$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: MINERAÇÃO DE TEXTOS NA COLETA INTELIGENTE DE DADOS NA WEB
Autor: FABIO DE AZEVEDO SOARES
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  MARLEY MARIA BERNARDES REBUZZI VELLASCO - ORIENTADOR
EMMANUEL PISECES LOPES PASSOS - COORIENTADOR

Nº do Conteudo: 13212
Catalogação:  31/03/2009 Liberação: 31/03/2009 Idioma(s):  PORTUGUÊS - BRASIL
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=13212&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=13212&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.13212

Resumo:
Esta dissertação apresenta um estudo sobre a utilização de Mineração de Textos no processo de coleta inteligente de dados na Web. O método mais comum de obtenção de dados na Web consiste na utilização de web crawlers. Web crawlers são softwares que, uma vez alimentados por um conjunto inicial de URLs (sementes), iniciam o procedimento metódico de visitar um site, armazenálo em disco e extrair deste os hyperlinks que serão utilizados para as próximas visitas. Entretanto, buscar conteúdo desta forma na Web é uma tarefa exaustiva e custosa. Um processo de coleta inteligente de dados na Web, mais do que coletar e armazenar qualquer documento web acessível, analisa as opções de crawling disponíveis para encontrar links que, provavelmente, fornecerão conteúdo de alta relevância a um tópico definido a priori. Na abordagem de coleta de dados inteligente proposta neste trabalho, tópicos são definidos, não por palavras chaves, mas, pelo uso de documentos textuais como exemplos. Em seguida, técnicas de pré-processamento utilizadas em Mineração de Textos, entre elas o uso de um dicionário thesaurus, analisam semanticamente o documento apresentado como exemplo. Baseado nesta análise, o web crawler construído será guiado em busca do seu objetivo: recuperar informação relevante sobre o documento. A partir de sementes ou realizando uma consulta automática nas máquinas de buscas disponíveis, o crawler analisa, igualmente como na etapa anterior, todo documento recuperado na Web. Então, é executado um processo de comparação entre cada documento recuperado e o documento exemplo. Depois de obtido o nível de similaridade entre ambos, os hyperlinks do documento recuperado são analisados, empilhados e, futuramente, serão desempilhados de acordo seus respectivos e prováveis níveis de importância. Ao final do processo de coleta de dados, outra técnica de Mineração de Textos é aplicada, objetivando selecionar os documentos mais representativos daquela coleção de textos: a Clusterização de Documentos. A implementação de uma ferramenta que contempla as heurísticas pesquisadas permitiu obter resultados práticos, tornando possível avaliar o desempenho das técnicas desenvolvidas e comparar os resultados obtidos com outras formas de recuperação de dados na Web. Com este trabalho, mostrou-se que o emprego de Mineração de Textos é um caminho a ser explorado no processo de recuperação de informação relevante na Web.

Descrição Arquivo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS  PDF
CAPÍTULO 1  PDF
CAPÍTULO 2  PDF
CAPÍTULO 3  PDF
CAPÍTULO 4  PDF
CAPÍTULO 5  PDF
CAPÍTULO 6  PDF
CAPÍTULO 7  PDF
REFERÊNCIAS BIBLIOGRÁFICAS  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui