$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: APLICAÇÃO DE REDES NEURAIS ARTIFICIAIS NO DIAGNÓSTICO DE FALHAS DE TURBINAS A GÁS
Autor: MARILIA PAULA E SILVA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  SERGIO LEAL BRAGA - ORIENTADOR
SANDRO BARROS FERREIRA - COORIENTADOR

Nº do Conteudo: 16580
Catalogação:  26/11/2010 Liberação: 26/11/2010 Idioma(s):  PORTUGUÊS - BRASIL
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=16580&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=16580&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.16580

Resumo:
A deterioração do desempenho da turbina a gás é resultado de vários tipos de falhas, como acúmulo de sujeira, erosão e corrosão, que afetam os componentes no caminho do gás, sendo os principais o compressor, o combustor e a turbina. No presente trabalho é avaliado o desempenho de Redes Neurais Artificiais (RNA) no emprego de diagnóstico de falha de turbinas a gás. Todas as redes projetadas são do tipo MLP (multi-layer perceptron) com algoritmo de retropropagação (backpropagation). Para cada função de diagnóstico, várias arquiteturas foram testadas, modificando parâmetros de rede como o número de camadas escondidas e o número de neurônios em cada uma destas camadas. As RNAs para diagnóstico de falhas foram aplicadas ao modelo termodinâmico de uma turbina a gás industrial. Este modelo foi responsável pela criação de dados da usina saudável e também degradada, utilizados para o treinamento e validação das redes. Com os resultados obtidos do treinamento das redes é possível mostrar que as mesmas são capazes de detectar, isolar e quantificar falhas de componentes de turbinas a gás de forma satisfatória.

Descrição Arquivo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS  PDF
CAPÍTULO 1  PDF
CAPÍTULO 2  PDF
CAPÍTULO 3  PDF
CAPÍTULO 4  PDF
CAPÍTULO 5  PDF
CAPÍTULO 6  PDF
REFERÊNCIAS BIBLIOGRÁFICAS E APÊNDICES  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui