$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Formato DC | MARC |



Título: STRAWBERRY MONITORING: DETECTION, CLASSIFICATION, AND VISUAL SERVOING
Autor: GABRIEL LINS TENORIO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  WOUTER CAARLS - ADVISOR
Nº do Conteudo: 67743
Catalogação:  27/08/2024 Liberação: 25/06/2025 Idioma(s):  ENGLISH - UNITED STATES
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=67743&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=67743&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.67743

Resumo:
The present work begins with an investigation into the use of 3D Deep Learning models for enhanced strawberry detection in polytunnels. We focus on two main tasks: firstly, fruit detection, comparing the standard MaskRCNN with an adapted version that integrates depth information (MaskRCNN-D). Both models are capable of classifying strawberries based on their maturity (ripe, unripe) and health status (affected by disease or fungus). Secondly, we focus on identifying the widest region of strawberries, fulfilling a requirement for a spectrometer system capable of measuring their sugar content. In this task, we compare a contour-based algorithm with an enhanced version of the VGG-16 model. Our findings demonstrate that integrating depth data into the MaskRCNN-D results in up to a 13.7 percent improvement in mAP across various strawberry test sets, including simulated ones, emphasizing the model s effectiveness in both real-world and simulated agricultural scenarios. Furthermore, our end-to-end pipeline approach, which combines the fruit detection (MaskRCNN-D) and widest region identification models (enhanced VGG-16), shows a remarkably low localization error, achieving down to 11.3 pixels of RMSE in a 224 × 224 strawberry cropped image. Finally, we explore the challenge of enhancing the quality of the data readings from the spectrometer through automatic sensor positioning. To this end, we designed and trained a Deep Learning model with simulated data, capable of predicting the sensor accuracy based on a given image of the strawberry and the subsequent displacement of the sensor s position. Using this model, we calculate the gradient of the accuracy output with respect to the displacement input. This results in a vector indicating the direction and magnitude with which the sensor should be moved to improve the sensor signal accuracy. A Visual Servoing solution based on this vector provided a significant increase in the average sensor accuracy and improvement in consistency across new simulated iterations.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui