INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC



Título: UMA ARQUITETURA DE SPLIT AND MERGE PARA PROCESSAMENTO DISTRIBUIDO DE VÍDEO BASEADO EM CLOUD
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): RAFAEL SILVA PEREIRA

Colaborador(es):  KARIN KOOGAN BREITMAN - Orientador
Número do Conteúdo: 28899
Catalogação:  30/01/2017 Idioma(s):  INGLÊS - ESTADOS UNIDOS

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=28899@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=28899@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.28899

Resumo:
O volume de dados existentes aumenta a cada dia, sendo que, armazenar, processar e transmitir esta informação se torna um grande desafio. O paradigma de Map Reduce, proposto por Dean e Ghemawat (10), é uma forma eficiente para o processamento de grandes volumes de dados utilizando um cluster de computadores e, mais recentemente, infraestruturas no Cloud. Entretanto, implementações tradicionais de Map Reduce não apresentam nem a flexibilidade (para escolher entre diferentes técnicas de codificação na etapa de map), nem o controle (capaz de especificar como organizar os resultados na etapa de reduce), necessários para o processamento de vídeos. Porém, com a proliferação de dispositivos capazes de reproduzir conteúdo em multimídia, e com o aumento da disponibilidade de banda, o consumo deste tipo de conteúdo é cada vez maior, o que mostra a necessidade de termos arquitetura eficientes para lidar com grandes volumes de dados, especificamente vídeos. A arquitetura de Split and Merge, proposta nesta dissertação, generaliza o paradigma de Map Reduce, fornecendo uma solução eficiente que contempla aspectos relevantes às aplicações de processamento intensivo de vídeo. Para validar a arquitetura proposta, são apresentados dois casos de uso onde a mesma foi implementada utilizando uma plataforma de Cloud.

Descrição Arquivo
CAPA, RESUMO, ABSTRACT, SUMÁRIO E LISTAS  PDF
CAPÍTULO 1  PDF
CAPÍTULO 2  PDF
CAPÍTULO 3  PDF
CAPÍTULO 4  PDF
CAPÍTULO 5  PDF
CAPÍTULO 6  PDF
CAPÍTULO 7  PDF
REFERÊNCIAS BIBLIOGRÁFICAS  PDF
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui