XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: FUZZYFUTURE: FERRAMENTA DE PREVISÃO DE SÉRIES TEMPORAIS BASEADA EM SISTEMA HÍBRIDO FUZZY-GENÉTICO Autor: VICTOR BARBOZA BRITO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
MARLEY MARIA BERNARDES REBUZZI VELLASCO - ORIENTADOR
RICARDO TANSCHEIT - COORIENTADOR
Nº do Conteudo: 18536
Catalogação: 20/10/2011 Liberação: 20/10/2011 Idioma(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=18536&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=18536&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.18536
Resumo:
Título: FUZZYFUTURE: FERRAMENTA DE PREVISÃO DE SÉRIES TEMPORAIS BASEADA EM SISTEMA HÍBRIDO FUZZY-GENÉTICO Autor: VICTOR BARBOZA BRITO
RICARDO TANSCHEIT - COORIENTADOR
Nº do Conteudo: 18536
Catalogação: 20/10/2011 Liberação: 20/10/2011 Idioma(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=18536&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=18536&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.18536
Resumo:
A previsão de séries temporais está presente em diversas áreas como os
setores elétrico, financeiro, a economia e o industrial. Em todas essas áreas, as
previsões são fundamentais para a tomada de decisões no curto, médio e longo
prazo. Certamente, as técnicas estatísticas são as mais utilizadas em problemas
de previsão de séries, principalmente por apresentarem um maior grau de
interpretabilidade, garantido pelos modelos matemáticos gerados. No entanto,
técnicas de inteligência computacional têm sido cada vez mais aplicadas em
previsão de séries temporais no meio acadêmico, com destaque para as Redes
Neurais Artificiais (RNA) e os Sistemas de Inferência Fuzzy (FIS). Muitos são os
casos de sucesso de aplicação de RNAs, porém os sistemas desenvolvidos são
do tipo caixa preta, inviabilizando uma melhor compreensão do modelo final de
previsão. Já os FIS são interpretáveis, entretanto sua aplicação é comprometida
pela dependência de criação de regras por especialistas e pela dificuldade em
ajustar os diversos parâmetros como o número e formato de conjuntos e o
tamanho da janela. Além disso, a falta de pessoas com o conhecimento
necessário para o desenvolvimento e utilização de modelos baseados nessas
técnicas também contribui para que estejam pouco presentes na rotina de
planejamento e tomada de decisão na maioria das organizações. Este trabalho
tem como objetivo desenvolver uma ferramenta computacional capaz de realizar
previsões de séries temporais, baseada na teoria de Sistemas de Inferência
Fuzzy, em conjunto com a otimização de parâmetros por Algoritmos Genéticos,
oferecendo uma interface gráfica intuitiva e amigável.
Descrição | Arquivo |
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS | |
CAPÍTULO 1 | |
CAPÍTULO 2 | |
CAPÍTULO 3 | |
CAPÍTULO 4 | |
CAPÍTULO 5 | |
CAPÍTULO 6 | |
REFERÊNCIAS BIBLIOGRÁFICAS |