INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC



Título: MODELOS DE FATORAÇÃO MATRICIAL PARA RECOMENDAÇÃO DE VÍDEOS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): BRUNO DE FIGUEIREDO MELO E SOUZA

Colaborador(es):  RUY LUIZ MILIDIU - Orientador
Catalogação:  14/03/2012 Idioma(s):  PORTUGUÊS - BRASIL

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=19273@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=19273@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.19273

Resumo:
A recomendação de itens a partir do feedback implícito dos usuários consiste em identificar padrões no interesse dos usuários por estes itens a partir de ações dos usuários, tais como cliques, interações ou o consumo de conteúdos específicos. Isso, de forma a prover sugestões personalizadas que se adéquem ao gosto destes usuários. Nesta dissertação, avaliamos a performance de alguns modelos de fatoração matricial otimizados para a tarefa de recomendação a partir de dados implícitos no consumo das ofertas de vídeos da Globo.com. Propusemos tratar estes dados de consumo como indicativos de intenção de um usuário em assistir um vídeo. Além disso, avaliamos como os vieses únicos dos usuários e vídeos, e sua variação temporal impactam o resultado das recomendações. Também sugerimos a utilização de um modelo de fatoração incremental otimizado para este problema, que escala linearmente com o tamanho da entrada, isto é, com os dados de visualizações e quantidade de variáveis latentes. Na tarefa de prever a intenção dos usuários em consumir um conteúdo novo, nosso melhor modelo de fatoração apresenta um RMSE de 0,0524 usando o viés de usuários e vídeos, assim como sua variação temporal.

Descrição Arquivo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS  PDF
CAPÍTULO 1  PDF
CAPÍTULO 2  PDF
CAPÍTULO 3  PDF
CAPÍTULO 4  PDF
CAPÍTULO 5  PDF
CAPÍTULO 6  PDF
REFERÊNCIAS BIBLIOGRÁFICAS  PDF
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui