$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC|



Título: APROXIMADORES DE SIMULADORES DE RESERVATÓRIO DE PETRÓLEO POR PROGRAMAÇÃO GENÉTICA E APLICAÇÃO NA OTIMIZAÇÃO DE ALTERNATIVAS DE PRODUÇÃO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): GUILHERME CESARIO STRACHAN

Colaborador(es):  MARCO AURELIO CAVALCANTI PACHECO - Orientador
DOUGLAS MOTA DIAS - Coorientador
Número do Conteúdo: 24794
Catalogação:  22/06/2015 Idioma(s):  PORTUGUÊS - BRASIL

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=24794@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=24794@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.24794

Resumo:
A definição da estratégia de produção de petróleo é uma tarefa muito importante que consiste em um processo bastante complexo devido à grande quantidade de variáveis envolvidas. Estas variáveis estão relacionadas com características geológicas, fatores econômicos e decisões como alocação de poços, número de poços produtores e injetores, condições operacionais e cronograma de abertura de poços. No contexto da otimização da produção de petróleo, o objetivo é encontrar a melhor configuração de poços que contribua para maximizar, na maioria dos casos, o valor presente líquido (VPL). Esse valor é calculado, principalmente, a partir do óleo, gás e água produzidos do campo, que são encontrados através do uso do simulador de reservatórios. Porém, vários parâmetros e variáveis devem ser prefixados e inseridos no sistema de simulação para que esses valores de produção sejam previstos. Esse processo geralmente exige um alto custo computacional para modelar as transferências de fluidos dentro do reservatório simulado. Assim, o uso de simuladores pode ser substituído por aproximadores. Neste estudo, eles são desenvolvidos através da Programação Genética Linear com Inspiração Quântica, uma técnica da Computação Evolucionária. Esses aproximadores serão utilizados para substituir a simulação do reservatório no processo de otimização da localização e tipo de poços a serem perfurados em um campo petrolífero. Para a construção dos proxies de reservatório, as amostras, originadas utilizando a técnica do Hipercubo Latino, foram simuladas para a criação da base de dados. O modelo para criação de aproximadores foi testado em um reservatório sintético. Dois tipos de otimização foram realizados para a validação do modelo. A primeira foi a otimização determinística e a segunda uma otimização sob incerteza considerando três diferentes cenários geológicos, um caso onde o número de simulações é extremamente alto. Os resultados encontrados apontam que o modelo para a criação de proxies consegue bom desempenho na substituição dos simuladores devido aos baixos erros encontrados e na considerável redução do custo computacional.

Descrição Arquivo
NA ÍNTEGRA  PDF
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui