons. Tetrahedrons are used

for finite element analysis and polyhedrons carry the design variables. The re-

sulting topology is found to be a subset of the initial polyhedral mesh. The
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inherently unstructured nature of Voronoi-based polyhedral meshes is valuable

for topology optimization. Polytope meshes alleviate the problem of one-node

or one-edge (sometimes referred to as “hinges”) connection between elements

in the final topology.

1.2
Objectives and Scope of Current Work

This work deals with arbitrary polyhedrons for representation of the

design domain. Topology optimization is carried out using a density-based

method, in which the density is updated on the polyhedral elements, whereas

displacement analysis occurs in a sub-discretization, consisting of tetrahedral

elements.

Three-dimensional extension of shape functions still presents restriction

on the topology of admissible elements (such as convexity and maximum

valence count). The development of polygonal interpolants has its roots in the

work of Wachspress [103], who proposed rational basis functions on polygonal

elements. The construction of polygonal interpolants have been investigated

by several authors [88, 90, 103], but reliable extension to three-dimensions is

still under investigation by the finite element community (see section 2.7.1).

Although some recent work is at an advanced stage, the method is still not

well-stablished [63]. Finite element computation of arbitrary polyhedrons using

their shape functions is still a novel technique.

In this setting, this dissertation investigates the decomposition of poly-

hedra into tetrahedra and subsequent parametric mapping between them.

Thereby, finite element analysis is carried out in well-known elements, namely,

tetrahedrons. The use of a second discretization is also motivated by multi-

resolution approaches, outlined in the previous section.

In order to deal with some of the issues presented, we introduce a tech-

nique that involves the staggering of elements, using two separate computa-

tional domains within the same physical domain, with decoupled routines and

variables. A framework based on a mapping between design and displacement

variables is developed. The polyhedra-based mesh is decomposed into tetra-

hedral elements by means of an embedding algorithm. Polyhedrons are used

to carry the design variable and represent the final topology, whereas tetra-

hedrons are used to carry out finite element analysis. Both fields are linked

through a mapping. We called this approach embedding of elements.

In most topology optimization approaches available in the literature,

regularization schemes are employed with the objective of obtaining mesh

independent solutions. However, regularizations schemes often smooth the
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final density field, resulting in a design that is not solid/void, which requires

further care. Filters are commonly used as a regularization technique, and are

usually employed when a topology with minimum (or maximum) length scale is

required. Minimum length scale filters ensure the structure does not converge to

different topologies when using finer meshes, which defines a mesh independent

formulation. Here we investigate optimal solutions with no imposed minimum

length scale, seeking the analytical solution. As mentioned, discretizations

with commonly used low-order elements exhibit undesired features when no

regularization is employed and they frequently display checkerboard patterns.

In usual structured discretization, the orientation of the elements may

influence the geometry of the final structure. Discretizations that present

favored direction may lead to biased non-optimal solution and may exhibit

one-node connections. Polyhedral elements naturally address these issue (see

Fig. 1.4).

(a) (b)

Figure 1.4: Solution for the Michell problem [93] using (a) 10,000 polyhedrons;
(b) 10,220 quadratic triangle element [98]. Note biased structural members and
node to node connection.

The polyhedral discretization of the domain is carried out based on the

concept of Voronoi diagrams and a Centroidal Voronoi Tessellation (CVT) is

obtained [99, 101]. However, here we seek to further optimize this mesh, in a

sense that small edges are penalized and no embedded tetrahedron is greatly

deformed with respect to each other. Small edges are effectively penalized

by decreasing a carefully designed energy function related to the element’s

geometry. We aim in reducing the condition number of the stiffness matrix

associated with the linear elasticity problem, which, in turn, yields better

performance on iterative solvers. Different aspects related to the numerical

solution of the system of equations are also addressed in this work. Both

direct and iterative (including the use of preconditioning) solvers are discussed

and their performance in solving typical topology optimization problems is
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evaluated.

The examples investigated here are restricted to compliance minimiza-

tion. We note that it is possible to expand to different objective functions, as

well as adaptations to handle different physics (such as fluid flow problems).

Results from structural topology optimization using the embedding approach

obtained in this work are promising in achieving high fidelity solutions. Our

framework achieved solutions that matches analytical results and consistently

indicates presence of features (such as orthogonals structural members) that

are expected in such optimal shapes.

Our embedding scheme is quite general and expandable. Its modular

architecture completely separates optimization routines from specific choice of

optimizer. Additionally, regularization methods can be applied with very few

modification, if a topology with minimum length scale is desired.

Concluding, this work consists in an extension of the PolyTop frame-

work [100], developed by Talischi et al. The original MATLAB code has

been rewritten in C++ [29]. In this work we expanded in order to consider

three-dimensional problem and incorporate the mapping-based embedding al-

gorithm.

1.3
Dissertation Outline

The remainder of this dissertation is organized as follows: Chapter 2

introduces the topology optimization discipline, current status, issues and set

the context of the present work. In Chapter 3, we present the embedding of

elements algorithm and how it is employed towards the solution of a topology

optimization problem. Chapter 4 describes the polyhedral meshing approach,

issues, mesh optimization procedures and algorithms, and provides results for

efficiency assessment of the mesh generator. Chapter 5 deals with performance

issues regarding the solution of the system of equations that arises from the

finite element discretization. Different types of solvers, numerical factorization,

reordering algorithms and preconditioners are discussed. Numerical results

obtained with the developed framework are finally presented in Chapter 6,

including comparisons with standard topology optimization formulations and

commonly used elements. Final conclusions are summarized in Chapter 7, as

well as suggestions for future work.
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2
Topology Optimization

Structural optimization is a mathematical and computational approach

that optimizes a measure of performance while satisfying a set of constraints.

Topology optimization is one of the branches of structural optimization: it is a

method for finding the material distribution that generates the optimal layout

structure in such a way that maximizes (or minimizes) a certain objective

function. Topology optimization, differently from shape optimization, allows

the introduction and/or elimination of holes in the structure, amounting to a

true optimal design tool.

This Chapter gives the reader a review of topology optimization theory

and methods, and set the context for the present work.

2.1
Introduction

A general optimization problem can be represented in the following way:

Given a function f : A → R, in which R represents the set of real numbers,

find an element x0 in A such that f(x0) ≤ f(x) for all x in A (minimization

problem), or such that f(x0) ≥ f(x) for all x in A (maximization problem).

Usually, A is a subset of the Euclidean space Rn, commonly specified

by a set of constraints, equalities and inequalities, that members of A must

satisfy. The domain of A is called search space or choice set, whereas elements

of A are called candidate solutions or feasible solutions. The function f is

called objective function. A feasible solution set that minimizes/maximizes the

objective function is called optimal solution

One common objective function f is the minimization of mass (i.e., vol-

ume) of the structure, while satisfying equilibrium equations and others geo-

metrical constraints. In structural optimization problems, the final shape, or

geometry, of the structure is the unknown. Structural optimization can be

divided into three categories of problems: sizing, shape and topology optimiza-

tion [19].

Each of them addresses different aspects of structural design. In a sizing

problem, the objective may be to find the optimal thickness distribution of a
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plate or the optimal members area in a truss structure. A specified physical

quantity is minimized, while some constraints are satisfied. The main feature

of a sizing problem is that the domain of the design is known a priori and is

fixed throughout the optimization process. On the other hand, the objective

in a shape optimization problem is to find the optimum shape of this domain,

that is, the shape problem is defined on a domain which is now the design

variable. The topology optimization problems are more general and involves

the determination of features such as the number, location and shape of

holes and the connectivity of the domain [11]. The concept of each structural

optimization discipline is illustrated in Fig. 2.1.

P P

(a)P P

(b)P P

(c)

Figure 2.1: Categories of structural optimization. (a) Sizing optimization; (b)
shape optimization; and (c) topology optimization (with imposed minimum
length scale; not actual Michell’s optimal solution). Initial problem shown on
the left and solution on the right. From [11].

Differently from other methods, finding an optimal topology means find-

ing the connectedness, shape, number and form of holes in the structure. Addi-

tionally, the design domain is not fixed a priori and the topology optimization

formulation allows the introduction and elimination of holes (essentially voids),

providing flexibility in converging to the optimal solution.

A common constraint in topology optimization is the amount of material

that may be removed. There are a number of objectives functions used

in topology optimization, but here we focus our attention in compliance

minimization problems. In such problems, the objective function not only

depends on the shape explicitly but also on the physical response of the system

(e.g. deformation). It is clear the presence of two competing effects: we’re

trying to minimize the external work done by the applied load, while having a
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constraint on the volume of the structure, minimizing the amount of material

used. Minimizing the compliance amounts to maximizing the stiffness.

2.2
Formulation and Problem Statement

A general topology optimization problem may be stated as follows: find

the material distribution ρ for every point x, resulting in a subdomain ΩS

within a fixed domain Ω that minimizes the objective function f , subject to

a prescribed upper bound on the volume of the structure VS and to m others

constraints Gi ≤ 0, i = 1, . . . ,m. Mathematically,

min
ρ

: f = f (U(ρ(x)), ρ(x))

s.t.: G0(ρ) =

∫
Ω

ρ(x) dV − VS ≤ 0

Gi (U(ρ), ρ) ≤ 0, i = 1, . . . ,m,

(2.1)

where we note U as the displacement vector. We emphasize that the objective

function depends on the response of the system as well as on the actual shape.

We employ a continuous parametrization of the domain by means of a

density function ρ:

ρ(x) =

{
0, if void

1, if structural member.
(2.2)

The optimization problem must also satisfy the binary nature of the den-

sity, defined in (2.2) for every point x in extended domain Ω. The continuous

problem (2.1) is usually solved by discretizing the domain Ω into N elements

(or nodal) design variables1, usually by the finite element method. Using an

element-based approach and assigning a density value to each element in the

domain, Eq. (2.1) can be rewritten as:

min
ρ

: f (U(ρ),ρ)

s.t.: G0(ρ) =
N∑
i=1

ρivi − VS ≤ 0

Gj (U(ρ),ρ) ≤ 0, j = 1, . . . ,m

ρi = 0 or 1, i = 1, . . . , N,

(2.3)

where ρ is now a N -sized design variable vector.

It is well known that the problem stated in Eqs. (2.1–2.3) presents

fundamental difficulties: it is ill-posed and lack solutions in general [84]. For

1For now, the design variable can be thought of being, essentially, the density.

DBD
PUC-Rio - Certificação Digital Nº 1321769/CB



Chapter 2. Topology Optimization 29

several types of problems, closedness of the design space is also an issue, as

ever increasing the number of holes will decrease the objective function. Shapes

with fine features, i.e., fine structural members, are favored, leading to a non-

convergent solution that exhibits rapid oscillations, making no sense from a

physical point of view. This issue can also be thought in a way that more holes

can arbitrarily appear in finer discretization, defining the mesh-dependency

phenomena. More holes usually refers to physically inadmissible solutions. That

is, finer discretizations lead to finer structural members. Regularization and

restriction methods are generally employed to address these issues.

In order to efficiently use gradient based optimization algorithms (the

popular optimality criteria, for example), a continuous density is desired. The

set of admissible densities is relaxed to allow the appearance of intermediate

values, ranging from 0 to 1, leading to some sort of “grey regions”:

0 ≤ ρ ≤ 1. (2.4)

In density-based methods, another critical aspect is the selection of

interpolation function and penalization technique that express the physical

property of the problem as a function of the design variables. These methods

are also used to ensure the solution is directed towards solid/void results.

A commonly used approach in topology optimization is the Solid Isotropic

Material with Penalization (SIMP) material model, first described by Zhou

and Rozvany [108] and extensively analyzed by Bendsøe [13] and references

therein. In the SIMP method, the design variables are penalized with a power

law (with finite value) and multiplied onto physical quantities such as material

stiffness. Hence, the material density is embedded into the material tensor.

The relationship between the density ρ(x) and the material tensor Cijkl(x) in

the equilibrium analysis is written as:

Cijkl(x) = [ρ(x)]p C0
ijkl, (2.5)

where p is the SIMP penalization factor (p ≥ 1) and C0
ijkl is the material tensor

(constitutive matrix) for the solid phase, corresponding to ρ = 1. The material

tensor is function of only two material properties (for an isotropic material):

the Poisson ratio and the Young’s modulus (see Eq. 2.17). By imposing the

penalization over the densities values, intermediate values of stiffnesses are

effectively penalized, and the solution converges to the optimal shape, with

grey regions less pronounced [11].

One can note that using the density bounds from Eq. 2.4, the SIMP

model gives Cijkl(ρ = 1) = C0
ijkl, which is correct and makes sense from a

physical point of view. The value of zero density, however, is often associated
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with numerical issues and singular matrices when performing FEA. Therefore,

Cijkl(ρ = 0) = 0 leads to numerical problems. To avoid such problems, one

option is to impose a positive lower bound on the density:

0 < ρmin ≤ ρ ≤ 1,

or, we can also overcome this issue and ensure well-posedness of the governing

equations by replacing regions with compliant material of stiffness εCijkl. The

property ε is usually referred to as Ersatz parameter in the level-set literature

and its value is such that avoids numerical zero, 0 < ε� 1. Rewriting Eq. (2.5):

Cijkl = [(1− ε)ρp + ε] C0
ijkl. (2.6)

Penalized topology optimization problems are non-convex, often having

a large number of local minima. To convey this issue and increase the chance of

converging to the global optimal solution, continuation methods are commonly

used [11]. Continuation methods slowly increase the effect of penalization on

the design variables over the course of optimization iterations. This is achieved

by the gradual increment of the exponent p in the SIMP formulation, usually

from 1 to 3.0 or 4. Although Stolpe and Svanberg [87] have demonstrated that

continuation methods does not guarantee a complete 0–1 design2, Bendsøe [11]

showed that nonetheless they perform very well in practical applications, no-

tably if used together with a regularization scheme, such as filtering. Addition-

ally, It had been shown that for compliance minimization problems in discrete

form, for a value of p large enough, there exists a globally optimal solution in

the 0–1 form [74]. Is this work, we have used the SIMP approach and it was

observed that increasing p from 1 to 3.5 with increments of 0.5 yielded good

results.

Topology optimization problems can have a variety of objective functions,

for example, eigenfrequency maximization for structural dynamics, compliant

mechanism design. As mentioned, the cases considered in this work are

associated with compliance minimization, where the objective is to find the

stiffest structure composed of a fixed volume of material, subjected to a set of

loads and supports. To minimize the compliance means to minimize the strain

energy of the structure, or, equivalently, maximize its stiffness. The objective

function f is then:

f(ρ) = FTK−1(ρ)F, (2.7)

20–1 design means that no intermediate density is present. Any point of the structure
either has material or not. That indicates a clear, defined boundary ∂Ω.
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where F is the global load vector and K is the global stiffness matrix. Note

that the stiffness matrix depends upon the density, i.e. , the topology of the

structure, the actual material distribution. The objective function changes

from iteration to iteration, creating a different problem at each design loop.

For compliance minimization problem, we need the equilibrium equations (for

linear elasticity), solved for the displacements U, given by the finite element

method:
KU = F. (2.8)

Plugging the Eq. (2.8) into Eq. (2.7), we obtain:

f(ρ) = FTK−1(ρ)K(ρ)U

= FTU ≡ c,
(2.9)

defining the compliance, c. Alternatively, the compliance can be written as:

c = UTKU. (2.10)

Therefore, the topology optimization problem of minimum compliance

in the discrete form may now be formulated. We present two formulations,

the Simultaneous Analysis and Design (SAND) [47] and Nested Analysis and

Design (NAND). In NAND, only the design variables are taken as optimization

variables, and state equations are solved within each iteration (which can result

in expensive state equations evaluation). In SAND, the equilibrium equations

are solved simultaneously with the optimization problem. In other words, they

are also taken as optimization variables. In our formulation, this amounts to

the minimization of the design variables, as well as the displacements U:

min
ρ,U

FTU

s.t.: K(ρ)U = F

V (ρ) =

∫
Ω

ρ dV ≤ Vs

ρ = ρ(x), ∀x ∈ Ω; ρ(x) ∈ [ρmin, 1].

(2.11)

The NAND formulation is presented in Eq. (2.12):

min
ρ

FTU(ρ)

s.t.: V (ρ) =

∫
Ω

ρ dV ≤ Vs

ρ = ρ(x), ∀x ∈ Ω; ρ(x) ∈ [ρmin, 1].

(2.12)

where x 7→ U(x) is an implicit function defined through the equilibrium

equations KU = F. The equilibrium equations are implicitly solved for
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displacements U in a nested loop in order to evaluate the objective function

and perform sensitivity analysis. We note that using the NAND formulation,

the problem is written in terms of the design variables only.

Both NAND and SAND formulations considers two constraints: density

bounds and maximum volume constraint. Note that the dependence of the

stiffness matrix on ρ is based on the relationship of the material distribution on

the actual structure and its resulting stiffness. Finally, we quickly remark that

the bounds of ρ may also be defined by the Ersatz parameter (see Eq. (2.6)).

We note that during our formulation, we have used the density function ρ

extensively. The optimization process takes place in the design variables rather

than on the density. The density is then updated relying for the most part on

the design variable, that is, the final density distribution is a function of the

design variable field. In usual formulations and discretizations using standard

elements, the direct assignment of density from the design variables may

result in issues of checkerboarding (and/or mesh dependency). The separation

of fields, namely density and design, allows the application of regularization

schemes (discussed in section 2.6) as well as independent refinement, leading

to a higher resolution topology (see, for example, [67]).

We now give a summary of the finite element method and then discuss

common approaches to topology optimization problems.

2.2.1
A Brief Review of the Finite Element Method for Linear Elasticity

The system of linear equations KU = F, where K is the stiffness matrix,

arises when the finite element method is employed. The system is then solved

numerically for the displacement U.

Let the displacement field u in each element be approximated by u(e),

such that
u(e)(x) =

n∑
i=1

uiNi(x) = Nû(e), (2.13)

where Ni are the shape functions, û(e) represents a listing of nodal displace-

ments for element e and n is the number of nodes in element e.

Once the displacements at the points within an element are obtained,

the three-dimensional strains can be determined by means of the following

relationship:
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ε =



εx

εy

εz

γxy

γyz

γzx


=



∂u

∂x

∂v

∂y

∂w

∂z

∂u

∂y
+
∂v

∂x

∂v

∂z
+
∂w

∂y

∂w

∂x
+
∂u

∂z



= Su(e), (2.14)

where u, v and w are the x, y and z components of the displacement,

respectively, and S is a suitable linear operator. From Eq. (2.13), the above

equation can be approximated as:

ε = SNû(e). (2.15)

The matrix product SN represents the strain-displacement matrix, also

called B and can be expressed as:

Bi =



∂Ni

∂x
0 0

∂Ni

∂y
0

∂Ni

∂z

0
∂Ni

∂y
0

∂Ni

∂x

∂Ni

∂z
0

0 0
∂N

∂z
0

∂Ni

∂y

∂Ni

∂x



T

.

Three-dimensional stresses can be written as:

σ =
[
σx σy σz τxy τyz τzx

]T

= C (ε− ε0) + σ0, (2.16)

where σ0 are the initial residual stresses, ε0 are the initial strains and C is the

material constitutive matrix (also called stiffness tensor). The C matrix can be

derived from stress-strain relationship, and, isotropic materials3, is given as:

3In this work we consider only isotropic materials. For anisotropic materials the placement
of principal directions of the material should be considered as design variable as well
(optimization of principal directions and/or microstructure may be solved as a topology
optimization problem on its own).
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C =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0
1− 2ν

2
0 0

0 0 0 0
1− 2ν

2
0

0 0 0 0 0
1− 2ν

2


, (2.17)

where ν and E are the Poison ratio and the Young’s modulus, respectively.

Defining nodal forces f , it can be demonstrated that:

f (e) = K(e)u(e) + q(e), (2.18)

where q are the elementary forces due to body forces, traction forces, initial

strain and stress and (e) indicates element-wise. Therefore, the quantity q is

given by:

q(e) = −
∫
V

NTb dV +

∫
Γ

NT t dΓ−
∫
V

BTCε0 dV +

∫
V

BTσ0 dV, (2.19)

where b are the body forces components, t are the traction forces and V

represents the element volume. The stiffness matrix can be finally computed

using:
K(e) =

∫
V

BTCB dV. (2.20)

If the initial system is self equilibrating, as in the case of no residual

stresses, then the forces given by Eq. (2.19) are zero. Thus the evaluation

of this term is frequently omitted. The quantity K(e) is then evaluated by

numerical integration over the element volume (at the Gauss points).

The global stiffness matrix can be obtained from the assembly of the

elementary stiffness matrices. Therefore, taking global values instead of local,

we get the well known system of equations KU = F, where F is the global

load vector. This system is solved for the unknown displacement U. Solving

this system of equations numerically is investigated in details in Chapter 5.

For a deeper discussion on the finite element method, the reader is

referred to [8, 48].

2.3
Density-based Methods

The most commonly used method for structural topology optimization

can be classified as density-based. Others methods includes equation-driven

methods such as level-set and phase-field, evolutionary methods, among others.

Density-based methods operate on a fixed domain of finite elements, with the
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intent of minimizing/maximizing the objective function by identifying whether

each element consists of solid material or void.

In topology optimization, the discrete nature of the design variables (solid

or void) poses as a challenging integer programming problem. The discrete

design variables can be replaced by continuos variable, that assumes the

physical interpretation of density. The formulation given in the prior section

considered this aspect, and we have already introduced the SIMP model. A

critical aspect in density based methods is the selection of an interpolation

function and penalization technique to explicit the physical quantities in terms

of relaxed design variables. As aforementioned, the distribution of design

variables into the ρ quantity in density-based methods is physically interpreted

as the material density in each element in the extended domain Ω.

In order to drive the solution into a solid/void design, implicit penaliza-

tion techniques are used. The most common is the SIMP model, used here.

However, alternatives interpolation functions were proposed, for example, the

Rational Approximation of Material Properties (RAMP) [86]. Differently from

SIMP, it presents nonzero sensitivity at zero density. Other approach, known

as SINH [16], represents the density in terms of sinh functions. These inter-

polation schemes have also been tweaked to deal with topology optimization

problems on alternative physics.

As mentioned, we observe that these methods are often used together

with a continuation scheme, slowly increasing the value of the penalization

parameter, effectively moving the solution towards a 0–1 design.

2.4
Other Methods

There are other methods for topology optimization. They will be briefly

introduced and not discussed in detail here. This work uses density-based and

does not have the objective of bringing the discussion about different methods.

For a review on different methods and the state-of-the-art in each one, the

reader is referred to the recent comprehensive review article by Deaton and

Grandhi [27].

Boundary Variation Methods

As opposed to density-based methods, which parametrize each element

in the domain, boundary variation methods uses differential equations to

implicitly define the boundaries of the design domain. Two of the most

DBD
PUC-Rio - Certificação Digital Nº 1321769/CB



Chapter 2. Topology Optimization 36

popular methods in this category are the level-set method and the phase-field

method [37].

The group of solution methods using the level-set approach [68, 80]

often involves solving the Hamilton-Jacobi equation for the evolution of

shapes, which is time-dependent. In the solution process, dx/dt represents

the movement of a point driven by the objective function such that it can be

expressed in terms of the position of x and geometry of the surface at that

point. The optimal topology by the level-set is then determined by finding the

structural boundary, which in turn is the solution of a PDE on Φ given by

∂Φ(x)

∂t
= −∇Φ(x)

dx

dt
≡ −∇Φ(x) Γ(x,Φ) Φ(x,0) = Φ0(x), (2.21)

where Γ(x,Φ) is the“speed vector”of the level-set and depends on the objective

of optimization. This vector is obtained as a descent direction of the objective

via sensitivity analysis.

The level-set method uses shape derivative, sometimes in combination

with topological derivative, to drive towards the optimal topology (see, for

example, [17]), allowing the introduction and elimination of holes, which,

in turn, defines a true topological design. Explicit solution to the PDE is

usually performed on conventional level-set methods, leading to a few issues

such as time step size restrictions for convergence and required reinitialization

necessary for numerical convergence. However, a number of alternatives have

been proposed to circumvent these problems. For a deeper discussion, the

reader is referred to [102] where a detailed level-set review is presented.

The phase-field method [36,96] is another popular technique that is also

based on PDEs for the definition of the topology. It solves the Allen-Cahn

equation through a FE mesh, a time-dependent reaction diffusion equation.

The phase field φ takes values close to 1 in voids and values close to −1

if material is present. The interface between material and void is described

by a diffuse interfacial layer proportional to a small length scale parameter.

Converged topologies by the phase field method as well as for level-set have

shown that they are dependent on the initial guess.

Hard-kill Methods

Another class of methods for topology optimization include the so-called

hard-kill methods. They work by gradually removing (or adding) a finite

amount of material from the design domain. The removal of material is based

on heuristic criteria, which, in turn, may be based on sensitivity information.

Differently from density-based, in hard-kill methods the domain boundaries
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are sharply defined, as the formulation only allows the design variables to be

taken as existence (material) or absence (void) of finite elements.

The most popular hard kill method is the Evolutionary Structural Opti-

mization (ESO) [106]. In ESO, the design is updated based on stress informa-

tion. That is, in a FE discretization, elements whose stress is below a threshold

are removed. Additional formulations change the criterion function from stress

to a sensitivity number that is essentially compliance. Further, modified for-

mulation allows also the addition of material (Bi-directional ESO or, BESO),

and a modified sensitivity based on filters exhibits stable convergence to mesh

independent and checkerboard-free solutions.

ESO and BESO formulations can be easily coupled with commercial finite

element codes due to its simplicity and use of readily available information

from FEA. Thus, optimization with non-linear responses becomes relatively

easy. Furthermore, ESO/BESO have been expanded to include multicriteria

optimization, although it consists in a simple single weighted criteria. Criticism

to ESO method can be found in [76,109].

2.5
Optimizer

The optimizer is the algorithm responsible for the direction such that

the design variables should be updated. The algorithm used to update the

design variable and thus advance on the optimization process can differ from

density-based methods and phase-field, for example. Several mathematical

programming algorithms can be applied on density-based methods, such as,

Optimality Criteria (OC) [11], Method of Moving Asymptotes (MMA) [94],

Sequential Linear Programming (SLP), Sequential Quadratic Programming

(SQP), among others.

In this work, the compliance minimization problems are solved using

the OC algorithm. The main advantage of OC is its simplicity, and it is

most effective when a single constraint is present4. Here, one can simplify the

constraints down to one: volume fraction.

In order to advance in a gradient-based optimization process, we often

need the sensitivity of the objective function with respect to the design variable.

In topology design, the most effective method for calculating derivatives is by

using the adjoint method, where the derivatives of the displacement are not

calculated explicitly. In this case, we can rewrite the objective function adding

4When more than one constraint is present, OC methods are usually considered to become
impractical, and, in turn, sequential approximate optimization (SAO) methods become the
preferred choice.
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a zero function:

c(ρ) = FTU− ŨT(KU− F),

where Ũ is any arbitrary, fixed real vector. Differentiating and rearranging, we

obtain ∂c

∂ρm
=
(
FT − ŨTK

) ∂U

∂ρm
−UT ∂K

∂ρm
U, (2.22)

which can be in turn written as

∂c

∂ρm
= −ŨT ∂K

∂ρm
U,

where Ũ satisfy the adjoint equation:

FT − ŨTK = 0. (2.23)

We see that to satisfy the equality from Eq. (2.23), we obtain Ũ = U.

Therefore, Eq. (2.22) is reduced to simply

∂c

∂ρm
= −UT ∂K

∂ρm
U,

which can be easily derived in the form

∂c

∂ρm
= −UT ∂K

∂ρm
U

= −UT ∂

∂ρm

(∫
V

BTCB dV

)
U

= −UT ∂

∂ρm

(∫
V

BT (ρpm) C0B dV

)
U

= −UT ∂

∂ρm
(ρpm) K0

eU

= −p (ρm)p−1 UTK0U, (2.24)

where the subscript m used during this derivation indicates density element-

wise, the superscript 0 refers to the solid phase (ρ = 1) and the Ersatz

parameter was omitted for convenience. We also note that the derivative only

involves information at the element level, thus the use of the subscript e in the

last equation.

The volume constraint sensitivity with respect to the design variables

can be calculated as follows:

∂V

∂ρm
=

∫
Ωm

ρ dV ≡ Vs. (2.25)

These quantities are required for gradient-based optimizer such as OC.

Sequential Approximate Optimization (SAO) algorithms in structural op-
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timization involve replacing the objective and constraints functions with their

approximation at the current design point. Essentially, it solves an approx-

imate problem. In the OC method, the objective function is approximated

using exponential intermediate variables and then linearized using first order

Taylor expansion.

Now we show the necessary conditions of optimality for the density ρ of

a minimum compliance problem using the SIMP.

In the OC update scheme, an explicit expression for an optimal density

candidate for the next iteration, denoted by ρ∗min, can be determined as:

ρ∗min = ρmB
η
m, (2.26)

where η is a numerical damping to add stability to the method (for compliance

minimization problems, η = 1/2 is typically used), and Bm is found from the

optimality condition as:

Bm =

∂c

∂ρm

λ
∂V

∂ρm

,

where λ is the Lagrange multiplier that can be determined using, for example,

a bisection method and V represents the volume constraint. Plugging in

Eqs. (2.24) and (2.25),

Bm =
−pρp−1

m c

λVs
. (2.27)

Still, Eq. (2.27) constitutes only a candidate, as it has to satisfy the

problem’s density bounds. Hence,

ρnewmin =


ρ+ , if ρ∗min ≥ ρ+

ρ− , if ρ∗min ≤ ρ−

ρ∗min , otherwise

, (2.28)

where ρ+ and ρ− are the bounds for the search region given by:

ρ+ = min (1, ρm +m)

ρ− = max (ρmin, ρm −m),
(2.29)

where m is a positive prescribed move-limit of the density and usually m = 0.2.

For a deeper discussion on the Optimality Criteria method, including

derivation of the equations presented here, the reader is referred to [11,12].

In this work, we will use the OC update scheme, since it is suitable for

our single-constraint problem. However, an improvement to the OC method

had been proposed by Groenwold [44]. The OC method, which is based on

reciprocal intervening variables, may be improved with regard to efficiency and
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accuracy at little increased complexity by the use of exponential intervening

variables, resulting in a dual formulation.

It was proposed convex subproblems for use in SAO algorithms for the

classical topology optimization, encompassing any number of linear constraints

(as opposed to one in the OC). The subproblems are based on reciprocal and

exponential approximations of the penalized compliance objective function. It

was noted that when a single linear constraint on the volume was present,

the application of a rudimentary dual SAO algorithm based on exponential

intervening variables yielded update schemes identical to those achieved by the

OC for any arbitrary value of the heuristic numerical dumping η. Further, the

use of SAO with reciprocal objective function is identical to OC with η = 0.5.

Further discussion of the equivalence of the OC and SAO methods, we refer

the reader to Groenwold’s paper [44].

2.6
Regularization Techniques

In topology optimization, regularization refers to the process of control-

ling the density and/or sensitivities values in order to prevent numerical prob-

lems and control the quality of the final topology obtained. Manufacturing

constraint, perimeter constraint and filtering are some regularization and re-

striction techniques available. If solving ill-posed problem, solution may con-

verge to finer and finer members, with micro-structural holes. Regularization is

often necessary to provide well-posedness to usual discretizations. Here we will

discuss filters, which consists in a popular regularization method in density-

based topology optimization. We also note that perimeter constraints may also

be used as a restriction for the topology, alleviating the problem of oscillating

solid/void [4].

Filters addresses the aforementioned numerical problems of checker-

boarding and mesh dependency issues on the final topology. We remark that

checkerboard, for example, can be circumvented in usual discretization by us-

ing higher-order elements, and in unstructured polyhedral meshes, the checker-

boarding is naturally eliminated. Further, we are interested in obtaining high

fidelity topologies, that approximates analytical solutions, without the intent

of obtaining mesh independent results. Our scheme does not need additional

application of regularization schemes nor restriction methods. With the ap-

plication of a filtering scheme we could employ a length scale constraint, for

example, if we wish to obtain mesh-independent results.

Restriction methods imposes bounds to the maximum allowed oscillation

of ρ, circumventing the problem of rapid alternation of material and void, a
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characteristic of the checkerboard pattern. An example of a restriction methods

is perimeter control, which was proved to lead to existence of solution of

previously ill-posed problem [4].

Filters prevent the creation of checkerboards and alleviates mesh-

dependency issues. They are categorized in two major groups: density fil-

ters [15] and sensitivity filter [83]. Sensitivity filters are applied to the design

sensitivities rather than the design variables themselves. In sensitivity filters,

the design sensitivities are modified at each iteration of the optimization, mak-

ing the design sensitivity of a given element depend on a weighted average over

the element and some neighbors.

The basic concept of density filter is to modify the density value of an

element based on the densities of elements in a localized neighborhood [15].

The filter relies on the following principle: it gets the centroid of every element

and apply a sphere of radius set by the user on element i. Then, the density

of element i is determined by a combination of its own density and density

of the collection of elements that lie in the sphere of influence of element i.

Usually, the distance between each of these elements and element i is used as

a weighting factor on how the density of element i is calculated.

The sensitivity is one of the quantities that usually goes through filtering,

as a way to ensure mesh-independent designs. The sensitivity filter follows the

same idea of a weighted value as density filters. The filter may be defined as

∂̂c

∂ρk
=

1

ρk
∑N

i=1 Ĥi

N∑
i=1

Ĥiρi
∂c

∂ρi
, (2.30)

where a weighting factor Ĥi is written as:

Ĥi = rmin − dist(k, i), (2.31)

where rmin refers to radius of the filter sphere and dist(k, i) is the distance

between the point k and center of filter sphere i.

The filter radius is usually independent of element size, thus solving the

issue related to mesh-dependency. Additionally, as checkerboard is actually a

series of “thin members” they are also circumvented with the application of a

filter.

Well posed topology optimization formulation can be achieved by several

ways. Checkerboards may be circumvented with the use of higher-order finite

elements, filters or alternative discretizations. Mesh dependency issues are

addressed with restrictions methods, such as perimeter control, local gradients

constraints and also filters. Further, convergence to local minima is alleviated

with continuation on the penalty parameter p of the SIMP model. The reader
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is referred to [84] for a review on regularization and restriction methods.

2.7
Discretization Choice

The discretization of a given domain can be achieved in several ways,

using a handful of different types of finite elements. An inappropriate choice

of finite element discretization can lead do non-optimal results. As mentioned

before, the appearance of numerical instabilities is attributed to poor modeling

of the response field.

The appearance of the so-called checkerboard patterns is due to the ar-

tificially high stiffness of first order quad/brick and/or triangular/tetrahedral

elements [28]. The alternating solid-void patterns is favored in compliance min-

imization and compliant mechanism problems. As discussed, the most common

approach to avoid such pattern is to apply a filtering technique [15,45,95]. Al-

though the application of regularization schemes, such as filtering, is successful

in suppressing these instabilities, they often involve heuristic parameters that

can augment the optimization problem. It has also been demonstrated that

using nonconforming two-dimensional [51] or three-dimensional [52] elements

alleviates the appearance of such undesired patterns.

The use of uniform hexagonal mesh (honeycomb-like) with Wachspress

shape functions have been investigated [97]. The shape of the mesh resulted

in non-biased topologies. In fact, several works points in the direction of

arbitrary polygonal elements for topology optimization [53, 90, 98]. Further,

polygonal/polyhedral discretizations impose less restrictions on the orientation

of structural members, leading to topologies less mesh-biased when compared

to usual structured discretizations (quads/bricks, for example).

In this work, three-dimensional arbitrary polyhedrons are used to dis-

cretize the design domain.

2.7.1
A Discussion on Interpolants

In two-dimensional arbitrary polygonal elements, the interpolation space

can be constructed using several types of interpolants, such as Wachspress

basis functions [97], Laplace (natural neighbor) shape functions [90,91], mean

value coordinates, among others. Some of these interpolants present extension

to three-dimensional space.

Recently, mimetic finite-difference schemes were developed within a vari-

ational framework. This approach, called Virtual Element Method (VEM) does

not require explicit construction and evaluation of basis functions, representing
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an advance and greater flexibility over nodal-based finite elements in polygonal-

based Galerkin methods.

The VEM ultimately presents an efficient generalized barycentric

coordinate-based Galerkin method on two- and three-dimensional polytope-

based grids. The stiffness matrix is decomposed in two terms by means of a

projection operator: a consistent matrix (known) and a stability matrix (com-

puted by numerical quadrature with generalized barycentric coordinates). The

use of three-dimensional polytopes elements for topology optimization has been

investigated by Gain [35] in the context of virtual element method and mimetic

finite difference methods. The author proposed a numerical approach in which

the polytopes can be treated as the displacement elements as well. VEM for-

mulation does not make use of interpolants functions, and for that reason

there’s no explicit shape function evaluation. The author was able to achieve

mesh-independent solutions on arbitrary polyhedral meshes.

Let us give a brief introduction to generalized barycentric coordinates

on polytopes. Let Ωe ∈ Rd be an arbitrary polytope (polyhedron in R3),

with vertices x1, . . . ,xn. Given weight functions ωa(x) : Ωe → R, the functions

φa(x) : Ωe → R, a = 1, . . . , n, are called generalized barycentric coordinates

with respect to Ωe if they form a partition of unity:

φa(x) =
ωa(x)∑n
b=1 ωb(x)

,
n∑
a=1

φa(x) = 1, (2.32)

and satisfy the Kronecker delta property:

φa(xb) = δab, (2.33)

where any point x that lies inside Ωe is an affine combination of vertices:

n∑
a=1

φa(x)xa = x. (2.34)

The barycentric coordinates are also non-negative, φa(x) ≥ 0.

The generalized barycentric coordinates is a synonym of shape functions in

finite element methods. Due to properties shown above, these coordinates can

be used to construct trial and test approximations in Galerkin methods. For

example, for a scalar function u(x), the interpolant uhe : Ωe → R is written as

uhe (x) =
n∑
a=1

φa(x)ua, (2.35)

where due to the Kronecker delta property, ua can be interpreted as the nodal

value of the interpolant.

Although construction of rational shape functions started in 1975 with
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Wachspress [103], applications of finite elements on polygons and polyhedrons

are of more recent origin. There has been great effort to further the develop-

ment of polyhedral finite elements methods over the past decade using gener-

alized barycentric coordinates. However, accuracy and efficient numerical inte-

gration is a relevant issue in these methods. Non-polynomial shape functions

are used in polyhedral FEM, affecting its numerical accuracy.

Several different barycentric coordinates have been developed for poly-

topes. For polygons (R2), Wachspress coordinates [103], mean value coordi-

nates [32], harmonic and maximum-entropy coordinates [62], generalized three-

point coordinates [33], among others are a few examples. In two dimensions,

barycentric coordinates are well stablished and have demonstrate to perform

very well for a wide range of applications. For a polyhedron (R3), though, only

a few construction of generalized barycentric coordinates exist [63]. Wachspress

generalization to R3 [30, 104], extensions to mean value coordinates [34] and

metric coordinates [58] had also been proposed. Wicke et al [105] used three-

dimensional mean value coordinates as shape functions on convex polyhedra.

However, mean value coordinates (as well as Wachspress) are only defined on

simplicial polyhedra (i.e., convex elements with triangulated faces), limiting

severely its application in arbitrary polyhedra. In a related work [64], har-

monic basis function were investigated, however, closed form expressions for

harmonic basis functions for general elements have to be computed numer-

ically, resulting in subproblems. Recently, harmonic basis function was also

investigated by [14].

A combination of polygonal/polyhedral FEM and VEM have been re-

cently employed in the solution of second-order elliptic problems on polytope

discretizations [63], presenting superior performance.

Moreover, currently available polyhedral interpolants are subject to re-

striction on the topology of admissible elements (such as convexity) and can be

sensitive to geometric degeneracies [35]. As a result, in this work, the displace-

ment numerical solution of the elasticity problem, performed in each topology

optimization loop, is not carried out using the polyhedral FEM, nor it is the

intent to dive into the virtual element method. We developed a mapping-based

algorithm in which, although the topology is updated only on polyhedrons, it

uses tetrahedral elements to carry out displacement computations.

2.8
Concluding Remarks

In this Chapter we have presented the classical topology optimization

formulation for compliance minimization problems. Quick reviews of density-
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based and equation-driven methods were discussed, as well as discussions on

regularizations and restriction schemes.

Our approach focus on the use of unstructured polyhedral meshes for

the design variables (and density). Polyhedron offers several advantages for

topology optimization, such as provide topologies free of numerical instabilities,

without the need of imposing restriction constraints, for example. This amounts

to the elimination of rapid alternating solid-void elements and such numerical

instabilities. The sensitivity does not need to be modified before use in the

optimizer.

Further, we reviewed uses of interpolation functions in arbitrary polyhe-

dra and issues associated with their use. In this work we will perform FEA

by means of tetrahedral elements only, derived from the decomposition of the

polyhedra. These aspects are covered in the next Chapter.
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3
Embedding of Elements

Usually, in topology optimization problems, every single finite element

in the domain is a potential void or structural member. The same domain

discretization used in finite element analysis is used in the material distribution

(i.e., topology) as well. This approach is usually called “element-based”.

Both displacement and the design variable fields are closely related, as

they share the same discretization, i.e., a given element is linked to both fields.

This implies that one field cannot be further refined without the other field

being refined as well.

This work proposes the use of a two-level mesh representation, involving

elements associated with displacement analysis and topology optimization

elements associated with the design variables. Here, we call this approach

embedding of elements, and the modified element containing optimization and

displacement informations, a super-element. From here onwards, we shall call

displacement elements the elements associated with the displacement mesh,

used to perform FEA, design elements the elements associated with design

variables and density elements the elements associated with the density mesh.

This chapter aims in detailing the embedding concept, its motivation,

capabilities and how one discretization is linked to the other.

3.1
Motivation

Achieving an optimal topology through an element-based or nodal-based

approach often requires further application of regularization methods such as

a filtering scheme [11]. In existing element-based methods, each displacement

element with uniform density is represented by a single design variable. In

comparison, the design variables of nodal-based approaches are the nodal

densities [45]. The element densities are then obtained from the nodal values

using projection schemes.

We naturally think in expanding this concept by imposing multiples

design variables into a single finite element or vice-versa. This amounts to

the definition of two or more different discretizations. However, to avoid the
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creation of several new nodal points, one can think as one of the discretization

being a sub-discretization of a coarser mesh, containing a few common nodal

points.

Constructing a finite element with multiple design variables has been

studied in the topology optimization literature. Nguyen et al. [67] proposed

a multi-resolution topology optimization scheme (MTOP), in which three dis-

tinct discretizations are employed: a coarse displacement mesh to perform finite

element analysis, a finer design variable mesh to perform the optimization and

a density mesh to represent material distribution. In usual MTOP applica-

tion, the design variable and density mesh shares the same discretization and

they are a sub-discretization of the coarse displacement mesh (see Fig. 3.1). In

contrast, the MTOP framework can also deal with super-elements, in which a

density mesh is nested inside a design variable mesh.

528 Nguyen et al.

a b c

Displacement   Density  

Fig. 1 Q4/U elements: a Displacement mesh, b Superposed meshes, c Density mesh

elements. However, the design variable mesh and density
mesh do not necessarily coincide. Design variables do not
have physical meaning on their own. The design variable
concept in this study is similar to the nodal design variable
in the study by Guest et al. (2004). However, in their study,
the design variables are associated with nodes of the finite
element mesh, while in the MTOP scheme, the design vari-
able mesh can be different from the finite element mesh.
In our proposed scheme, the element densities are com-
puted from the design variables by projection functions.
The topology optimization problem definition in (2) is then
rewritten accordingly:

min
d

C (ρ, u) = fTu

s.t. : ρ = f (d)

K (ρ) u = f

V (ρ) =
∫

"
ρdV ≤ Vs

(9)

where d is the vector of design variables and f(.) is the
projection function.

To obtain high resolution design, we employ a finer
density mesh than the displacement mesh so that each dis-
placement element consists of a number of density elements
(sub-elements). Within each density element, the material
density is assumed to be uniform. Furthermore, a scheme to
integrate the stiffness matrix, in which the displacement ele-
ment consists of a number of different density elements, is
introduced. For example, Fig. 2a shows a Q4 displacement
element, Fig. 2b presents the multiple meshes, and Fig. 2c
shows the density mesh with 25 density elements (also
25 design variables) per Q4 displacement. In the MTOP
approach, we denote this element as Q4/n25 where “n25”
indicates that the number of density elements “n” per Q4 is
25. The stiffness matrix is computed by evaluation of the
stiffness integrand at the 25 integration points which are the
centers of 25 density elements. The corresponding weight
of the integrand is the area of the density element. The

Displacement  Density   Design variable 

a b c

Fig. 2 MTOP Q4/n25 element: a Displacement mesh, b Superposed meshes, c Design variable mesh

Figure 3.1: Multiresolution topology optimization scheme [67].

This work investigates the concept of super-element: several displacement

elements embedded into a single design element. In our approach, differently

from a simple MTOP expansion, we study the case where the element that

carries the design variable is a polyhedron. The tetrahedrons are obtained

by the embedding of elements approach, which consists in triangulating the

polyhedron and generating a tetrahedral sub-discretization.

Early work on embedding displacement elements yielded good re-

sults [70], with the checkerboard phenomena being alleviated and higher res-

olution topologies being obtained in 2D as well as 3D (see Fig. 3.2). Other

important motivation to embed tetrahedra into polyhedra comes from the is-

sues associated with the direct use of polyhedra elements in FEA. As previously

discussed in section 2.7.1, the early stage of development of three-dimensional

shape functions for arbitrary polyhedron is still an issue for reliable and accu-

rate use in finite element analysis.

The use of polyhedra meshes for structural topology optimization is

promising in achieving pathology-free topologies [36, 98, 100]. This work aims

in expanding the concept of embedding of elements to arbitrary polyhedra

DBD
PUC-Rio - Certificação Digital Nº 1321769/CB



Chapter 3. Embedding of Elements 48

MOTIVATION 

T3/U 

T6/U 

T3/SE 

Paulino G. H., Pereira A., Talischi C., and Menezes I.F.M., Embedding of Superelements for Three-Dimensional Topology 
Optimization. Proceedings of Iberian Latin American Congress on Computational Methods in Engineering, 2008. 

Figure 3.2: Higher resolution topologies obtained using embedding technique
on structured meshes [70]. Triangular elements are shown.

meshes. We focus on a complete elimination of one-node or edge connections

(“hinges”), inherently common in discretizations using brick elements. Further,

finite element analysis can be easily carried out on linear tetrahedron elements,

derived from an embedding process, and the separation of analysis and opti-

mization variables is promising for achieving high fidelity solutions.

3.2
The Embedding Approach

Let’s first begin to describe the embedding procedure by defining three

different meshes. Here, the concepts of finite element mesh, design variable

mesh and density mesh are distinct. We use the finite element mesh to perform

the displacement analysis, through FEA, the design variable mesh to perform

optimization and the final topology is updated in the density mesh.

(a) (b) (c)

Figure 3.3: Two-level mesh representation. (a) Displacement variables; (b) de-
sign variables; (c) both variables superimposed: super-element mesh. Displace-
ment nodes represented by spheres (red ones are from the original mesh; grey
ones are the created nodes for triangulation), and design variables represented
by small orange-outlined cubes.
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The design variable mesh is composed of arbitrary polyhedron elements,

originated from Voronoi diagrams. In order to carry out finite element compu-

tation, a tetrahedral mesh is nested inside the polyhedral mesh. A design do-

main is then represented by two distinct, but coupled meshes (Fig. 3.3 and 3.4).

The embedding approach consist in decomposing a polyhedron into tetra-

hedrons. By using the element and faces centroids as new nodes, new tetra-

hedrons are defined by triangulation. Algorithm 3.1 presents the embedding

technique in pseudo-code format.

Algorithm 3.1 The embedding of elements algorithm

1: procedure Embedding(NElem, nodes, connectivity)
2: for all elements in domain do
3: determine element centroid
4: create new node, ec
5: for all element’s faces do
6: count number of nodes
7: if number of nodes > 3 then
8: determine face centroid
9: create new node, fc

10: for all face’s nodes do
11: get node and its neighbor: ni and ni+1

12: new tetrahedron( ec, fc, ni, ni+1 )
13: move to next node
14: end for
15: else
16: new tetrahedron( ec, 3 face’s node )
17: end if
18: end for
19: end for
20: end procedure

Following the algorithm, we note that the polytope’s centroid node is

common to every tetrahedra derived from that polytope. The location of the

centroid is also the location of the design variable on the polyhedral mesh.

Figure 3.4 also illustrates the embedding of elements approach.

In the following sections, each field used in the embedding approach is

discussed in detail.

3.3
Displacement Field

As previously discussed, the displacement mesh is used to carry out finite

element analysis. The resulting displacement field is used to compute gradients

and sensitivity information, which are then used to update the design variables.
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: The embedding process on a simple mesh: (a) Exploded view of a
beam; (b) Highlighted polyhedrons; (c) An isolated polyhedron; (d) New nodes
are created in every polyhedron faces and tetrahedrons are defined by the
previously described algorithm; (e) A n-vertex face generates n tetrahedrons;
(f) Exploded view of a single polyhedral divided into tetrahedrons. This
element in particular yielded 66 tetrahedrons.

The displacement mesh is obtained through the embedding algorithm

and is composed of tetrahedrons only, with four nodes each (i.e., a linear

tetrahedron, with 3 DOFs per node).

v1

v2

v3

v4

x

y

z
v31

v21

v32

v41

v42

v43

Figure 3.5: Tetrahedron nomenclature.

Figure 3.5 shows a typical four-node tetrahedron. Its geometry is fully

defined by the position of the nodes vi = (xi, yi, zi) and faces’ incidence. Then,
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we can readily obtained its volume by

V =

∫
dx dy dz =

1

6

∣∣∣∣∣∣∣∣∣∣∣

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

∣∣∣∣∣∣∣∣∣∣∣
.

Defining

a1 =

∣∣∣∣∣∣∣∣
x2 y2 z2

x3 y3 z3

x4 y4 z4

∣∣∣∣∣∣∣∣ ; b1 = −

∣∣∣∣∣∣∣∣
1 y2 z2

1 y3 z3

1 y4 z4

∣∣∣∣∣∣∣∣ ;

c1 = −

∣∣∣∣∣∣∣∣
x2 1 z2

x3 1 z3

x4 1 z4

∣∣∣∣∣∣∣∣ ; d1 = −

∣∣∣∣∣∣∣∣
1 y2 1

1 y3 1

1 y4 1

∣∣∣∣∣∣∣∣ ,
with the other constants defined by cyclic interchanging the subscripts in the

order 1, 2, 3 e 4, it is possible to determine the shape function (see Eq. (2.13))

of the tetrahedron element:

Ni =
ai + bix+ ciy + diz

6V
, (3.1)

where the subscript i refers to the element number.

It is of interest that the tetrahedron elements are not greatly deformed,

as they directly impacts the stability of the solution of the linear elasticity

problem through iterative solvers. Slivers elements presents a few issues. For

instance, the shape function has the Kronecker delta property in each node,

meaning that its value goes from 1 to 0 in each adjacent node. We may

observe that if the nodal distances are not homogeneously spread, the quantity

∇N may become arbitrarily large1, reflecting directly in the stiffness matrix

through the strain-displacement matrix B. Furthermore, slivers or other highly

distorted elements may present near-zero volume, affecting the shape function

evaluation through the quantity 6V (this quantity is called Jacobian).

These are some of the issues with badly shaped elements that can lead

to numerical problems. A tetrahedron can be considered sufficiently bad if a

single small edge is present. However, a tetrahedron product of the embedding

process will contain small edges if and only if the polyhedron contains a small

1That is, Ni decreases from 1 at vi to 0 at vi+1, over a very short distance, thus leading
to a large ∇N.
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edge. This issue is directly linked to mesh generation and will be discussed in

details in Chapter 4.

3.4
Density Field

The density field is usually determined from the design variable field.

Although the design variable does not have a physical meaning on its own, it

can be though of having a density physical meaning. The difference from design

variable to density is that the density is a function of the design variable field

and a regularization scheme.

As previously discussed, regularization methods are used in order to

create a density distribution that alleviates problems associated with numerical

issues that would exist if the density was obtained from a 1:1 mapping from

the design variable2. As a result, it is common in the topology optimization

community to use separate fields to deal with design variables and density.

With that in mind, we define our density field over the polyhedral

elements. Within each density element, the material density is constant.

This amounts to the final topology, i.e., ρ = 1, being a subset of the

initial polyhedral mesh.

Our embedding algorithm does not make use of an explicit filter mecha-

nism. It uses the embedding to create polytope-based final topologies3. There-

fore, our density field is numerically identical to the design variable field. We

have preferred to keep these as separate fields to make possible further exten-

sion of the framework.

As mentioned throughout this work, the density field composed of

polytopes elements for structural topology optimization is advantageous in

several ways.

3.5
“Super-elements”

As previously mentioned, the finite element mesh is nested inside the

design variable mesh. In a geometrical sense, the displacement mesh can be

though as a subset of the design variable mesh.

The super-element concept accumulates information from both meshes.

A super-element can be though of a single polyhedron, however, containing in-

2The 1:1 mapping refers to a direct copy of the design field to the density field. That is,
an element density would not be a function of nearby elements and would carry a density
value that is equal to its design value.

3Although the embedding can be interpreted, in some sense, as a filter. We will get back
to this aspect later on.
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formation from both discretization, or, in other words, a group of displacement

elements that corresponds to a design element.

For the sake of illustration, consider the polyhedral mesh from Fig. 3.4(a).

The superposition of polyhedra and tetrahedra mesh constructs the super-

element mesh (see Fig. 3.6).

(a) (b)

Figure 3.6: Different meshes. (a) The design variable mesh; (b) the finite
element mesh, associated with displacement elements. With the superposition
of these meshes, a super-element mesh is obtained. Polyhedrons individually
colored for the sake of illustration.

We note that in a computational scheme, a super-element is never explic-

itly created or defined. A mapping between optimization variables/routines to

and from FEA variables is responsible for the exchange of informations.

3.6
Mapping Between Fields

In structural optimization, the displacement field is used in the optimiza-

tion process. In compliance minimization problems, the displacement field is

necessary in order to evaluate the objective function and compute the gradi-

ents. Based on these informations, the design is updated.

Therefore, the resulting topology optimization formulation involves two

separate fields: displacement and design. The proposed approach naturally

decouples the finite element field and the optimization field (which shares the

same discretization with density). Optimization computations are carried out

on polyhedrons, whereas FEA is carried out on tetrahedrons.

Now that both fields have been defined, we introduce the idea of a

mapping framework. Information from one mesh is mapped into the other (and

vice-versa). We call the embedding of elements a mapping-based algorithm, as

one discretization is consistently mapped into the other.

Let D be a displacement mesh, f be a displacement element and d be a

design element. If f is a subset of d, then:
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Kf = (ρd)
p K0

f , (3.2)

where K0
e =

∫
Ωe

BTC0B dV is the stiffness matrix for the reference element

and p is the penalty parameter from the SIMP model. Expanding Eq. (3.2),

the stiffness matrix for an element in the finite element mesh, considering the

current value of density (or, in this case, design variable) can now be written

as:
K(e)
e =

∫
Ωe

BTCB dV =

∫
Ωe

[ρ(x)]p BTC0B dV. (3.3)

Note that from the equation above, the polyhedron element passes the

design information to its derived tetrahedrons. The group of finite elements

that lie in the support of density element d can be defined as Sd (see Fig. 3.7):

Sd = {f : Ωf ⊆ Ωd}. (3.4)

This definition is illustrated in Fig. 3.7.

Figure 3.7: Element association between meshes: d on the left and Sd on the
right.

In order to detail how computations are carried out using two meshes,

consider, for instance, the sensitivity of the compliance (Eq. 2.24). It can be

evaluated for every element in Sd as follows:

∂c

∂ρd
= −

∑
f∈Sd

[
UT
f

∂Kf

∂ρd
Uf

]
= −

∑
f∈Sd

[
p (ρd)

p−1 UT
f K0

fUf

]
. (3.5)

We point out that the task of determining set of elements {Sd}Nm=1 for

a N -polytope mesh is purely geometric. In fact, this association is performed

during the mesh generation phase, where each polyhedron is decomposed into

several tetrahedrons.

Let y and z be column vectors of tetrahedrons and polyhedron elements,

respectively. A mapping between fields is given by the following relationship:

y = Pz, (3.6)

where P is a mapping matrix, consisting of 0’s and 1’s. The binary P matrix

indicates which tetrahedrons are part of a given polyhedron, that is, the

collection of elements Si is given by column i.
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Therefore, recalling Eq. (3.5), we can express ∂c/∂ρf by mapping the

polytopes densities into the tetrahedrons by:

ρf = Pρd, (3.7)

where ρ represent the density vector for each f and d elements.

For the sake of illustration, consider a two-dimensional case where each

design element contains 8 displacement elements (Fig. 3.8). Let d denote the

design element 9.

MAPPING THE DISCRETIZATIONS 

82 83 

58 59 

81 84 

57 60 
​S↓9 ={57,58,59,60,81,82,83,84} 

9 

C=[7⋱&⋮&⋱@0&1&0@0&1&0@0&1&0@0&1&0@⋱&⋮&⋱@0&1&0@0&1&0@0&1&0@0&1&0@⋱&⋮&⋱ ] 

:=9 

;=57 
;=58 
;=59 
;=60 

;=81 
;=82 
;=83 
;=84 

EMI2013 

Figure 3.8: Mapping between elements [71].

The collection of finite elements that lies in its support is given by

S9 = {57, 58, 59, 60, 81, 82, 83, 84}. Therefore, its mapping matrix can be

partially expressed as:

j = 9
↓

P =



. . .
...

...
...

...

0 1 0

0 1 0

0 1 0

0 1 0
...

...
...

0 1 0

0 1 0

0 1 0

0 1 0

...
...

...
...

. . .



← i = 57

← i = 58

← i = 59

← i = 60

← i = 81

← i = 82

← i = 83

← i = 84

.
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The mapping P may also be used to retrieve information from tetrahe-

dron back to its polyhedron. This is achieved simply by means of PT (Fig. 3.9).

MAPPING THE DISCRETIZATIONS 

Finite element mesh 
(associated to 6) 

Design variable mesh 
(associated to #) 

<=CF 

EMI2013 

(a)

MAPPING THE DISCRETIZATIONS 

Finite element mesh 
(associated to 6) 

Design variable mesh 
(associated to #) 

​G=%/=# = ​C↑) ​=?/=<  

EMI2013 

(b)

Figure 3.9: Map between the two discretizations done by means of (a) P and
(b) PT .

Furthermore, we point out that features such as symmetry may also

be imposed by means of a linear mapping. Let’s denote the aforementioned

embedding mapping matrix P as PE, denoting embedding. A new mapping

matrix PS may be defined in which elements are parametrized with respect to

a symmetry line. Density filters may also be used the same way. Since these

are linear filters, to apply them simultaneously, we may simply set P as

P = P1 P2 . . .PNf
, (3.8)

where Nf is the number of filters. For instance, to apply the embedding scheme,

symmetry and density filters, we may set P = PEPSPD, where E, S and D

refers to embedding, symmetry and density, respectively.

The embedding itself can be though of being essentially a filtering scheme.

It enforces that solid and void elements stay grouped as polyhedrons. From

the design variable mesh, the mapping of elements acts as a filtering, ensuring

that every finite element sharing a node with the same physical position as the

design node will have the same design value. We recall that the embedding,

acting like a filter, is applied on the design variable mesh, and the subsequent

lack of filtering amounts to a numerically identical density mesh.
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3.7
Concluding Remarks

Concluding the chapter on the embedding technique, we outline its ad-

vantage over commonly used elements and/or topology optimization formula-

tion:

– The use of polyhedron elements naturally alleviates the problem of mesh-

biased sub-optimal solutions;

– The embedding framework connects with polygonal and polyhedral dis-

cretizations of mimetic-inspired methods [10,35];

– The mapping used to assign density values to tetrahedrons can be

though as a filtering scheme. As a linear filter, it may be combined with

regularizations filters or a symmetry filter. The framework does allow easy

extensions;

– The modularity of the code and separation of computational domains

allow the framework to be used in other areas of topology optimization.

The proposed embedding scheme is general and expandable.
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4
Mesh Generation

Meshing a given geometry means determining a discrete representation of

some spatial domain Ω, characterized by node points and element connectivity.

Meshing is needed in several areas of computational mechanics. Some typical

applications includes numerical solution of partial differential equations (FEM,

FVM, BEM), computer graphics and visualization, among others.

Discretization can be in Cartesian domain, using quadtree/octree or fully

unstructured grids. In this work we focus our attention on fully unstructured

polyhedral grids.

On a tetrahedral mesh, interpolation accuracy, discretization errors1 and

matrix conditioning for finite element applications are critically dependent on a

high quality mesh consisting only of well-shaped, non-degenerate elements [81].

The performance and numerical accuracy of solving a PDE depend on the

condition number of the resulting linear system of equations, which is heavily

influenced by the shape of the finite elements.

The objective of this chapter is to describe the meshing algorithm, issues

regarding elements shape and ways to circumvent them. Moreover, the meshes

quality is investigated by determining the condition number of the stiffness

matrix associated to two different types of problem.

The foundation of the developed algorithm is the PolyMesher code, pro-

posed by Talischi et al. [99,101]. Its principles relies on an implicit description

of the domain and centroidal Voronoi diagram are used for the discretization.

Here we have further extended the code and deal with mesh optimization pro-

cedures that effectively penalizes small edges, leading to better-shaped tetra-

hedrons.

First, let us define some commonly used terms in three-dimensional

geometry:

– Vertices: x, y, z location (also called Node);

1Interpolation error is divided into two types (for most applications, including FEA):
the difference between the interpolated function and the true function, and the difference
between the gradient of the interpolated function and the gradient of the true function.
Discretization error is the difference between the approximation computed by the FEM and
the true solution.
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– Edges: Bounded by two vertices;

– Surfaces: closed set of edges;

– Volume: closed set of surfaces (also called Element).

For an accurate capture of the design response of several problems in

topology optimization, the use of unstructured meshes may be required [98].

Based on Voronoi diagrams, three-dimensional polyhedral meshing turns out

to be naturally unstructured.

A mesh is defined as a discrete representation Ωh of some spatial domain

Ω. It can be completely defined in terms of (unique) vertices and some sort of

element incidence information (triangulation).

4.1
Implicit Representation

The domain is represented implicitly by the signed distance function [73],

d(x), that can take the following values

d(x)


<0 , if x ∈ Ω

=0 , if x ∈ ∂Ω

>0 , if x /∈ Ω,

(4.1)

where ∂Ω denotes the boundary of Ω.

The signed distance function gives norm-2 of the shortest distance from a

point x in the space to the boundary, and its sign is determined by the location

of x with respect to Ω. That is, if x lies inside the domain Ω, then the signed

distance function would be minus the distance of x to the boundary.

Using this representation, we can easily define the domain Ω and its

boundary ∂Ω as:

Ω =
{
x ∈ R3 | d(x) ≤ 0

}
∂Ω =

{
x ∈ R3 | d(x) = 0

}
.

(4.2)

The boundary is represented by the zero level set of the signed distance

function on an implicit representation (see Fig. 4.1).

This representation allows us to easily construct the distance function

of simple geometries. For example, for a sphere Ω ∈ R3, with center P with

radius r, its distance function can be given as:

d(x) = ‖x−P‖2 − r. (4.3)

Complex domain shapes can be produced by combination of these simple

forms. For instance, consider the regions ΩA and ΩB, with corresponding signed

distance functions dA and dB respectively. They can be combined as follows:
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Union dΩA∪ΩB
(x) = min (dΩA

(x), dΩB
(x));

Intersection dΩA∩ΩB
(x) = max (dΩA

(x), dΩB
(x));

Difference dΩA\ΩB
(x) = max (dΩA

(x),−dΩB
(x));

Complementation dR3\ΩA
(x) = −dΩA

(x).

(4.4)

Some of the advantages of using implicit representation can be listed [73],

such as:

– Easy to implement: set operators, blending, etc;

– Natural extension to higher dimensions;

– Level sets methods for evolving interfaces.

Geometry Representations

Explicit Geometry

• Parameterized boundaries

(x, y) = (x(s), y(s))

Implicit Geometry

• Boundaries given by zero level set

φ(x, y) = 0

φ(x, y) < 0

φ(x, y) > 0

(a)

Geometry Representations

Explicit Geometry

• Parameterized boundaries

(x, y) = (x(s), y(s))

Implicit Geometry

• Boundaries given by zero level set

φ(x, y) = 0

φ(x, y) < 0

φ(x, y) > 0

(b)

Figure 4.1: Geometric representation of a domain. (a) Explicit representation,
with parametrized boundaries. (b) Implicit representation, with level sets of
the distance function shown. The boundary corresponds to the zero level set.
Figure from [72].

4.2
Delaunay Triangulation and Voronoi Tesselations

The unstructured polytope grid is achieved by the initial random place-

ment of points, called seeds in the desired design domain. Then, Delaunay

triangulation is performed and is followed by the construction of Voronoi cells

around each seed.

Definition The Delaunay tessellation DT(S) is obtained by connecting with

a line segment any two points p, q of S for which a circle C exists that passes

through p and q and does not contain any other seed of S in its interior or

boundary. The edges of DT(S) are called Delaunay edges [46].

The Delaunay triangulation follows the empty circle condition (sphere

in R3): a given tetrahedron pqrs, for example, appears in the Delaunay

triangulation DT(S) if and only if its circumsphere encloses no other points of

S. The Delaunay triangulation is the dual of the Voronoi tessellation.
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Let Ω ⊆ R3 be an open set. The set {Vi}ki=1 is called a tessellation of Ω if

Vi∩Vj = ∅ for i 6= j and ∪ki=1V̄i = Ω̄. Given a set of k points {zi}ki=1 belonging

to Ω̄, the Voronoi region (also called cell) V̂i corresponding to the point zi is

defined by:

V̂i = {x ∈ Ω | |x− zi|2 < |x− zj|2, j = 1, . . . , k, j 6= i} , (4.5)

where x = (x, y, z) is any point in the domain and | · |2 denotes the Euclidean

distance in R3. The set {V̂i}ki=1 is a Voronoi tessellation (or diagram) of Ω, and

each V̂i is a Voronoi cell. The k points z are called generators or seeds. These

cells are inherently polytopes.

Figure 4.2 shows a set of seeds, its Delaunay triangulation and the

corresponding Voronoi diagram (2D for simplicity; trivial extension to 3D).

Voronoi 
diagrams

Points

Delaunay 
triangulation

Figure 4.2: Delaunay triangulation and corresponding Voronoi diagram. Note
the empty circle property: a circumcircle on Delaunay triangulation does not
englobe any other point z.

4.2.1
Centroidal Voronoi Tesselations and Lloyd’s Algorithm

The Voronoi tessellation (and Delaunay triangulation) that arises from

initial random or quasi-random placement of seeds may not be suitable for

further embedding and finite element analysis. We may use the concept of

Voronoi diagrams mass centroid to create higher quality regions (see Fig. 4.3).

Taking a density function ρ defined over a given region W ⊆ R3, the

centroid of W is defined as follows:

z∗ =

∫
W

yρ(y) dy∫
W
ρ(y) dy

. (4.6)

For a region with constant density ρ, the centroid is also the center of mass.
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Given a set of k seeds zi, their associated Voronoi regions are V̂i,

i = 1, . . . , k. Further, given the regions V̂i, we can compute their centroids

z∗i . A Centroidal Voronoi Tessellation (CVT) is one that satisfy

zi = z∗i , i = 1, . . . , k. (4.7)

In other words, the generators are the mass centroids of the corresponding

Voronoi cell themselves. Finding the zi location that satisfies Eq. (4.7) means

finding the generators of a CVT.

There are several ways to achieve a CVT available in the literature.

Here, we investigate a CVT achieved by a popular technique called Lloyd’s

method [61]. It is an iterative process that places the next-iteration generators

on the mass centroid of the current-iteration cell’s mass centroid. The algorithm

iterates until a certain tolerance between the generators and centroids distance

is met. Fig. 4.3(b) and (d) were created using Lloyd’s algorithm.

(a) (b)

(c) (d)

Figure 4.3: Initial seeds distributions and their CVTs. (a) 30 seeds, initial
random distribution, (b) 30 seeds, CVT (after 40 Lloyd’s iterations); (c)
120 seeds, initial random distribution, (d) 120 seeds, CVT (after 40 Lloyd’s
iterations).

Much of the CVTs obtained garantee convex elements and good angles

(that is, no near-zero or near–180° angles) but some undesired features are not

explicitly penalized, such as small faces and small edges (see Fig. 4.4). Here we

define a small quantity as less than 10% of the average value of that quantity.

In other words, even a good-looking CVT mesh may contain a number of short
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Voronoi edges in 2D or small facets and short edges in 3D [82]. As a result, we

cannot rely solely on Lloyd’s algorithm for obtaining high quality meshes.

(a)
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(b)

Figure 4.4: Two-dimensional CVT mesh, 50 × 50 domain. (a) Emphasized
elements contains at least one edge that is smaller than 25% of the average
edge length; (b) Edge length statistics: µe.l. = 1.66, σ = 0.50.

4.3
Mesh Optimization Procedure

Let us separate the issues associated with boundary elements and with

interior elements. Initially, let’s review boundary-related issues.

PolyMesher is a 2D polygonal meshing algorithm based on the concept

of Voronoi diagrams and CVT. Its code is publicly available for educational

purposes [99]. It had been recently extended to 3D [101]. In this section we

will investigate issues associated with CVT meshes and ways to prevent them.

In the PolyMesher code, the domain bounds are achieved by reflecting

seeds outside the region of interest, thus creating the desired bounding box.

However, there are some numerical issues in which perfectly straight domain

boundaries are not achieved.

Moreover, in R2, two close Delaunay nodes create small Voronoi edges

(issue shown in Fig. 4.4) that can be trivially collapsed into only one node with

subsequent appropriate nodes reindexing. Domain boundary imperfections

are addressed collapsing nodes. Figure 4.5 illustrates the approach from 2D

PolyMesher code. In 3D we cannot simply collapse nodes since non-planar

faces are likely to appear.

The boundary elements also present issues. Reflections of the seeds near

the boundary are oriented by a gradient that is computed by means of finite

differences. Errors from the finite differences approximation do not create a

perfect reflection, thus yielding slightly irregular boundary and therefore small
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PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab 319

PolyMshr_Rflct The implementation of this func-
tion follows Algorithm 2 in Section 4.2. The gradient of
the distance function is computed by means of numerical
differentiation:

n := ∇d!i (y)

≈ ϵ−1
d

(
d!i (y + (ϵd , 0)) − d!i (y),

d!i (y + (0, ϵd)) − d!i (y)
)

(28)

Here ϵd is a small positive number, set to 10−8 by default on
line 43. We compute the normal vector for the entire point
set at once on lines 46 and 47, where n1 and n2 denote
the first and second components of the normal, respectively.
The logical array index I, computed on line 48, is then
used to identify and reflect the seeds only about the nearby
boundary segments, i.e., those within distance of α. In order
to compute the reflections R_P at once, the point set P is
extended, by repeating its columns, to two matrices of the
same size as n1 and n2 on lines 49 and 50. Once the candi-
date set of reflections R_P of the boundary-adjacent seeds
are obtained (lines 51–52), the two conditions for accepting
the reflections are enforced on line 55 by means of another
logical array index J.

PolyMshr_CntrdPly This function returns the areas
and centroids of the first NElem cells in the mesh. Since the
density is assumed to be constant, we can compute the area
and centroid of each cell using the available formulae for
polygons. The signed area for an ℓ-sided polygon is given by:

A = 1
2

ℓ∑

k=1

(
v[k]

x v[k+1]
y − v[k+1]

x v[k]
y

)
(29)

where (v
[k]
x , v

[k]
y ) is the coordinates of the kth vertex of

the polygon, k = 1, . . . , ℓ. In the above equation, we

are defining (ℓ + 1)th vertex to be the same as the first.
Similarly, The formula for computing the centroid is:

cx = 1
6A

ℓ∑

k=1

(
v[k]

x + v[k+1]
x

)

×
(
v[k]

x v[k+1]
y − v[k+1]

x v[k]
y

)
(30)

cy = 1
6A

ℓ∑

k=1

(
v[k]

y + v[k+1]
y

)

×
(
v[k]

x v[k+1]
y − v[k+1]

x v[k]
y

)
(31)

PolyMshr_ExtrNds The original discretization is
passed to this function through variables Element0 and
Node0. The connectivity of the Voronoi cells that make up
the mesh are stored in the first n arrays of the cell vari-
able Element0 as a result of passing the seeds P in the
first block of the input to Matlab function voronoin on
line 17. However, the vertices of these cells are not nec-
essarily stored in the first block of rows of Node0. The
extraction of the additional nodes requires modification of
both the node list and the connectivity matrix. The func-
tion PolyMshr_ExtrNds first creates a one-dimensional
array, map, containing the indices of the nodes that must
remain in the mesh (the Matlab function unique is used
to remove the appearance of duplicate nodes). The array
cNode, needed for updating the node list and element con-
nectivity matrix, is constructed on lines 69–70. By setting
the entries of cNode that correspond to the nodes that
must be removed to the maximum value in map (which
is necessarily the index of a node that will remain in the
node list) on line 70, we ensure that they are removed
in PolyMshr_RbldLists function (see below for the
description of this function).

PolyMshr_CllpsEdgs This function addresses the
issue of appearance of small edges in the centroidal Voronoi

Fig. 10 Small edges can form
in elements near a curved
boundary since the generating
seeds are not the same distance
from that boundary. The issue
can be addressed by a
post-processing step of
collapsing these edges onto
single nodes

Figure 4.5: Two-dimensional PolyMesher approach dealing with small
edges [99]. Nodal collapsing does not extend to three-dimensions without the
introduction of non-planar faces’ nodes.

edges (2D) and faces (3D). We can address these issues in two ways: first,

for Cartesian domains, the numerical gradient can be corrected to the real

value, since we know beforehand the faces normal vectors; and second, for non-

Cartesian domains, we may rely on the Voro++ library [77]. It is an open source

software library for the computation of Voronoi diagrams. Voro++ provides an

easy-to-use bounding box feature that limits the design domain and consequent

Voronoi diagrams to a specified domain geometry.

Before discussing the interior of the domain, let us investigate what are

the origins of a short Voronoi edge. Consider the Delaunay vertices zi and a

short edge (xi,xj) in a Voronoi cell2. The Voronoi vertices are the circumcen-

ters of the Delaunay triangulation. A short Voronoi edge (xi,xj) corresponds

to two spatially close circumcenters xi and xj. As can be observed in Fig. 4.6,

four almost co-circular Delaunay vertices yields two almost coincident circum-

centers, i.e., a short Voronoi edge.

(a) (b) (c)

Figure 4.6: Origin of a small Voronoi edge. (a) Delaunay triangulation with
two spatially close circumcenters; (b) Corresponding Voronoi digram. Voronoi
vertices are the circumcenters of Delaunay triangles; (c) Overlap of (a) and
(b).

2Note that the Delaunay vertices are essentially the Voronoi cells generators, and thus,
we’re calling it zi.
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Next, let’s focus our attention on the interior of the domain. Here, for

the mesh optimization, we have used an energy minimization formulation. The

energy is a direct measure of the squared distance of the circumcenters and

incenters of Delaunay triangles (tetrahedra in R3). It is based on the two-

dimensional algorithm proposed by Sieger at al. [82] that consists in shifting

the circumcenter as much as possible into the interior of the triangle, that is,

the closest as possible to the incenter. This amounts to minimizing the squared

distance of the incenter and circumcenter.

As the Voronoi diagrams are fully defined by their dual Delaunay

triangulation, the degrees of freedom of the optimization algorithm is the set

{zi}ki=1 of Delaunay vertices (i.e. Voronoi generators). Note that these are the

same degrees of freedom of the computation of a CVT through Lloyd’s method,

thus leading to an elegant implementation of a mixed algorithm.

The energy function is represented by the squared Euclidean distance d2

from a triangle’s circumcenter to its incenter. This can be easily computed by

using Euler’s triangle formula d2 = R (R − 2r), where R, r ∈ R3 are the radii

of the circumsphere and insphere, respectively (also called circumradius and

inradius). Therefore, for every tetrahedron t ∈ V̂ :

E(zi, . . . , zk) =
∑
t∈V̂

Rt (Rt − 2rt) . (4.8)

For a tetrahedron, its circumradius R and inradius r can be computed

using the following equations:

R =

√
Dx2 +Dy2 +Dz2 − 4ac

2|a|
and r =

3V

A1 + A2 + A3 + A4

. (4.9)

The quantities presented in Eqs. 4.9 can be defined by some geometrical

interpretation. Consider the same tetrahedron from the previous chapter

(Fig. 3.5) with vertices vi = (xi, yi, zi), i = 1, . . . , 4. Let Ai denote the area of

the surface opposed to vertex vi and vij the vector going from vj to vi. The

areas and volume can be computed as:

A1 =
1

2
| v32 × v42 |; A2 =

1

2
| v31 × v41 |; (4.10)

A3 =
1

2
| v21 × v41 |; A4 =

1

2
| v21 × v31 |; (4.11)

V =
1

6

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

∣∣∣∣∣∣∣∣∣∣∣
. (4.12)
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Further,

Dx =

∣∣∣∣∣∣∣∣∣∣∣

x2
1 + y2

1 + z2
1 y1 z1 1

x2
2 + y2

2 + z2
2 y2 z2 1

x2
3 + y2

3 + z2
3 y3 z3 1

x2
4 + y2

4 + z2
4 y4 z4 1

∣∣∣∣∣∣∣∣∣∣∣
; Dy =

∣∣∣∣∣∣∣∣∣∣∣

x2
1 + y2

1 + z2
1 x1 z1 1

x2
2 + y2

2 + z2
2 x2 z2 1

x2
3 + y2

3 + z2
3 x3 z3 1

x2
4 + y2

4 + z2
4 x4 z4 1

∣∣∣∣∣∣∣∣∣∣∣
; (4.13)

Dz =

∣∣∣∣∣∣∣∣∣∣∣

x2
1 + y2

1 + z2
1 x1 y1 1

x2
2 + y2

2 + z2
2 x2 y2 1

x2
3 + y2

3 + z2
3 x3 y3 1

x2
4 + y2

4 + z2
4 x4 y4 1

∣∣∣∣∣∣∣∣∣∣∣
; a =

∣∣∣∣∣∣∣∣∣∣∣

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

x4 y4 z4 1

∣∣∣∣∣∣∣∣∣∣∣
; (4.14)

c =

∣∣∣∣∣∣∣∣∣∣∣

x2
1 + y2

1 + z2
1 x1 y1 z1

x2
2 + y2

2 + z2
2 x2 y2 z2

x2
3 + y2

3 + z2
3 x3 y3 z3

x2
4 + y2

4 + z2
4 x4 y4 z4

∣∣∣∣∣∣∣∣∣∣∣
. (4.15)

The simple form of E presented in Eq. (4.8) allows us to evaluate and

minimize the energy in an efficient way. The gradient is computed taking the

partial derivatives of E with respect to all vertices {vi}4
i=1, i.e.:

∂E

∂vi
= 2

∑
t∈V̂

[
(Rt − rt)

∂Rt

∂vi
−Rt

∂rt
∂vi

]
. (4.16)

Let V(0) be a stacked vector of the Delaunay triangulation vertices

{vi}ki=1. In each iteration e, all vertices z are shifted in the direction of the

negative gradient −∇E(V(e)) by a step size h:

V(e+1) ← V(e) − h∇E
(
V(e)

)
. (4.17)

However, before the nodes are indeed shifted, their positions are verified

whether they still lie inside the design domain. Sometimes, when the energy

gradient is too steep, some nodes can get reallocated outside Ω. Line 8 of

Algorithm 4.1 guarantees valid new vertex positions, which turns out to be an

easy task due to the implicit representation.

For the gradient computation carried out in Eq. 4.16, the circumradius

and inradius derivatives can be obtained applying the chain rule on Eq. (4.9):

∂R

∂vi
=

∂R

∂Dx

∂Dx

∂vi
+

∂R

∂Dy

∂Dy

∂vi
+

∂R

∂Dz

∂Dz

∂vi
+
∂R

∂a

∂a

∂vi
+
∂R

∂c

∂c

∂vi
(4.18)

∂r

∂vi
=

∂r

∂V

∂V

∂vi
+

∂r

∂A1

∂A1

∂vi
+

∂r

∂A2

∂A2

∂vi
+

∂r

∂A3

∂A3

∂vi
+

∂r

∂A4

∂A4

∂vi
, (4.19)
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where each derivative can be computed as follows:

∂R

∂Dx
=

1

2 | a |
Dx√

Dx2 +Dy2 +Dz2 − 4ac
;

∂R

∂Dy
=

1

2 | a |
Dy√

Dx2 +Dy2 +Dz2 − 4ac
;

∂R

∂Dz
=

1

2 | a |
Dz√

Dx2 +Dy2 +Dz2 − 4ac
;

∂R

∂a
=
− sign (a)

√
Dx2 +Dy2 +Dz2 − 4ac

2 | a |2
− c

| a |
√
Dx2 +Dy2 +Dz2 − 4ac

;

∂R

∂c
= − a

| a |
1√

Dx2 +Dy2 +Dz2 − 4ac
;

∂r

∂V
=

V

A1 + A2 + A3 + A4

;

And
∂r

∂A1

=
∂r

∂A2

=
∂r

∂A3

=
∂r

∂A4

=
−3V

(A1 + A2 + A3 + A4)2 .

The optimization algorithm described is presented in Algorithm 4.1.

Algorithm 4.1 Mesh Optimization

1: procedure MeshOptimization(CVT Delaunay vertices, minimum step
size ε, maximum iterations MaxIter)

2: Initialize Delaunay vertices vector, V(0)

3: for k = 1, 2, . . . , MaxIter do
4: Compute energy gradient, G = ∇E(V(k))
5: for h = 1, 1/2, 1/4, . . . , ε do
6: if E

(
V(k) − hG

)
< E(V(k)) then

7: if new vertices does not go outside domain then
8: Update vertex positions, V(k+1) = V(k) − hG
9: break

10: end if
11: end if
12: end for
13: if h == ε then
14: break //Convergence achieved

15: end if
16: end for
17: return Delaunay triangulation V(k)

18: end procedure
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4.3.1
Optimization Steps

In this section we quickly illustrate the steps of the mesh optimization

algorithm presented. To show how the algorithm works, we present a very

simple 2D example, where a single Voronoi cell is drawn and only one degree

of freedom is present. The concepts illustrated here are trivially extended to

3D.

First, consider a starting Voronoi cell as result of a single optimization

iteration, i.e., the single Voronoi generator is moved in the direction of the

opposite gradient only once (Figure 4.7).

(a) (b) (c)

(d) (e) (f)

Figure 4.7: Meshing optimization procedure (a) Initial Delaunay triangulation
in a given grid distribution; (b) The corresponding Voronoi cell associated
with the Delaunay triangulation. Note the small edge; (c) The energy gradient
vector and the location of the Voronoi seed of the next iteration; (d) The
Voronoi seed is moved in the direction of the negative energy gradient; shown
is the resulting Delaunay triangulation; (e) Corresponding Voronoi cell, with
more uniform edges lengths; (f) Energy gradient and seed location of the next
iteration. The proximity of two consecutive seed location indicates convergence.
Arrow length represents the gradient vectors norm.

Now, consider the same step performed on the single-cell mesh from

Fig. 4.7. Figure 4.8 shows the incircles (dashed) and circumcircles (continuos)

of two Delaunay triangles that represents a short Voronoi edge. It can be noted

that the resulting L2-norm distance between the circumcenter and incenter of

the Delaunay triangles was minimized. The optimization process consists of

shifting the circumcenter towards the incenter of the triangle/tetrahedra.
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(a) (b)

Figure 4.8: Circumcenters are shifted towards the incenters. Incircles are shown
in dashed line and circumcircles in continuos line. (a) A Voronoi cell containing
a small edge. (b) Distance between incenter and circumcenter minimized,
resulting in a more uniform edge length distribution.

It should be noted twordhat the single-step optimization convergence

in this example was due to the nature of 1-DOF problem. Here, Delaunay

boundary was constrained to a fixed (x, y) location, whereas in real meshes

this constraintment is not imposed.

4.4
Results and Concluding Remarks

The centroidal Voronoi tessellation through Lloyd’s algorithms is nor-

mally used to obtain mesh regularity by removing excessive element distor-

tion. However, using this approach, 2D elements can contain short edges and

3D elements small facets in the resulting Voronoi diagram as shown. Deformed

elements can have a significant impact on the condition number of the stiffness

matrix. It has been shown that a single bad element in the domain can be

sufficient to ruin the numerical condition [81].

We assess the mesh improvement by analyzing the condition number of

stiffness matrix related to a topology optimization problem with embedding

(i.e., a linear elasticity problem solved through finite elements). The condition

number for stiffnesses matrices related to a CVT and an optimized mesh will

be computed and compared.

The condition number is a measure of how output error is influenced by

input error. A problem with high condition number is called ill-conditioned,

whereas a problem with a low condition number is said to be well-conditioned.

The difficulties in solving KU = F numerically are associated with the

condition number of K, specially for iterative solvers.

The condition number is defined as the maximum ratio of the relative

error in the output over the relative error in the input. The relative error

computation depends on the norm used. In Euclidean norm, we can express
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the condition number in terms of its maximum and minimum eigenvalues [42]:

κ(A) =

∣∣∣∣λmax(K)

λmin(K)

∣∣∣∣ . (4.20)

The smallest eigenvalue λmin mainly depends on the smallest element,

the largest eigenvalue λmax may become arbitrarily large even when a single

badly shaped element is present [81].

With the proposed technique, the element size spread is limited and the

elements are quite similar in size. Moreover, small edges are penalized and the

smallest edge in the domain is increased by 9 orders of magnitude.

4.4.1
General Results

First, we present edge statistics of meshes of different sizes (Table 4.1)

and histograms of the corresponding meshes (Fig. 4.9).

Table 4.1: Mesh statistics for the unitary cube domain, Ω = (0, 1)3.

E
le

m
e
n
ts Edges

CVT Optimized

µ σ min max µ σ min max

2k 3.8E−2 1.7E−2 4.5E−13 1.0E−1 4.1E−2 1.6E−2 4.6E−2 1.1E−1

4k 3.0E−2 1.3E−2 5.2E−13 7.4E−2 3.1E−2 1.1E−2 7.9E−4 8.8E−2

6k 2.6E−2 1.1E−2 1.3E−13 6.9E−2 2.7E−2 9.8E−3 6.7E−4 8.1E−2

8k 2.4E−2 9.8E−3 4.4E−13 6.7E−2 2.5E−2 9.0E−3 7.1E−4 7.3E−2

10k 2.2E−2 9.1E−3 6.6E−13 5.5E−2 2.3E−2 7.9E−3 2.8E−5 6.9E−2

12k 2.0E−2 8.5E−3 8.6E−13 5.1E−2 2.1E−2 7.3E−3 9.1E−5 6.4E−2

14k 1.9E−2 8.0E−3 9.1E−13 5.1E−2 2.0E−2 7.0E−3 6.0E−5 6.3E−2

16k 1.9E−2 7.8E−3 8.1E−13 5.4E−2 1.9E−2 6.1E−3 5.4E−4 5.6E−2

The meshes and examples provided here only serves for the purpose of

showing the capabilities of the developed meshing optimization algorithm. All

topology optimization problems presented throughout this work were executed

by making use of the optimized meshes, unless otherwise noted.

By analyzing Tab. 4.1 and Fig. 4.9 and from further investigation within

the interior of the domain, some conclusions can be drawn:

– Centroidal Voronoi cells’ contain high number of small edges, with the

smallest being in the order of 10−13 for a unitary cube domain;

– Edges smaller than 10−8 belongs to the boundary. These small edges

are a product of the discussed finite differences-based reflection method.

These edges are not a product of the Lloyds’ algorithm nor it is a
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Figure 4.9: Histograms of edges lengths for the unitary cube. Top: CVT;
bottom: optimized. (a) and (d) 2000; (b) and (e) 6000; (c) and (f) 10000
elements.

common characteristic of a CVT mesh, they are a result from the 3D

implementation approach. Since these issues have been circumvented,

the smallest edge that is a natural product of a CVT is in the order of

10−8. Now, considering the CVT with perfect boundaries, the algorithm

effectively increases the edges lengths 3 to 5 orders of magnitude;

– Most of the small edges3 are penalized. The few that are left are actually

about 9 orders of magnitude larger than the original CVT and 3 to 5

orders larger than the CVT with fixed boundary. This amounts to the

effectiveness of the algorithm in penalizing and removing small edges;

– The number of small edges is reduced by 95–98% after the optimization

(see Tab. 4.2). As the number of elements (therefore, degrees of freedom

for the optimization) increases, this percentage is also incremented;

– The standard deviation difference from a CVT mesh to a final optimized

mesh is not significant. Large edges are not explicitly penalized and in

fact there is no restriction for the introduction of even larger edges than

3As previously defined, a small edge in an edge smaller than 10% of the average edge
length. Note that this measure would not make sense if the initial CVT was not created
from a constant density function. If this were the case, differently sized element would be
expected and the edge length would no longer be a suitable measure of quality.
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on CVT. Small edges are somewhat compensated by the introduction of

large edges, leading to a minimal difference in standard deviation.

Table 4.2: Effectiveness in removing small edges. The “small edges removed”
measures the percentage of small edges present in CVT that are effectively
removed by the optimization.

Elements 2k 4k 6k 8k 10k 12k 14k 16k

Small
edges

removed
97.5% 95.7% 95.7% 98.9% 98.0% 98.9% 98.6% 98.5%

Moreover, we note that small edges are bad features for the embedding

of tetrahedra, since each (really) small edge can represent two slivers in the

mesh, thus hurting numerical conditioning and solver robustness. Next, we

assess mesh quality by analyzing the condition number associated with the

matrix K.

4.4.2
Linear Elasticity Problem

Now a linear elasticity problem through finite element analysis is exe-

cuted. This problem is solved in every topology optimization iteration. Recall-

ing Section 2.2.1, the stiffness matrix is given by

K =

∫
V

BTCB dV,

where the matrix B is function of ∇N. Therefore, small edges will also hurt

linear elasticity stiffness matrix.

Table 4.3 presents results for a beam fixed at one end and subject to a

transverse load on the other end.

Analysis of the results confirms the effectiveness of the optimization

algorithm on the meshes. Smallest edges have been increased by 9 orders of

magnitude (4, on average, considering only the interior) and the condition

number has been decreased by 2 orders of magnitude on average.
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Table 4.3: Condition number associated with the stiffness matrix of the
linear elasticity problem. The number of elements represents the number of
polyhedrons.

Elements
Condition Number

CVT Opt

2k 1.9E9 4.7E7

4k 4.7E9 3.4E7

6k 2.4E10 1.9E8

8k 1.3E10 1.0E8

10k 1.4E10 1.5E9

12k 1.0E10 5.1E8
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5
Solving the System of Equations

The ultimate equation of interest when solving computational mechanics

problems by means of the finite element method is KU = F, where K is

the global stiffness matrix and F is the load vector. This set of equations

is solved for the unknown nodal displacements U. In linear FEA the cost

of solving this system of equations rapidly overwhelms other computational

phases. Therefore, it is important efficient handling of the K matrix and the

solution of the system.

Thus, solving this system of equations represents the single highest

computational cost of a topology optimization program and it is, in fact, its

bottleneck. Figure 5.1 shows the runtime breakdown of a typical topology

optimization problem. The reader can observe that, as the mesh size increases,

the time spent on the solution of the system of equations is dominant in the

overall problem solution time.
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Figure 5.1: Runtime breakdown for different meshes size. Note how it is the
most time consuming operation. Data obtained using the PARDISO [79] solver.
Optimization was performed varying the p from 1 to 3.5, with increments of
0.5 and 100 iterations was allowed in each value of p.
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In Fig. 5.1, the Initialization phase consists in read input file, create

appropriate data structure, read the mapping, initialize the optimization vari-

ables, populate the finite element class (creating the local stiffness matrices),

and apply boundary conditions. The FEA refers to the time spent assem-

bling the global stiffness matrix and solving the sparse linear system, whereas

Optimization includes the application of material model (SIMP), mapping of

variables, objective and constraint function evaluation, computation of sensi-

tivities and update of design variables. We note that the post processing was

omitted1 (it encompass stress computations and output file writing).

In this chapter are discussed ways to solve KU = F, represented generally

by Ax = b. Issues regarding performance of some solvers are also reviewed.

For an in-depth discussion on efficient algorithms regarding different

types of matrices and problems, the reader is referred to the book by Z. Bai

et al. [6].

5.1
Introduction

Finite Element discretization for a typical topology optimization problem

involves a large set of linear equations. Usually two types of solvers may be

used to solve such system of equations: direct or iterative solvers.

Direct solvers are known for their robustness and generality. Direct meth-

ods solves the system of equations simultaneously, achieving the“exact”answer

in one step. The downside of direct solvers is their memory requirements, which

can limit the size of the problem that can be solved.

Iterative solvers, on the other hand, have significantly smaller memory

requirements than a direct solver for the same sized problem. Iterative methods

approach the solution gradually, rather than in a single, computationally-

expensive, step. Depending on the tolerance used, an iterative solver will

never get to the exact solution, but rather an approximate one. Iterative

solvers’ performance, however, can be improved with the use of a suitable

preconditioner.

In finite element applications, the matrix that arises from the system of

linear equations is highly sparse. In addition, for linear elasticity, this matrix

is symmetric and positive definite. Thus, using algorithms that take advantage

of the sparsity of the matrix is essential to achieve high performance.

Before we start, let’s define some useful terms:

1 It was neglected because its influence on the total solution time was minimal. In the
most coarse case shown, it was 0.03% of total time. In the following mesh, less than 0.0001%.
In the subsequent mesh, this time became even more insignificant.
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– A sparse matrix is a matrix in which a very high percentage of its entries

are zero;

– Structured matrices are the type of matrices that have enough structure

that is worth taking advantage of it (e.g. Toeplitz, Vandermonde);

Both types of solvers, either direct or iterative, described in this chapter

are investigated using their correspondent sparse algorithms, i.e., algorithms

specifically designed to deal with sparse matrices.

5.2
Direct Sparse Solvers

Direct solvers is a category of numerical methods which solves the system

of equation directly and exactly (up to the machine precision). They are very

robust and they are always able to achieve a solution (as opposed to iterative

solvers), if one exists. In this section, direct solvers are reviewed and their

features discussed.

Direct solvers are often not efficient regarding memory usage. To cir-

cumvent these types of problems, out-of-core solver has been developed [43].

They perform I/O operations to/from the hard disk, decreasing the memory

requirements. This is specially useful in large problems. However, it is impor-

tant to note that using a machine with enough RAM, hence performing the

factorization in-core, will greatly reduce the computational time. Traditional

direct frontal algorithm [50] is an example of a direct solver. A frontal solver

builds a LU or Cholesky decomposition of a sparse matrix given as a global

matrix by assembling the matrix and eliminating equation only on a subset of

elements. This subset is called the front and represents the region between the

part already processed and the part yet to be processed. The advantage of a

frontal solver is that the whole sparse matrix is never created explicitly.

Multifrontal solver represents an advance over the frontal solver. Its prin-

ciple relies on the use of several independent fronts simultaneously. Multifrontal

solvers efficient reordering techniques addresses issues related to memory and

computational speed. A well known example of a multifrontal solver implemen-

tation is the UMFPACK package [22], which was investigated in this work.

Direct solvers for sparse matrices involve much more complicated algo-

rithms than for dense matrices. A direct method for solving Ax = b where A

is a dense matrix consists of the following steps:

1. Compute a factorization of A;

2. Use the factorizations to solve Ax = b .
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However, given the structure of the stiffness matrix in finite element

applications, the sparse matrix algorithms should be employed. A typical sparse

solver consists of four main steps, instead of two for a dense matrix case [6]:

1. An ordering step that reorders the rows and columns such that the

factors suffer little fill-in, or that the matrix has special structure, such

as block-triangular form;

2. An analysis step or symbolic factorization that determines the nonzero

structures of the factors and creates suitable data structures for the

factors;

3. Numerical factorization that computes the L and U factors (or other

appropriate factorization);

4. A solve step that performs forward and backward substitution using the

factors.

Steps 1 and 2 involve only the graph associated to the matrices, i.e.,

connectivity of elements and how they are presented in the assembled global

stiffness matrix, and therefore only integer operations. Step 3 includes floating-

point operations and is the most time-consuming. Step 4 is roughly one order

of magnitude faster than step 3 and also involves floating-point operations as

well. The algorithm used in step 1 is independent of that used in step 3 or 4.

However, algorithm used in step 2 is usually closely related to that of step 3.

These steps are discussed in detail in the following sections.

5.2.1
Ordering

The form the matrix is presented is important regarding solver perfor-

mance. In this step, the matrix is reordered to reduce fill-in during factoriza-

tion. There are a number of methods to carry such task, and here are presented

some of them.

During the factorization stage, the nonzero entries of the factorized

matrices that were zeros in A are called fill-in. Thus, in the current stage,

a permutation is created in order to reduce fill-in during factorization.

The stiffness matrix arrangement is a result of the unknown numbering

(here, we’re dealing with nodal numbering, as the nodal values corresponds

to our unknowns). Therefore, the form the nodal numbers are assigned is

important. It is always recommended that nodes connected to each other have

numbers that are close to one another. Such practice leads to matrices in

which the non-zeros terms are confined to a diagonal band, comprising the
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main diagonal plus more “diagonals” on either side. Such matrices are called

band matrices and can be conveniently stored.

The bandwidth of the matrix corresponds to the number of diagonals in

which there is nonzeros terms. In the specific case of global stiffness matrix

assembling, a matrix with large bandwidth corresponds to the fact that the

nodes are linked over arbitrarily large distances. Sparse matrices, stored as a

banded matrices, tend to be more efficient from a computational perspective

and easier to store. On the other hand, the profile of a matrix is the sum,

for each row, of the number of elements from the first non-zero until the

diagonal. Note that global stiffness matrices in linear elasticity applications

are inherently symmetrical.

In the conditions of the proposed embedding approach, Chapter 3, there

is a special concern regarding nodal numbering, because new numbers are

assigned as new nodes are being created. The reader should also note that in

three-dimensional FEM application, the spread of the values in the matrix is

inherently greater than in two-dimensional cases.

Recalling from the Chapters 3 and 4, upon the initial definition of the

polyhedrons, the nodal numbering is rather satisfactory (see upper left part

of the matrix in Fig. 5.3(a)). However, in order to define the tetrahedrons

embedded into the polyhedrons, new nodes are created. Numbering of the

newly created nodes continues after the last node of the original polyhedra

mesh. This issue is illustrated in Fig. 5.2 by an arbitrary polyhedron.

Figure 5.2: Example of post-embedding numbering. Note how the original
numbers and face centroids numbers are distante from each other (similarly
with polyhedron centroid node, which is 1089). The bigger the mesh, greater
the difference will be.

The numbering illustrated by Fig. 5.2 leads to an odd sparse matrix: the

square portion comprised by the first n original nodes is in a small bandwidth

format (good); then the portion associated with face and element centroids are

DBD
PUC-Rio - Certificação Digital Nº 1321769/CB



Chapter 5. Solving the System of Equations 79

more spread because lots of greatly spaced nodes are connected to them (bad)

(see Figure 5.3(a)).

Fortunately, matrix processing techniques are available, decreasing stor-

age and solution time, by rearranging the stiffness matrix in special structure

formats, such as band matrices. Thus, the symmetrical matrix is converted into

a band matrix form, with a small bandwidth, through the use of specific algo-

rithms. The key idea of these algorithms is to rearrange the matrix by means

of successive row and column permutation, moving all the nonzero elementos

as close as possible to the diagonal.

Figure 5.3(a) shows the stiffness matrix for a typical polyhedra with

embedded tetrahedra mesh, before any reordering technique takes place. Fig.

5.3(b) and (c) shows the sparsity pattern after reordering techniques are

applied.

There are many algorithms for profile and bandwidth reduction,

such as Cuthill-McKee [20] and reverse Cuthill-McKee [39], Gibbs-Poole-

Stockmeyer [40], Sloan [85] and Kaveh [56]. Some of these algorithms are

treated in the following sections. The efficiency of the reordering algorithms

have been assessed with different direct solvers.

(a) (b) (c)

Figure 5.3: Matrix patterns after reordering. (a) Original matrix; (b) After
RCM, 93.7% bandwidth reduction and 89.4% profile reduction; (c) After Sloan,
86.4% bandwidth reduction, 92.4% profile reduction.

Reverse Cuthill-McKee Algorithm (RCM)

The reverse Cuthill-McKee (RCM) algorithm, proposed by Alan

George [39], is a heuristic method for bandwidth reduction in sparse matri-

ces. It is based on the original Cuthill-McKee (CM) algorithm [20], differing

in the resulting index numbers, which are reversed.

Both CM and RCM belongs to a class of reordering technique that

proceeds by levels in a graph. In graph theory, it is to some extend related to

breadth-first search. Its key idea it to visit the nodes by “levels”, in which the
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level 0 is level of the starting node. In the starting node, the algorithm inspects

all the neighboring nodes. Then, for each of these neighbors, it inspects their

neighboring nodes which were unvisited, and so on.

The RCM algorithm also uses the idea of graph separator. A graph

separator is a set of vertices that separates the original graph. Removing this

set (or single) of vertices will result in two disjoint graphs. As a consequence,

the matrix resulting from the CM/RCM ordering is a block-tridiagonal2, with

each block being the size of its level.

The CM algorithm consists in successively permuting rows and columns

aiming to reduce its bandwidth. It is straightforward to see its advantage

inspecting the resulting matrix bandwidth and profile.

Sloan Algorithm

While the RCM is a bandwidth reducing reordering, the Sloan algorithm

aims in reducing its profile and the wavefront of a graph. Its principle relies on

reordering of the indices assigned to each vertex.

The Sloan algorithm [85] uses an starting and end vertex, then a priority

is assigned to each vertex, based on its distance from the start and end vertex.

This priority is a weighted sum, taking into account a local criteria, i.e., its

neighbors vertices, as well as global criteria.

The output of the algorithm is the new vertex ordering, which can be

easily applied to a nodal numbering in a finite element mesh.

The obtained reordering with both RCM and Sloan has been applied in

a polyhedra mesh with embedding. The resulting sparsity pattern of the global

stiffness matrix is shown in Fig. 5.3.

Multilevel Nested Dissection Algorithm

The Nested Dissection Algorithm is internally used by the PARDISO

solver. It is part of the METIS package, a package“for partitioning unstructured

graphs, partitioning meshes, and computing fill-reducing ordering of sparse

matrix” [55].

The nested dissection algorithm is also based on the idea of graph

partitioning and multilevel algorithms, similar to RCM, in which some vertices

connects sets of vertices taken as blocks. The nodes in the separator are moved

to the end of the matrix, and a similar process is applied recursively for each

one of the other two parts. The multilevel nested dissection algorithm is quite

effective in producing re-orderings that incur low fill-in [54].

2Block-tridiagonal matrix is similar to a tridiagonal matrix, but each component is a
sub-matrix instead of a scalar.
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The sparsity of the matrix that results from this algorithms does not

show evident advantage. The advantage of the Nested Dissection is that the

resulting factorization does not induce high fill-in.

Permutation vector

The algorithms described are used for sparse matrix reordering. Their

output is a permutation vector, defined here as perm, of size Number of Nodes.

This vector is used to reorder the sparse matrix.

Let K be a matrix and nK be the reordered matrix. The permutation

vector maps the i-th row (column) of K into the perm[i] row (column) of nK.

We note that the permutation matrix is actually an identity matrix with its

rows (or columns) permuted.

Sparse Matrix Storage Scheme

A sparse matrix, by definition, contains mostly zeros. Store every element

of this matrix consumes too much memory, making a mid-scale problem

impossible to be solved in practical time. There are some methods that

efficiently stores sparse matrix. The efficiency of many solvers is determined

primarily by the matrix-vector product, and, therefore, on the storage scheme

used for the matrix.

The Compressed Row Storage (CRS) is the method of choice. Together

with the analogous Compressed Column Storage (CCS), they are the most

general. They don’t make any assumptions regarding the sparsity pattern of

the matrix. In fact, this format can even handle dense matrix. Furthermore, this

format is especially interesting for this application: it is the standard matrix

format used by commercial solvers such as PARDISO and UMFPACK.

The CRS format puts the nonzeros values in continuos memory location.

It creates three vectors: val, for the floating-point numbers; col_ind and

row_ptr for integers giving the matrix position of the nonzeros values. The

vector cold_ind stores the column indexes of the elements in the val vector.

The row_ptr contains the location in the val vector that starts a row.

If a given matrix n×n (where n is typically the number of DOF), row_ptr

size is n, val and col_ind size is nnz+1, where nnz is the number of nonzeros.

The storage savings using the CRS approach is significant: instead of storing

n2 elements as a full matrix, only 2nnz+n+ 1 storage locations are necessary.

As an example, consider the matrix M defined by
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M =



10 3 0 0 1 0

0 0 1 2 2 7

0 0 0 0 1 0

3 0 7 8 0 0

0 1 9 0 0 12

0 0 5 0 1 0


.

The arrays val, col_ind and row_ptr for the matrix M is given below.

val 10 3 1 1 2 2 7 1 . . . 9 12 5 1

col_ind 1 2 5 3 4 5 6 5 . . . 3 6 3 5

row_ptr 1 4 8 9 12 15 17

The CCS format is identical to the CRS format, except that the columns

of M, instead of rows, are stored. CCS format can be think of the CRS format

for MT.

5.2.2
Symbolic Factorization

The symbolic factorization is the second step towards the solution of sys-

tem of equations in a direct method. This step is also called analysis. It com-

prises the analysis of the nonzero structure; row- and column-permutations;

and scaling to improve condition number.

The term symbolic implies that the factorization is processed only sym-

bolic, i.e., without numerical values. It means that in the symbolic factorization

phase, only the structure of the matrix is used to determine its factorization,

that is, it only uses col_ind and row_ptr arrays.

5.2.3
Numerical Factorization

During the numerical factorization step, in most direct methods for sparse

linear systems, the matrix is decomposed into:

– L and U matrices, lower and upper triangular, respectively, in case of LU

decomposition, or;

– L matrix, lower triangular, in case of Cholesky (or incomplete Cholesky)

factorization.

Numerical factorization algorithms work with nonzeros terms of A and

the data structure resulting from the symbolic factorization phase in order to

compute the L and U factorization.
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LU factorization is usually employed in this step over Gaussian elimina-

tion since LU decomposition only uses matrix A, whereas Gaussian elimination

also uses right-hand-side b. It is worth noting that this step is the most time-

consuming in a direct solver.

LU Decomposition

If A = LU, then Ax = b can be solved by :

LUx = b ⇔ Ly = b, Ux = y.

As L and U are nonsingular lower/upper triangular matrices, then this is

simple forward/backward substitution. By convention, L has an unit diagonal,

that is, it has 1’s on the diagonal.

Suppose A ∈ Rn,n. The upper left k × k corners

Ak =


aaa . . . a1k

...
...

ak1 . . . akk

 for k = 1, . . . , n,

of A are called the leading principal submatrices of A.

Theorem The square matrix A ∈ Rn,n has a unique decomposition A = LU

if and only if the leading principal submatrices of A are nonsingular.

Theorem If A is nonsingular, then a row permutation P can be found in

addition to L and U such that PA = LU exists and is unique.

If PA = LU, then instead of solving Ax = b, one can solve

PTLUx = PTb ⇔ Ly = PTb, Ux = y,

where the matrix P is a permutation matrix describing the numerical pivoting

used.

The cost of factorizing A into matrices L and U is O(n3) for dense matrix

A. Once this factorization is completed, the cost of solving LUx = b is just

O(n2), since the cost of solving a triangular system scales as O(n2).

There are special algorithms that deals with large sparse matrix for LU-

decomposition. These algorithms tries to find sparse factor L and U. They

use reordering techniques to reduce fill-in, making them closely related to the

choice of algorithms on the previous steps.
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Cholesky Factorization

Cholesky factorization is a decomposition of a positive definite matrix

A ∈ Rn into the product of a lower triangular matrix and its transpose

(conjugate transpose in case of A ∈ C).

It can be expressed as:
A = LLT. (5.1)

If a reordering has not been applied before (during step 1), the matrix L

will probably contain high fill-in. However, using the reordering permutation

can result in L having very low fill-in.

The Incomplete Cholesky factorization, rather than the full Cholesky is

also used as a preconditioner for iterative solver (discussed in section 5.3.2).

5.2.4
Forward/Backward Substitution

The last step towards the complete solution of the system of linear

equations is the solution of the system of equation per se.

The factorization phase only uses the matrix A, while the solving phase

makes use of the factored form of A and the right hand side b to solve the linear

system. For each different right-hand side, forward and backward triangular

sweeps are executed.

The direct solvers investigated in this work are available commercially,

dealing with the four stages described in this section. These solvers package

are described in section 5.4.

5.3
Iterative Solvers

As mentioned, iterative solvers, as opposed to direct solvers, has signif-

icantly smaller memory requirements for the same sized problem. In general,

iterative methods approach the solution gradually, rather than in a single,

computationally-expensive step. Depending on the tolerance used, an iterative

solver will never get to the exact solution, but rather an approximate solution.

The underlaying principles of iterative solvers are the following: start

with an initial guess x0 then iterate until a stop criteria is met, and finally

return the final guess x∗ = xk. The stop criteria is typically that the residual

(or error) is less than a specified tolerance.

The most popular class of iterative methods belong to the class of

Krylov subspace methods. The Krylov subspace Ki(A, r0) of dimension i,

associated with a linear system Ax = b for a starting vector x0 with residual

vector r0 = b − Ax0 is defined as the subspace spanned by the vectors
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{r0,Ar0,A
2r0, . . . ,A

i−1r0}. Examples of Krylov subspace methods include

Conjugated Gradient (CG), Biconjugate gradient stabilized (BiCGSTAB),

Generalized minimal residual (GMRES), among several others.

Different methods can be further classified depending on the type of

matrix A (see [6]), however it is not the intent of this work do so. For a

comprehensive and detailed discussion on iterative solvers for sparse systems,

the reader is referred to Saad (2003) [78]. It includes discussion on projection

methods, preconditioned approach, preconditioning techniques, parallel and

multigrid methods and several others topics on iterative methods.

The performance of an iterative solver can be influenced by its precon-

ditioner. In other words, all iterative solvers performs bad without a good

preconditioner. Choosing a good iterative solver is, in reality, choosing a good

preconditioner.

The Conjugated Gradient (CG) algorithm is one of the best known

iterative techniques and was used in this work (the CG is computationally

cheaper than the GMRES, for example). Which preconditioner to use with the

CG is discussed in the following section.

5.3.1
Conjugated Gradient Method

The Conjugated Gradient (CG) is an algorithm for solution of linear

system of equations. The CG is only suitable for system whose matrix is

symmetric and positive-definite. The CG is treated here as an iterative method.

We note that the CG is also an optimization method for unconstrained

minimization problems.

The conjugated gradient algorithm is presented in Alg. 5.1. Its input is a

guess vector x0 and the output is the final guess x = x∗. We should note that

x∗ does not solve Ax = b, but rather approximate the exact within a given

tolerance.

The CG algorithm takes advantage as it does not require access to matrix

elements, it only performs matrix multiplications (direct solvers do need access

to matrix’ elements). As previously discussed, the CG algorithm (and any other

iterative method in reality) may be inefficient without a preconditioner. In the

following section we shall discuss matrix preconditioning for iterative solvers.

5.3.2
Preconditioner

In order to improve the efficiency of an iterative solver, a preconditioner

must be used. A preconditioner is simply a means of transforming the original
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Algorithm 5.1 Conjugated Gradient algorithm

1: procedure Conjugated Gradient(x0)
2: r0 = b−Ax0

3: p0 = r0

4: k = 1
5: define tolerance tol
6: while rk ≥ tol do

7: α =
rT
k rk

pT
kApk

8: xk+1 = xk + αkpk
9: rk+1 = rk − αkApk

10: β =
rT
k+1rk+1

rT
k rk

11: pk+1 = rk+1 + βkpk
12: k = k + 1
13: end while
14: return x∗ = xk+1

15: end procedure

linear system which is likely to be easier to solve with an iterative solver [78].

The choice of a good preconditioner is extremely challenging, and by using

a suitable preconditioner, both the efficiency and robustness of iterative

techniques may be improved.

The first step in preconditioning is to find a preconditioning matrix

M. This matrix must satisfy a few minimal requirements, however, from a

practical point of view, it is important to mention that solving the system

Mx = b, required in each step of preconditioned algorithms, is computation-

ally inexpensive. This is needed mainly because preconditioned algorithms will

require a linear system solution with the matrix M at each step.

How the matrix M is obtained will be discussed in the specific precondi-

tioning algorithms sections to follow. Here will be described how the precon-

ditioner is applied to solve the original system of equations.

The solution of the original system Ax = b using a preconditioning ma-

trix M can be achieved through three different known ways. The preconditioner

can be applied from the left:

M−1Ax = M−1b, (5.2)

or, it can be applied to the right:

AM−1u = b, x ≡M−1u. (5.3)

The above formulation amounts to making the changes of variables u = Mx

and thus solving the system with respect to the unknown u. Finally, it is also
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common the preconditioner be available in the factored form

M = MLMR, (5.4)

where ML and MR are typically triangular matrices. In this situation, the

preconditioning can be split:

M−1
L AM−1

R u = M−1
L b, x ≡M−1

R u. (5.5)

It is important that preconditioners preserve features of the original

matrix, such as symmetry. Even if M is not readily available in factored

form (5.4) in order to use (5.5), there’s alternatives in preserving the symmetry

of A.

Preconditioned Conjugate Gradients

There is an extensive literature that deals with preconditioning for the

Conjugate Gradients (CG) method, as well as others iterative methods [21,42].

In this section will be discussed two commonly used preconditioners: Diagonal

(Jacobi) and Incomplete Cholesky. Both of them have been implemented,

tested and evaluated.

For a matrix to be suitable for the CG method, the following conditions

of a positive definite matrix must be satisfied:

1. A = AT;

2. xTAx > 0, ∀x 6= 0.

The Preconditioned Conjugate Gradient (PCG) is a modified version

of the CG, dealing with preconditioned residues. The algorithm is shown in

Alg. 5.2.

Jacobi Preconditioner (Diagonal)

The Jacobi preconditioner is also called diagonal. It is derived from the

Jacobi iterative method. It is the simplest preconditioner available and its

implementation is straightforward. It consists of just the diagonal of A:

Mij = δijAij, (5.6)

where i, j represents the row and column, respectively, and δij is the Kronecker

delta. Therefore, the preconditioning matrix M−1 can be easily written as:

M−1
ij = 1/Mij.
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Algorithm 5.2 Preconditioned Conjugated Gradient algorithm [42]

1: procedure PCG(x0)
2: r0 = b−Ax0

3: z0 = M−1r0

4: p0 = z0

5: k = 1
6: define tolerance tol
7: while rk ≥ tol do

8: α =
rT
k zk

pT
kApk

9: xk+1 = xk + αkpk
10: rk+1 = rk − αkApk
11: zk+1 = M−1rk+1

12: β =
zT
k+1rk+1

zT
k rk

13: pk+1 = zk+1 + βkpk
14: k = k + 1
15: end while
16: return xk+1

17: end procedure

Incomplete Cholesky

The incomplete Cholesky factorization is similar to the “full” Cholesky.

In Cholesky factorization, the original matrix A is decomposed into matrix L,

in which the product LLT is equal to A. However, this may lead to a matrix

L with high fill-in. The incomplete Cholesky (IC) factorization, on the other

hand, decomposes A into L̃, with L̃L̃T ≈ A and no fill-in.

To achieve no fill-in, the difference between the two algorithms is that

IC only visits positions of A that are different from zero. The left-looking

incomplete Cholesky factorization algorithm is show in Alg. 5.3. In this

algorithm, the matrix L is represented by the lower triangular of the final

matrix A.

5.4
Packages

In this section some mathematical libraries are presented and discussed.

These libraries include routines that ultimately solve the linear system of

equation KU = F.
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Algorithm 5.3 Incomplete Cholesky algorithm

1: procedure Incomplete Cholesky
2: for k = 1 : n do
3: A(k, k) =

√
A(k, k)

4: for i = k + 1 : n do
5: if A(i, k) 6= 0 then
6: A(i, k) = A(i, k)/A(k, k)
7: end if
8: end for
9: for j = k + 1 : n do

10: for i = j : n do
11: if A(i, j) 6= 0 then
12: A(i, j) = A(i, j)− A(i, k)A(j, k)
13: end if
14: end for
15: end for
16: end for
17: end procedure

5.4.1
Basic Linear Algebra Subprograms (BLAS)

Basic Linear Algebra Subprograms (BLAS) are a set of low-level kernel

Fortran subroutines that performs common algebra operations [60]. It has 3

levels, with capabilities described below.

Level 1 Published in 1979, operates on only one of two vectors (or columns

of a matrix) at a time. That is, performs vector-vector operations in the

form:

y = αx + y.

Level 2 Published in 1984, operates on larger portions of entire matrices. It

was capable of solving Tx = y for x, with T begin triangular. Perform

matrix-vector operations, such as generalized matrix-vector multiplication

in the form:

y = αAx + βy.

Level 3 Published in 1990, performs matrix-matrix operations in the general

form:

C = αAB + βC.

BLAS subroutines are usually standard in many linear algebra libraries

and routines packages. For example, the LAPACK package, which uses BLAS,

is used by MATLAB since version 6.0, released in late 2000 [66].
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5.4.2
Linear Algebra Package (LAPACK)

The Linear Algebra Package (LAPACK) is a library for numerical linear

algebra applications. LAPACK provides routines for solving systems of simul-

taneous linear equations, least-squares solution of linear systems of equations,

eigenvalue problems and singular value problems. It also provides tuned LU,

QR and Cholesky factorizations. Dense and banded matrices are handled, but

not general sparse matrices [1].

LAPACK is designed to exploit the Level 3 BLAS. LAPACK subroutines

are written in a way that as much as possible of the computation is performed

by calls to the BLAS.

5.4.3
UMFPACK

UMFPACK consists in a set of routines for solving systems of linear

equations, Ax = b, when A is sparse and unsymmetric. Its algorithm is based

on the Unsymmetric-pattern MultiFrontal method [24,25] and direct sparse LU

factorization. Multifrontal methods are a generalization of the frontal methods

developed primarily for finite element problems [5].

In the present context, the UMFPACK solver was used as a sparse direct

solver.

UMFPACK automatically selects different strategies for column and row

pre-ordering depending on the sparsity nature of the matrix. The solver has

built-in fill reducing algorithms such as COLAMD [26] and AMD (approximate

minimum degree) [23]. During factorization phase, a sequence of dense rectan-

gular matrices is created for factorization. A supernodal column elimination

tree is generated in which each node in the tree represents a frontal matrix.

The chain of frontal matrices is factorized in a single working array [57].

5.4.4
Intel Math Kernel Library (MKL)

Intel Math Kernel Library (MKL) is a math library optimized for the

Intel architecture. Intel MKL improves performance with math routines for

applications where large computational problems are solved.

The Intel MKL includes a number of groups of subroutines, such as

BLAS, LASPACK routines; PBLAS routines; Vector Mathematical Library;

Fast Fourier Transform functions; direct and iterative sparse solver routines;

and several others [49]. For the topology optimization tool developed, the MKL

package have been used mainly because of its direct solver capabilities.

DBD
PUC-Rio - Certificação Digital Nº 1321769/CB



Chapter 5. Solving the System of Equations 91

MKL provides sparse solver software to solve real or complex, symmet-

ric, structurally symmetric or nonsymmemtric, positive definite, indefinite or

Hermitian square sparse linear system of algebraic equations. The PARDISO

is the solver used in this work from the Intel MKL. It was originally developed

by the Department of Computer Science at the University of Basel [3] and later

incorporated into Intel MKL.

Parallel Direct Sparse Solver (PARDISO)

The PARDISO package is a high-performance, robust, memory efficient,

and easy to use software package for solving large sparse symmetric and

unsymmetric linear systems of equations on shared memory multiprocessors

[2, 79]. As the name implies, it is a direct solver.

The PARDISO solver performs the same four tasks described previously:

– analysis and symbolic factorization;

– numerical factorization;

– forward and backward substitution including iterative refinement;

– termination to release all internal solver memory.

The PARDISO solver can store the solution out-of-core, which means

that they can offload some of the problem onto the hard disk. This feature

is specially interesting in large problems. The reader is referred to [79] for an

in-depth discussion of PARDISO’s inner working.

5.5
Performance Results and Conclusions

The performance of different types of solvers is investigated and the result

is presented in this section. It is explored direct and iterative solvers, reordering

techniques and the role of preconditioning for an iterative solver.

We show results for two families of mesh:

1. Regular 6-sided polyhedron, essentially a brick but treated as a polyhe-

dron. However, embedded with 6 tetrahedrons only. We note that this is

a special case of embedding, since we know a priori the shape and regu-

larity of the element. In this case, only 6 tetrahedrons are embedded in

each hexahedron and no new nodes are created (see Fig. 5.4);

2. Unstructured arbitrary polyhedral mesh (as treated in Chapter 4), em-

bedded with tetrahedrons following Algorithm 3.1.

The machine used was an Intel Core i7 Extreme X980 6-core at 3.33Ghz,

with 24GB DDR3 RAM, using Microsoft Windows 7.

DBD
PUC-Rio - Certificação Digital Nº 1321769/CB



Chapter 5. Solving the System of Equations 92

Figure 5.4: Special embedding performed on regular hexahedron, with no new
node creation.

Before we begin, let’s lay some conclusion/requirements of the two types

of solvers studied [7]:

– Direct solvers

– Always work, for any invertible matrix;
– No need to think about preconditioners;
– Fast, as long as it has available RAM;
– Memory and CPU time becomes an issue for larger problems.

– Iterative solvers

– May not work even for invertible matrix;
– Can solve very large problems;
– Easily parallelized;
– Choice of preconditioner depends on the problem.

5.5.1
Reordering

Now, let’s address the reordering influence on the solution of the topology

optimization problem. The reordering techniques presented are tested on the

PARDISO and UMFPACK direct solvers. Unstructured polyhedral meshes

were used.

Figure 5.5 shows the performance of a given problem on the PARDISO

solver. As expected, the only difference is in the solution of the sparse linear

system of equation. The original matrix, similar to Fig. 5.3(a) is not effective,

as the reader could have imagined. PARDISO’s internal reordering (Nested

Dissection) is two orders of magnitude faster then RCM and Sloan. The reason

is that, although RCM and Sloan’s output matrices looks better by exhibiting

banded pattern, after factorization they do not guarantee low fill-in. Nested

Dissection, on the other hand, does.
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Original
matrix
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RCM
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reordering

Time (sec)

Initialization FEA Optimization

Figure 5.5: Runtimes for each main part for the PARDISO package. Data from
a mesh composed of 324 polyhedra, 18,476 tetrahedrons and 4,066 nodes.

UMFPACK package presents faster runtimes (Fig. 5.6) than PARDISO

(Fig. 5.5), except for PARDISO’s own reordering, which is 2 orders of mag-

nitude faster. Runtimes presented are from a simple benchmark problem, and

100 optimization iterations per penalty value are used, which is increased from

1.0 to 3.5 with increments of 0.5 (continuation).

100 101 102 103 104

PARDISO
reordering

Sloan
algorithm

RCM
algorithm

Internal
reordering

Time (sec)

Initialization FEA Optimization

Figure 5.6: Runtimes for each main part for the UMFPACK package. Data
from a mesh composed of 324 polyhedra, 18,476 tetrahedrons and 4,066 nodes.
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Tasks executed within each group, namely, initialization, FEA and op-

timization are same outlined in the beginning of the Chapter. Again, post-

processing is neglected (3 orders of magnitude smaller than Initialization). We

note that in all cases the system had enough RAM for the case being exe-

cuted. We analyzed runtime as a measure of performance because although

high fill-in (for example) would demand more RAM, it would also demand

more processing power, thus resulting in higher computational time

5.5.2
Preconditioning

The PCG algorithm is evaluated with the Jacobi and Incomplete

Cholesky (IC) preconditioner, as well as without any preconditioning (that

is, essentially CG).

The meshes used to evaluate preconditioning and the performance of

iterative and direct solvers are structured tetrahedral meshes at first (as shown

in the beginning of this section) and then we evaluate a polyhedral mesh. The

structured meshes’ details are presented in Table 5.1.

Table 5.1: Mesh information.

Mesh
Size

Elements Nodes DOFs

4 4,608 1,125 3,375

8 36,864 7,497 22,491

12 124,416 23,725 71,175

14 197,568 36,975 110,925

16 294,912 54,417 163,251

20 576,000 104,181 312,543

24 995,328 177,625 532,875

In Table 5.2 we present the number of iterations necessary to converge for

a single finite element analysis. The convergence numerical tolerance used is

the same for every preconditioner. In Table 5.3 we show the average number

of iterations for the first 10 topology optimization loops. In this analysis, the

stiffness matrix is updated at every iteration, resulting in a new problem, which

is then solved.
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Table 5.2: Number of iterations for the solution of Ax = b using the PCG
solver. Values not shown mean that convergence was not achieved in reasonable
time.

Mesh

size

Preconditioner

IC Jacobi none

4 48 285 2534

8 93 560 4714

12 139 832 -

14 162 963 -

16 184 1214 -

20 230 1492 -

24 275 1771 -

Table 5.3: Average number of iterations for the solution of the first 10 iterations
of a topology optimization problem using the PCG solver.

Mesh

size

Preconditioner

IC Jacobi

4 49.6 310.5

8 99.6 620.4

12 149.5 924.6

14 174.0 1064.6

16 198.6 1354.1

20 247.5 1679.8

24 296.3 1998.7

From the values presented we conclude that the IC preconditioner is

roughly 6 times faster on structured meshes and becomes even faster as mesh

sizes increases.

Now, let’s investigate how the PCG iterations behave as the topology

optimization evolves. Now, we use an optimized unstructured polyhedral

mesh. For this analysis, we set the penalty parameter to p = 3 and perform

optimization until convergence is achieved. As expected from the structured
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meshes results, the absolute number of iterations using IC is higher than Jacobi.

Figure 5.7 shows the obtained results.
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Figure 5.7: Number of PCG iteration with different preconditioner, as well as
condition number at each optimization iteration.
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Figure 5.8: Relative increase (each preconditioner relative to itself) in the
number of PCG iterations needed to converge in a typical problem using
unstructured polyhedral meshes

Further, we note that the number of iterations increased 45% when using

IC, whereas using Jacobi the number of PCG iterations increased up to 64%

(Fig. 5.8) when solving the last problem (iteration 28). We see that, associated

to the number of PCG iterations, the condition number also increases in a
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similar fashion. Iterative solvers are sensitive to matrix conditioning. PCG

with Jacobi showed more sensitivity than the IC.

Additionally, we note that the increase in the number of iterations is due

to matrix conditioning, which, in turn, is dependent upon the material tensor

in a final sense. After the very first optimization iteration, several elements

in the domain are assigned to “no material”, which is represented by the very

compliant material of tensor εC.3 In the next iteration, the new stiffness matrix

takes into account the value of ε and this results in a less well-conditioned

matrix, with increased condition number, resulting in an increase in the number

of iterations of the iterative solver.

In fact, the matrix condition number is closely related to the density

bound used in the topology optimization formulation, wether is by the Ersatz

parameter or by imposing a ρmin. If we let the Ersatz parameter assume a lower

bound (say, for example, 10−9, instead of the 10−4 used throughout this work),

the stiffness matrix condition number may increase by 5 orders of magnitude

(see Fig. 5.9).
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Figure 5.9: Ersatz parameter ε influence in the conditioning of the stiffness
matrix as the topology optimization evolves.

The spike on the ε = 10−9 curve occurs in the third iteration, representing

the first appearance of “void” in the structure as the move limit set in the OC

method prevent an element of becoming “void” in the very first iteration.

3We remind that ε is the Ersatz parameter used to avoid singularities in the stiffness
matrix by setting a compliant material. The Ersatz value is usually set to 10−4 and limε→0 Ke

is no stiffness (singularity in the global matrix).
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5.5.3
Type of Solver

Now, let’s compare the best direct solver plus reordering combination

with an iterative solver (with discussed preconditioners). The information from

meshes evaluated are presented in Table 5.1 and the results in Fig. 5.10.
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Figure 5.10: Performance of different solver in the solution of differently sized
problems. For the “Mesh size” measure, see Tab. 5.1.

Some conclusions can be drawn from the experiments:

– The PARDISO is superior than UMFPACK in solving sparse linear

system of equations associated with structured meshes, that is, without

deformed elements (except in very coarse cases, which are not of interest);

– PARDISO performs well, but the well-conditioned nature of the stiffness

matrix for structured problems lead to great performance of PCG as well;

– From 130k DOFs onwards, PCG solver with Incomplete Cholesky decom-

position performed better;

– The low condition number associated to structured meshes makes iterative

solvers a better choice.

However, we should note that although these results looks promising,

it only applies to structured meshes. We remind that the PARDISO solver is

parallel and the iterative solvers investigated are serial. From our investigation,

the PCG solver was faster than PARDISO because the matrices K were

very well-conditioned, due to the structured and uniformity nature of the

polyhedrons (regular hexahedrons, in this case), leading to a very good

condition number. Arbitrary polyhedral meshes, on the other hand, present

somewhat deficient condition number, therefore making the PARDISO solver

faster than any serial solver investigated.
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Further, it should be noted the following: the condition number of the

problem is also dependent on the material (the density). In optimization loops

next to the end of the problem, we usually have a considerable volume with

density on the lower bound, set by Eq. (2.6). This number counts towards

the stiffness matrix, and plays an important role on the convergence rate of

iterative solvers.

We conclude this Chapter by pointing out that our mesh optimization

improved the condition number, which leads to faster convergence by PCG with

IC. Although on structured meshes the PCG can easily outperform PARDISO,

on truly unstructured cases, the matrix related to the polyhedral mesh is

still not well-conditioned. Hence, the PARDISO still beats PCG in terms of

runtime, largely due to its parallel implementation, and will be the solver used

in the problems presented in the next Chapter.
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6
Numerical Results

In this Chapter are presented numerical results that demonstrate the ca-

pabilities of the proposed framework. Meshes based on arbitrary polyhedral

elements are less biased than structured meshes due to its geometry. Addition-

ally, they do not exhibit the checkerboard pattern and do not allow node to

node connections.

The obtained topologies shown are colored with respect to the density,

unless otherwise noted (all elements with density lower than 0.1 were hidden).

Density scale will be provided. In some problems, several figures with plane cuts

and projections will be provided to aid visualization. In all examples shown,

SIMP with continuation was employed, varying the penalty parameter from 1

to 3.5, with increments of 0.5.

6.1
Three-dimensional Validation

We first begin with mimicking a 2D problem by extruding the third

dimension, thus creating a 3D mesh. The objective of this investigation is to

(1) evaluate our meshing technique and (2) check the final topology with known

results from two-dimensional literature.

For this experiment, we consider the Michell problem [93], with domain,

loads and boundary conditions shown in Fig. 6.1(a), while the analytical

solution is shown in 6.1(b).
POLYGONAL FINITE ELEMENTS FOR TOPOLOGY OPTIMIZATION

F

(a) (b)

Figure 6.1: Michell beam problem. (a) Extended domain, loads and boundary
conditions. (b) Analytical solution from Reference [93].
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We set the final structure to have 8.5% of the initial volume. The

structure was extruded from a 2D mesh. Figure 6.2 shows the obtained final

topology, matching the analytical optimal topology. We note that the Michell

example exhibits orthogonal structural members, a common feature in optimal

topologies of several type of problems.

(a) (b)

(c)

Figure 6.2: Michell beam problem converged topology. Only 1.5% of the
polyhedrons presented intermediate density; red elements are solid and blue
are void. (a) Initial polyhedral mesh; (b) final result (final compliance 3317.1)
with 5000 design elements. (b) Side view showing the extruded mesh.

6.2
Benchmark Problem

Now, we deal with true three-dimensional problems. We first evaluate

a benchmark problem, in order to assess the embedding capabilities, regard-

ing physical sense of final topology, numerical pathologies and resolution of

structural members.

The benchmark problem [75] used is a cantilever beam fixed at one

end and subject to a transverse concentrated load at the opposite end. The

problem’s boundary conditions is illustrated in Fig. 6.3. The obtained result

is presented in Figs. 6.4 and 6.5 . We note that the arrangement of structural

members in the obtained solution is similar to the Michell’s problem, indicating

orthogonal structural members. We also note that the cross section converged

to the well known I beam. In this problem, only 0.2% of the polyhedrons have
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intermediate density. Then, to aid the visualization of a 3D topology without

the need of several figures, we have colored it based on the nodal displacement

field along the z axis.

(a) (b)

Figure 6.3: Cantilever beam subject to a transverse load problem, with domain
L× L× L. (a) Geometry, load and boundary conditions; (b) Illustration of a
symmetric sample mesh.

Figure 6.4: Converged topology for the beam problem: 8.5% volume fraction
constraint; 20,000 polyhedrons; final compliance 423.5. Three-dimensional
view, Uz-colored.

6.2.1
Embedding vs. Conventional Formulation

Let’s first evaluate the embedding technique on unstructured polyhedral

meshes. Consider the same cantilever beam shown in Fig.6.3. For comparison
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(a)

(b)

Figure 6.5: Converged topology for the beam problem: Alternatives views (a)
σxx-colored non-symmetric view. Scale: red is the upper positive bound and
blue is the lower negative bound. (b) Lateral view.

purpose, the same tetrahedral mesh used in the polyhedral embedding tech-

nique is considered here.

Three cases are compared: (1) tetrahedral mesh with standard element-

base formulation, without embedding, using tetrahedral-based design variables;

(2) tetrahedral element-based, without embedding, using tetrahedral-based de-

sign variables alongside a filtering scheme; and (3) polyhedral mesh embedded

with tetrahedron, no filtering. These comparisons were executed using a coarse

and a fine mesh, detailed in Table 6.1. Results are presented in Table 6.2.

Table 6.1: Details of the meshes used for the construction of Table 6.2. Only
half of the beam was modeled due to symmetry.

Item
Mesh

Coarse Fine

Nodes 52,432 159,888

DOFs 157,296 479,664

Polyhedrons (case w/ embed.) 4,000 12,000

Tetrahedrons 256,254 794,224

Edges 7,516 22,001

Faces 26,300 80,242

Tetrahedrons per polyhedron avg. 64.0 avg. 66.2

Faces per polyhedron avg. 12.7 avg. 13.1

Nodes per face avg. 5.1 avg. 5.1
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Table 6.2: Filtering and embedding investigation results. No symmetry shown.
Mesh details in Tab. 6.1. The final compliance c is shown.

Case
Volume

fraction

Topology

Coarse Fine

1 – Tetrahedral-
based, no
embedding, no
filter

10%

c = 315.6 c = 327.0

2 – Tetrahedral-
based, no
embedding, with
filter (r = 0.06)

10%

c = 532.8 c = 546.3

3 –
Polyhedral-based,
with embedding,
no filter

10%

c = 388.4 c = 368.1

1 – Tetrahedral-
based, no
embedding, no
filter

4%

c = 794.8 c = 807.3

2 – Tetrahedral-
based, no
embedding, with
filter (r = 0.06)

4%

c = 1958.3 c = 2063.4

3 –
Polyhedral-based,
with embedding,
no filter

4%

c = 1220.3 c = 1015.1

Density color scale:
0 10.80.60.40.2

A few aspects can be observed from Table 6.2:

– In case 1, the structure exhibits the expected checkerboard pattern,

mostly comprised of one-node connections. Same behavior is observed

with lower volume fraction. In these cases, tetrahedron elements were

used, with no polyhedron definition whatsoever;
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– Case 2 exhibits significant portion of the domain with intermediate

densities values. We note that for 10% of volume fraction, a hole would

appear is ρ > 0.8 was selected. However, for a volume fraction of 4%,

structural members were clearly defined and the filter served to ensure,

at some level, mesh independency. Here we can note how regularization

schemes smooths the density field;

– Case 3 considered polyhedral elements using the embedding, and yielded

the expected orthogonal members, with higher resolution on a finer mesh.

Finer members were found as a consequence of the imposed low volume

fraction and the solution converged to a 2D-like topology.

We finally note that the polyhedral mesh with the embedding technique

was able to capture finer structural members, while having a solution close

to a solid/void design. Lower order elements, in this case linear tetrahedrons,

may result in checkerboarding, independent of the mesh used. The accurate

solutions obtained in case 3 of Table 6.2 presents lower compliance value on

the finer discretization.

6.2.2
Structured Meshes and Filtering

The same cantilever beam from Fig. 6.3 is investigated here. We com-

pare results from the polyhedral embedding technique with (1) regular hexa-

hedral elements1 with embedding, without filter (same embedding as shown in

Fig. 5.4); (2) linear brick elements with a linear density filter of radius 0.15L

and; (3) linear brick elements without filter. Results are presented in Table 6.3.

Mesh independency was indeed obtained with application of filtering in

structured brick meshes. The filter size, however, was unable to capture any

of the adjacent elements and therefore, in the most coarse case, the obtained

topology (and compliance) are the same as the case without filter. We can ob-

serve that one-node connections became rapidly apparent in structured meshes

due to the intrinsic nature of the discretization. We note that the embedding

was capable of obtaining optimal topologies, approximating analytical results

as mesh sizes increases without mesh-biased solutions. No instance of checker-

board was observed and, as extensively discussed, no filter was applied.

The application of filtering, again, resulted in smoother density field,

with no clear 0–1 design. We also note that, similar to the previous results,

the compliance was minimum at cases without filtering. The compliance value

showed a minimization pattern as the number of design variables increased,

except when filter was applied. With more design variables, the material

1Essentially a brick element, but interpreted as an arbitrary polyhedron.
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Table 6.3: Comparison between brick and polytopes elements. Brick refers to
the linear brick element. Symmetry not shown.

Design
Vars.

Hexahedral
with

embedding

Brick with
filter

rmin = 0.15L

Brick
without filter

Polytope
with

embedding

330

c = 795.1 c = 1931.9 c = 1931.9 c = 1674.6

750

c = 424.1 c = 1348.5 c = 504.4 c = 539.4

1,500

c = 367.9 c = 1667.7 c = 409.1 c = 434.1

2,500

c = 352.4 c = 1553.6 c = 389.3 c = 407.6

4,000

c = 343.8 c = 1500.8 c = 369.6 c = 388.3

6,000

c = 336.4 c = 1506.1 c = 354.1 c = 375.5

distribution can be further optimized, resulting in better minimization of the

objective function, namely compliance. The same behavior was not observed

in filtered obtained topologies.

Figure 6.6 shows the compliance convergence history for the example

corresponding to a polyhedra mesh using the embedding technique. The

shape of the curves is product of the SIMP approach, using continuation.

Rapid oscillation occurs when the penalty parameter is incremented. It can

be observed that a 8,000, 10,000 and 12,000 polyhedra mesh gives the same

compliance, c = 368±2 . We note that every compliance minimization problem

discussed in this work presents very similar convergence history plots and

therefore will be omitted. Finally, the convergence pattern suggests that a

maximum penalty of 3.5 is enough.
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Figure 6.6: Compliance convergence history for differently-sized fixed-beam
problem. Legend indicates number of design variables (polyhedrons). (b) shows
a zoom from dashed box on (a).
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6.3
Edge Supported Cantilever Beam

Now, a series of examples is presented to demonstrated the capabilities

of the framework. We begin with the same cantilever beam from Fig. 6.3,

however fixed at the two opposite vertical edges, also subject to a transverse

load at the other end. Figure 6.7 shows the problem’s boundary conditions and

obtained topology for a 10% volume fraction. Due to symmetry, only half the

domain was discretized, using 12,000 polyhedrons. The embedding is capable of

resulting in topologies really close to a 0–1 design: in this example, only 0.5% of

the polyhedrons have intermediate density. Since density-colored figures would

be basically single-colored, we have shown the resulting topology colored with

respect to the displacement along the longitudinal axis.

(a) (b)

(c) (d)

Figure 6.7: Cantilever Beam supported by two edges. Domain: L × L ×
3L discretized using 12,000 polyhedrons. (a) Supports and loads; (b) final
topology; (c) and (d) detailed views of half domain

6.4
Michell-like Domain Subject to a Torsional Load

Curved domains are inherently difficult to accurately discretize using

Cartesian grids. Polyhedron elements offer flexibility in discretizing such do-
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mains. In this example, a Michell-like domain is extended to 3D and a torsional

load is applied on the opposite face rather than a single shear load. Looking to

achieve the optimal solution without prior knowledge about it, we use a box

domain, except for the fixed support boundary condition, a semi-sphere.

(a) (b)

(c) (d)

(e) (f)

Figure 6.8: Three-dimensional Michell domain subject to a torsional load. (a)
Domain and boundary condition; (b, c, d, e, f) Different views of the obtained
topology, imposing a volume constraint of 4%. Plane cuts were used to detail
the resulting shape.

The geometry and the optimal topologies obtained are shown in Fig-

ure 6.8. It can be seen that, as expected, the topology converged to a sphere

configuration. We set the volume fraction low enough so structural members
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would be visible, rather than a shell. The expected orthogonal members also

appear in this problem. Domain was discretized using 20,000 polyhedral ele-

ments, yielding approximately 1,370,000 tetrahedrons and 272,000 nodes.

This example constitutes an extension of the classical Michell 2D problem

(from section 6.1) into 3D. It is similar, though, to the classical Michell’s

sphere (or torsion ball). The Michell sphere is the optimal analytical structure

loaded by a moment couple. The solution is a sphere-like structure containing

orthogonal members. This Michell’s solution is shown in Fig. 6.9(a) and in

6.9(b) we show its boundary conditions. We note that the final structure

characteristics is dependent upon the boundary conditions, that is, the angle

φ in which the moment is applied.

(a)

φF

M

M

(b)

Figure 5.1: Optimal (analytical) structure to transfer a moment couple. (a) Distribution of
the members according to Michell (1904). (b) Illustration of the latitude �F , which defines
the small circles where the moment couples are applied.

ture method (Dorn et al., 1964; Hemp, 1973) was extended to three–dimensional problems

(Gerdes, 1994; Smith, 1998; Gilbert et al., 2005; Tyas et al., 2006) with promising results.

Most of these works, with the exception of Smith (1998), tackle problems in rectangular

domains. Other numerical methods have also been utilized to address the three–dimensional

layout optimization problem with mixed results (Zhou and Li, 2005; Dewhurst and Taggart,

2009). However, this method’s ability to approximate the analytical solution is usually less

than that of the ground structure method.

Real structures are three–dimensional, and thus the requirement of a true three–dimensional

analysis is obvious. Thus, the unstructured ground structure method presented in the pre-

vious chapter is extended to three–dimensional space. The implementation of the method

is named GRAND3 (GRound structure ANalysis and Design in 3D), and is a direct exten-

sion of the 2D implementation (GRAND). The approach used in GRAND3 makes it easy to

105

(a) (b)

Figure 6.9: Michell original problem of the torsion ball. The features of the
final structure are dependent upon the angle φ in which defines the small
circles where the moment is applied. (a) Michell’s solution [65]; (b) Boundary
conditions, showing angle φ.

In the modified problem executed here (Fig. 6.8), our focus was not in the

investigation of the solution behavior when changing the angle in which the

force representing the moment was applied. The objective of this example was

to assess if the solution were, indeed, converging to a spherical-like structure

and whether orthogonal members could be observed or not. For an in-depth

analysis of the influence of the angle φ in the solution (using the ground

structure method), we refer the reader to [107]2.

2We quickly point out some results: if the angle φ is maintained constant over mesh
refinement, the solution converges. If the angle φ gets ever bigger (φ goes to π/2) as meshes
gets finer, the solution will not converge (it will actually diverge).
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6.5
Shear Loaded Thin Disk

Now we investigate a thin disk subject to 8 shear loads [35]. The 0.5 units

thick disk has an external radius of 6 units and an internal radius of 1 unit.

Eight equidistant and equal in value loads are applied along the external surface

and all the nodes along the hole are fixed. Figure 6.10 shows the geometry and

BCs used and the obtained topology. We have used a 20,000 polyhedrons mesh

and a volume constraint of 10% were imposed. Here, 0.9% of design elements

contain intermediate densities.

6

1

0.5

(a)

(b)

Figure 6.10: Thin disk subject to equidistant shear loads problem. (a) Domain
and boundary conditions: fixed at center with 8 equidistant shear loads. (b)
Converged topology with 20,000 polyhedrons.

The results obtained are in accordance with Michell’s analytical result,

which for this problem is composed of 8 Michell’s cantilevers (see Fig. 6.1(b))

uniformly distributed around the disk. We note that the mesh is not symmetric

with respect to the 8 cantilevers.
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6.6
Beam Subject to a Torsional Load

Looking to address torsional problems in three-dimensional structures,

here we consider at a building-like geometry with square cross section, domain

L×L×3L. Four unitary loads were applied at the mid-point of each of the top

edges. For the discretization of the domain, 20,000 polyhedral elements were

used. The final volume was set to 10% of the initial volume.

Firstly, without prior knowledge about the solution, we consider a solid

domain. Then, after learning that the solution lies close to the boundaries,

we create a new mesh based on a hollow building. We note that the volume

fraction was adjusted so the final volume of the structure remained the same.

Figure 6.11 shows the solution. A thin, shell-like, closed structure was expected,

given the volume and fine discretization. The average element volume was

decreased 56% from the solid to the hollow domain.

(a) (b) (c) (d)

Figure 6.11: Box under torsional loads domain. (a) Geometry and BCs; (b)
Result for 20,000 polyhedrons, 10% volume of solid domain; (c) New geometry
and BCs, based on initial result, 0.17L wall thickness; (d) Finer results, using
20,000 polyhedrons and the same final volume.

In order to recover the Michell-like patterns on the hollow domain, a

smaller volume fraction is imposed, as shown in Fig. 6.12(a). In this example,

we have also investigated the use of a filter on the tetrahedral mesh. The filter

radius was set to rmin = 0.1L. Results are shown in Figure 6.12. It can readily

be seen that this filter imposed a minimum length scale to the final topology,

penalizing several thin members, thus leading to a “manufacturable” solution

rather than the analytical one. However, as shown in Fig. 6.12, the final density

field is no longer a true solid/void design, consisting in several elements with
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intermediate densities, as opposed to the optimal solution found in polytopes

with embedding (same density scale as shown in Tab. 6.2). We note that the

solution is not perfectly symmetrical as no symmetry was imposed, nor the

mesh was symmetric. The arbitrary shape of the polyhedrons yielded different

structural member arrangement in each side of the domain.

(a) (b) (c)

Figure 6.12: Other results for the box under torsional load. (a) 10% volume
fraction on hollow domain, displacement colored. Note that the majority of the
elements have ρ = 1; (b) same result as (a), density colored; (c) Solution of
the building under torsional load using a minimum length scale filter of radius
r = 0.1L, density colored.

6.7
Final Remarks

Topology optimization using the embedding technique on an unstruc-

tured polyhedral mesh provided results in agreement with analytical solutions

found in the literature. Further, no instance of checkerboard pattern or one-

node (and one-edge) connection were observed. The members of the structure

intersect nearly at right angles, even for a coarse polyhedral mesh, indicating

that mesh bias is alleviated with polyhedral elements.

Our obtained solutions approach analytical solutions as mesh sizes in-

creases. Figure 6.12 briefly shows that the use of a filter would impose min-

imum length scale constraint thus indicating the elimination of mesh depen-

dency. From our investigation, the obtained topologies using the embedding

resulted in true solid and void design, with very few instances of intermediate

densities (2% of the design elements, at most).
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7
Conclusions and Extensions

In this dissertation, a topology optimization approach using polytopes

is presented. We call it embedding of elements. We have investigated struc-

tural topology optimization using unstructured polyhedral meshes. A tetra-

hedral sub-discretization was used to perform FEA. The optimization design

variables, and therefore the density (which defines the final topology), are asso-

ciated with polyhedrons, thus we benefit of every aspect of using a polyhedral

mesh for topology optimization, but without the complexity and issues asso-

ciated with the finite element analysis on the same domain discretization.

The polytope-based discretization offers several advantages over com-

monly used elements. They allow the representations of complex design do-

mains, better capture of local effects, elimination of one-node and one-edge

connection in final topologies and they also avoid the checkerboard arrange-

ment on optimal solutions. FEA is performed on tetrahedral elements, in which

an efficient implementation is easy to achieve compared to more complex in-

terpolants (harmonic shape functions, for example) [41].

Higher resolution topology, though, means that our solutions may ap-

proach theoretical/analytical solutions as mesh sizes increases. Our approach

provides optimal topologies free of numerical instabilities without the use of

any explicit regularization scheme. The proposed technique is promising for

high fidelity topology optimization, as indicated by fine numerical results. The

embedding is actually a linear mapping that is applied through a mapping ma-

trix, which, in turn, may also be used to impose minimum length scale filters,

for example. This amounts to the definition of a mapping in which can be com-

posed by several linear filters. Further, the code provides facility in applying

features such as symmetry alongside the embedding in the final topology by

means of a composition of linear filters.

Through our approach of embedding of elements, analysis variables

are completely separated from the optimization variables, i.e., routines are

decoupled. Further, we define a super-element as the collection of finite element

that lie in the support of a design element. Super-elements contains information

from displacement and optimization routines. In our computational scheme,
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three distinct fields are defined: displacement, for FEA; design variable, for

optimization; and density, representing the final topology. The presence of

design and density mesh indicates that a number of filters schemes can be

implemented and tested without much effort. The application of filters may

be beneficial in a sense that can further smooth the obtained topology or

impose constraints such as minimum (or maximum) length scale. We note that

filters may also be used in sensitivities. Our embedding framework is broad and

expandable.

From an efficient meshing algorithm for polytope-based discretizations

based on CVT meshes, we have further optimized it for the penalization of

small edges. The method amounts to effectively removing small edges, leading

to a better conditioned stiffness matrix. An iterative solver may not be capable

of solving the finite element system of equations due to the very ill-conditioned

nature of the stiffness matrix obtained from the embedding problem on a CVT-

only mesh. A CVT mesh contains a number of badly shaped polyhedrons, that

can lead to severally distorted tetrahedrons, sometimes making the system of

equations not suitable for an iterative solver. Our mesh optimization procedure,

on the other hand, was able to improve the mesh, increasing the smallest

edge length about 5 orders of magnitude and the condition number associated

with it in 2 orders of magnitude. After the mesh optimization, PCG solver

was able to achieve the correct solution in a practical time. We also note

that our embedding algorithm tetrahedralizes the polyhedrons, thus creating

conforming tetrahedral elements that are suitable for posterior FEA.

We have found, though, that on structured tetrahedral meshes, the PCG

solver (iterative) is faster than PARDISO (direct) for larger meshes, even

when there’s available system RAM. The key point in these meshes is the low

condition number associated with the stiffness matrix, due to the uniformity of

the tetrahedron elements, with low spread on the edge length measure across

the entire mesh. On typical polyhedral meshes used here, the PCG was not

able to beat PARDISO in terms of runtime. Arbitrary polyhedrons geometry

naturally induces a higher standard deviation on the edge length, leading to

worse condition number than on structured grids.

For large scale problems, solving the linear system with a direct solver

is simply not an option. Therefore, one should rely on iterative solvers. From

our experience, problems with more than 25,000 polyhedrons with embedded

tetrahedrons (yielding roughly 1.5 millions tetrahedrons) becomes hard to solve

on a computer with 24GB of RAM using a direct solver (e.g., PARDISO).

We suggest further treatment of the meshes, specially in non-Cartesians

coordinates in order to achieve faster solution on larger problems using iterative
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solvers. Although we have obtained good results, we believe there’s still much

room for improvement on the tetrahedrons quality. Additionally, we point out

that as the optimization process evolves, many elements in the domain starts

taking the lower bound value of the density (or design variable, in this case).

In subsequent iteration, when solving the associated linear elasticity problem,

the associated matrix will have an increased condition number, thus decreasing

the efficiency of the iterative solver.

The numerical results obtained here indicates no presence of checker-

boarding and no one-node connections have been observed, even in coarse

meshes. Further, some structures, in accordance with analytical results, fol-

low the Michell-type patterns. For instance, the beam subject to one load and

torsion problems indicates clear presence of orthogonal structural members.

We conclude by pointing out that polyhedral meshes can be applied

to different topology optimization problems such as on elasticity, structural

dynamics, fluid flow, among several others. Moreover, the polyhedral meshing

and optimization algorithm can be useful for several areas of computational

mechanics. It is able to generate non-uniform meshes with desirable gradation

by selecting an appropriate density function, suitable for fracture mechanics

problems, for example.

7.1
Suggestions for Future Work

With the new ideas introduced by this work, we see much room for

improvement, whether by exploring in depth the new concepts presented or by

incorporating new approaches to the current framework. Below we list some

research directions, including further analysis that could be carried out using

the present tool.

– Extension and improvement of the meshing algorithm regarding boundary

representation in curved domain. Although the current algorithm has sat-

isfactory performance, we see room for improvement in non-Cartesians do-

main representation. Additionally, the implementation of graded meshes

can be easily achieved if such meshes are desired;

– The embedding matrix P, detailed in section 3.6 can be further explored

in the form it is presented in Eq. (3.8). Incorporation of new features to

the allowable design space through the mapping matrix might results in

an elegant and efficient solution;

– For future work, we suggest executing a real-world example. The results

presented in the last chapter validated the polyhedral embedding with

known optimal results. Recommendation for such problems (with known
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solution for comparison) includes high-rise building design [9] and cran-

iofacial bones reconstruction [92];

– Implementation of finite element computations carried out in the same

polyhedral discretization using the recently developed Wachspress 3D

shape functions [31], and compare the results obtained. The current ap-

proach decomposes each polyhedron into approximately 60 tetrahedrons,

which in turn results in expensive FE computation. Wachspress shape

function could represent a significant performance gain;

– Further, with FE computations on polyhedrons, a MTOP [67] approach

could be conceived in which polyhedral elements are embedded into poly-

hedral elements. This approach is promising for achieving high resolution

topologies, while maintaining all the features of a polyhedral mesh and

even incorporating state-of-the-art displacement numerical computations

through polyhedral finite elements;

– Related to last item, a Multiresolution approach could also be imple-

mented using the Virtual Element Method as well, instead of Wachspress

coordinates. It had been already shown that VEM performed well with

polyhedral topology optimization problems [35,38];

– Lastly, we point out that greater performance may be obtained with

parallel implementation, specially with the use of clusters and current-

generation GPUs.
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