$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: ALGORITMOS EVOLUTIVOS COM INSPIRAÇÃO QUÂNTICA PARA PROBLEMAS COM REPRESENTAÇÃO NUMÉRICA
Autor: ANDRE VARGAS ABS DA CRUZ
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  MARCO AURELIO CAVALCANTI PACHECO - ORIENTADOR
MARLEY MARIA BERNARDES REBUZZI VELLASCO - COORIENTADOR

Nº do Conteudo: 10640
Catalogação:  25/09/2007 Liberação: 25/09/2007 Idioma(s):  PORTUGUÊS - BRASIL
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=10640&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=10640&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.10640

Resumo:
Desde que foram propostos como método de otimização, os algoritmos evolutivos têm sido usados com sucesso para resolver problemas complexos nas mais diversas áreas como, por exemplo, o projeto automático de circuitos e equipamentos, planejamento de tarefas, engenharia de software e mineração de dados, entre tantos outros. Este sucesso se deve, entre outras coisas, ao fato desta classe de algoritmos não necessitar de formulações matemáticas rigorosas a respeito do problema que se deseja otimizar, além de oferecer um alto grau de paralelismo no processo de busca. No entanto, alguns problemas são computacionalmente custosos no que diz respeito à avaliação das soluções durante o processo de busca, tornando a otimização por algoritmos evolutivos um processo lento para situações onde se deseja uma resposta rápida do algoritmo (como por exemplo, problemas de otimização online). Diversas maneiras de se contornar este problema, através da aceleração da convergência para boas soluções, foram propostas, entre as quais destacam-se os Algoritmos Culturais e os Algoritmos Co-Evolutivos. No entanto, estes algoritmos ainda têm a necessidade de avaliar muitas soluções a cada etapa do processo de otimização. Em problemas onde esta avaliação é computacionalmente custosa, a otimização pode levar um tempo proibitivo para alcançar soluções ótimas. Este trabalho propõe um novo algoritmo evolutivo para problemas de otimização numérica (Algoritmo Evolutivo com Inspiração Quântica usando Representação Real - AEIQ- R), inspirado no conceito de múltiplos universos da física quântica, que permite realizar o processo de otimização com um menor número de avaliações de soluções. O trabalho apresenta a modelagem deste algoritmo para a solução de problemas benchmark de otimização numérica, assim como no treinamento de redes neurais recorrentes em problemas de aprendizado supervisionado de séries temporais e em aprendizado por reforço em tarefas de controle. Os resultados obtidos demonstram a eficiência desse algoritmo na solução destes tipos de problemas.

Descrição Arquivo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS  PDF
CAPÍTULO 1  PDF
CAPÍTULO 2  PDF
CAPÍTULO 3  PDF
CAPÍTULO 4  PDF
CAPÍTULO 5  PDF
REFERÊNCIAS BIBLIOGRÁFICAS E ANEXOS  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui