XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: INFERENCE OF THE QUALITY OF DESTILLATION PRODUCTS USING ARTIFICIAL NEURAL NETS AND FILTER OF EXTENDED KALMAN Autor: LEONARDO GUILHERME CAETANO CORREA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
CARLOS ROBERTO HALL BARBOSA - ADVISOR
Nº do Conteudo: 7588
Catalogação: 19/12/2005 Liberação: 19/12/2005 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7588&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7588&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.7588
Resumo:
Título: INFERENCE OF THE QUALITY OF DESTILLATION PRODUCTS USING ARTIFICIAL NEURAL NETS AND FILTER OF EXTENDED KALMAN Autor: LEONARDO GUILHERME CAETANO CORREA
Nº do Conteudo: 7588
Catalogação: 19/12/2005 Liberação: 19/12/2005 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7588&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7588&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.7588
Resumo:
Nowadays, scientific and industrial interest on the
development of nonlinear
control systems increases day after day. However, before
these models
become reliable, they must pass through a hard and
expensive implementation
process. In this way, studies involving decision support
methods try to develop
low cost intelligent applications to build up advanced
industrial control systems
with excellent results, as in the petrochemical industry.
In the distillation of oil
derivatives, for example, it is very common the use of
laboratorial sample
analysis to identify if a substance has its physical-
chemistry characteristics in
accordance to international production rules. Besides, the
analyses results allow
the adjustment of production plant instruments, so that
the process reaches a
thorough control, and, consequently, a final product with
higher quality. However,
although laboratory analyses are more accurate to evaluate
final product quality,
sometimes it demands many hours of analysis, delaying the
adjustments in the
production equipment. In this manner, the process
efficiency is reduced and
some products have its production period increased because
they should have its
composition corrected with other reagents. Another
disadvantage is the
equipments´ maintenance costs and calibration, since these
instruments are
installed in hostile environments that may cause
unaccurate field measurements,
affecting also operator´s action. On the other hand, among
the most applied
intelligent systems in chemical industry process are the
artificial neural networks.
Their structure is based on biological neurons and in the
parallel processing of
the human brain. Thus, they are capable of storing and
employing experimental
knowledge presented to it earlier. Despite good results
presented by neural
network structures, there is a disadvantage related to the
need for retraining
whenever the process changes its operational point, for
example, when the raw
material suffers any change on its physical-chemistry
characteristics. The
proposed solution for this problem is a hybrid method that
joins the advantages of
a neural network structure with the ability of a
stochastic filter, known as
extended Kalman filter. This filter acts in the synaptic
weights, updating them online and allowing the system to
constantly adapt itself to process changes. It also
uses specific pre-processing methods to eliminate scale
mistakes, noises in
instruments readings and incompatibilities between system
input and output,
which are measured with different acquisition frequencies;
the first one in minutes
and the second one in hours. Besides, variable selection
techniques were used
to enhance neural network performance in terms of
inference error and
processing time. The method´s performance was evaluated in
each process step
through different test groups used to verify what each
step contributes to the final
result. The most important test, executed to analyse the
system answer in
relation to a simple neural network, was the one which
simulated process
changes. For that end, the network was submitted to a test
group with output
samples added to a ramp signal. Experiments demonstrated
that a system using
simple neural networks presented results with MAPE error
of about 1,66%. On
the other hand, when using neural networks associated to
an extended Kalman
filter, the error decreases to 0,8%. In this way, it´s
confirmed that Kalman filter
does not destroy the original neural network quality and
also adapts it to process
changes, allowing the output inference without the
necessity of network
retraining.
Descrição | Arquivo |
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS | |
CHAPTER 1 | |
CHAPTER 2 | |
CHAPTER 3 | |
CHAPTER 4 | |
CHAPTER 5 | |
CHAPTER 6 | |
REFERENCES |