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Abstract

Lins Tenório, Gabriel; Caarls, Wouter (Advisor). Strawberry Mo-
nitoring: Detection, Classification, and Visual Servoing. Rio
de Janeiro, 2024. 105p. Tese de doutorado – Departamento de Enge-
nharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

The present work begins with an investigation into the use of 3D Deep
Learning models for enhanced strawberry detection in polytunnels. We
focus on two main tasks: firstly, fruit detection, comparing the standard
MaskRCNN with an adapted version that integrates depth information
(MaskRCNN-D). Both models are capable of classifying strawberries based
on their maturity (ripe, unripe) and health status (affected by disease or
fungus). Secondly, we focus on identifying the widest region of strawberries,
fulfilling a requirement for a spectrometer system capable of measuring
their sugar content. In this task, we compare a contour-based algorithm
with an enhanced version of the VGG-16 model. Our findings demonstrate
that integrating depth data into the MaskRCNN-D results in up to a
13.7% improvement in mAP across various strawberry test sets, including
simulated ones, emphasizing the model’s effectiveness in both real-world
and simulated agricultural scenarios. Furthermore, our end-to-end pipeline
approach, which combines the fruit detection (MaskRCNN-D) and widest
region identification models (enhanced VGG-16), shows a remarkably low
localization error, achieving down to 11.3 pixels of RMSE in a 224 × 224
strawberry cropped image. Finally, we explore the challenge of enhancing
the quality of the data readings from the spectrometer through automatic
sensor positioning. To this end, we designed and trained a Deep Learning
model with simulated data, capable of predicting the sensor accuracy based
on a given image of the strawberry and the subsequent displacement of
the sensor’s position. Using this model, we calculate the gradient of the
accuracy output with respect to the displacement input. This results in a
vector indicating the direction and magnitude with which the sensor should
be moved to improve the sensor signal accuracy. A Visual Servoing solution
based on this vector provided a significant increase in the average sensor
accuracy and improvement in consistency across new simulated iterations.

Keywords
Deep Learning-Based Visual Servoing; 3D Instance Segmentation;

Strawberry Detection; Precision Agriculture;



Resumo

Lins Tenório, Gabriel; Caarls, Wouter. Monitoramento de Mo-
rangos: Detecção, Classificação e Servovisão. Rio de Janeiro,
2024. 105p. Tese de Doutorado – Departamento de Engenharia Elé-
trica, Pontifícia Universidade Católica do Rio de Janeiro.

O presente trabalho inicia com uma investigação sobre o uso de modelos
de Aprendizado Profundo 3D para a detecção aprimorada de morangos em
túneis de cultivo. Focou-se em duas tarefas principais: primeiramente, a
detecção de frutas, comparando o modelo original MaskRCNN com uma
versão adaptada que integra informações de profundidade (MaskRCNN-D).
Ambos os modelos são capazes de classificar morangos baseados em sua
maturidade (maduro, não maduro) e estado de saúde (afetados por doença
ou fungo). Em segundo lugar, focou-se em identificar a região mais ampla
dos morangos, cumprindo um requisito para um sistema de espectrômetro
capaz de medir o conteúdo de açúcar das frutas. Nesta tarefa, comparou-
se um algoritmo baseado em contorno com uma versão aprimorada do
modelo VGG-16. Os resultados demonstram que a integração de dados
de profundidade no MaskRCNN-D resulta em até 13.7% de melhoria no
mAP através de diversos conjuntos de teste de morangos, incluindo os
simulados, enfatizando a eficácia do modelo em cenários agrícolas reais e
simulados. Além disso, nossa abordagem de solução ponta-a-ponta, que
combina a detecção de frutas (MaskRCNN-D) e os modelos de identificação
da região mais ampla (VGG-16 aprimorado), mostra um erro de localização
notavelmente baixo, alcançando até 11.3 pixels de RMSE em uma imagem
de morango cortada de 224 × 224. Finalmente, explorou-se o desafio de
aprimorar a qualidade das leituras de dados do espectrômetro através do
posicionamento automático do sensor. Para tal, projetou-se e treinou-se um
modelo de Aprendizado Profundo com dados simulados, capaz de prever
a acurácia do sensor com base em uma imagem dada de um morango e o
deslocamento desejado da posição do sensor. Usando este modelo, calcula-se
o gradiente da saída de acurácia em relação à entrada de deslocamento. Isso
resulta em um vetor indicando a direção e magnitude com que o sensor deve
ser movido para melhorar a acurácia do sinal do sensor. Propôs-se então
uma solução de Servo Visão baseada neste vetor, obtendo um aumento
significativo na acurácia média do sensor e melhoria na consistência em
novas iterações simuladas.
Palavras-chave

Servo Visão Baseado em Aprendizado Profundo; Segmentação de Ins-
tâncias em 3D; Detecção de Morangos; Agricultura de Precisão;
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1
Introduction

The importance of inspecting strawberries for signs of adequate ripening,
nutrient absorption, and absence of diseases is vital for ensuring their overall
quality. Quality maintenance also reduces waste due to spoilage and strength-
ens brand integrity, which is crucial in the competitive strawberry market.
As research continues to evolve, the direct assessment of strawberry quality
in outdoor as well as indoor fields has become a significant area of research
[1, 2]. However, given the scarcity of labor, as is the case in Europe, and the
time-consuming nature of manually operating sophisticated equipment, the
adoption of autonomous systems stands out. Autonomous inspection systems
can offer valuable agricultural information to farmers [3] and drastically reduce
the manual labor involved in monitoring strawberries. An example of such a
system is mobile manipulators, which commonly use an Unmanned Ground
Vehicle (UGV) equipped with one or more manipulators. By integrating ma-
nipulators with UGVs, mobile manipulators provide enhanced versatility and
adaptability, allowing for the performance of a variety of complex tasks. This
integration enables addressing key agricultural challenges more effectively than
UGVs alone, which are typically limited to basic mobility functions. These
manipulators, integral components of mobile manipulators, are outfitted with
sensors, cameras, or grippers, enabling them to perform tasks ranging from
monitoring to the harvesting of strawberries. This application is exemplified
in the work of Ge et al. [4], which employs mobile manipulators for harvesting
strawberries.

In terms of quality perception, the literature contains numerous stud-
ies that employ simple cameras integrated with advanced Deep Learning al-
gorithms for agricultural tasks. These include estimating the maturation of
tomato clusters [5], detecting diseases and pests in strawberries [2], and as-
sessing the quality of various fruits [6], all of which have shown promising
results. On the other hand, there are advancements and innovations directly
in sensor technology, as exemplified by a novel NIR Interaction Spectroscopy
prototype, which is capable of estimating the dry matter content in potatoes
without physical contact [7]. In a later development, Wold et al. [8] redesigned
and recalibrated the spectrometer system for use in measuring the sugar con-
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tent in strawberries.

1.1
Specific Challenges

Beyond quality sensing, a significant challenge in precision agriculture
lies in the accurate autonomous location of fruits within complex agricultural
environments. This has led to innovative efforts in developing technologies
capable of automatically locating fruits in the field. One example is the work
by Lins Tenorio et al. [5], which developed a system for automatic detection,
tracking, and counting of tomato clusters using object detection techniques
in continuous scenes of plant rows. Another example relates to strawberry
detection for automated harvesting, as demonstrated by Ge et al. [4], who
employed an instance segmentation algorithm to locate as well as classify
ripe and unripe strawberries. Furthering this field, Le Louëdec and Cielniak
[9] proposed a 3D semantic segmentation model to locate strawberries in
polytunnels.

Regarding the use of spectrometers for autonomous inspection, specif-
ically the one that measures sugar content on strawberries, there is a re-
quirement for an experimentally ideal sensor position for accurate readings,
preferably on the area of the strawberry with the largest horizontal surface [8].
Consequently, a system that can accurately position the sensor at this specific
location through autonomous robotic arm positioning becomes crucial. More-
over, even with knowledge of the ideal experimental position, there are still
variables under investigation, including occlusions by vegetation and techni-
cal uncertainties like specular occlusion and photon shot noise. Theoretically,
these challenges can be addressed by implementing advancements that enable
the robotic arm to precisely position the sensor in a way that minimizes the
influence of these variables, thereby directly optimizing the signal quality from
the spectrometer.

1.2
Proposed Solution

The present work initially introduces a vision system, based on Deep
Learning algorithms, tailored for accurately positioning a NIR Spectrometer
for the non-invasive sugar content estimation of strawberries in polytunnels.
Our vision system is based on two primary components: fruit and widest
region detectors. The fruit detector is responsible for locating strawberries
in instances and classifying them into ripe, unripe, and affected by disease or
fungus categories. Once the strawberries are identified by the fruit detector,
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the vision system smoothly transitions to the widest region detector, aiming
to pinpoint the widest part of the strawberry, which is a crucial requirement
for precise quality assessment. Strawberry scenes in polytunnel environments
are naturally complex, influenced by variations in lighting, occlusion, and
the diversity of the strawberries. This complexity necessitates the application
of an advanced technique such as Deep Learning, which offers sophisticated
pattern recognition capabilities essential for adapting to the complexity of
agricultural scenes. This approach significantly outperforms simpler computer
vision methods. Our Deep Learning-based vision system undergoes training
and validation using real-world data, ensuring it is well-prepared for practical
applications. Subsequently, its performance is also validated in simulations to
encompass a diverse range of scenarios. With the vision system evaluated,
we conduct both simulated and real tests on a manipulator to assess the
sensor’s movement towards the desired positions. Figure 1.1 shows the mobile
manipulator employed in this work and the detection of strawberries in a
polytunnel environment using our Deep Learning-based vision system.

Figure 1.1: The left image shows the mobile manipulator employed in this work,
comprising a UGV and a manipulator. The manipulator is equipped with a
3D camera for sensing and detecting strawberries, and a NIR spectrometer for
the non-invasive sugar content estimation. The right image shows an example
of strawberry detection in a polytunnel environment using the Deep Learning-
based vision system.

In the subsequent phase, we explore our novel solution to optimize the
signal quality obtained by the spectrometer through the precise positioning
of the sensor in front of strawberries. Initially, we design a reward function
capable of simulating the spectrometer signal accuracy, which penalizes, with
continuous values, the sensor positioning. We gather data from each point of a
set of strawberries through grid scanning, saving the camera’s image and the
sensor accuracy for each position on each strawberry. Secondly, we designed
a Deep Learning Model and trained it using the dataset developed, which we
have named the ’Accuracy Estimation Model’. The trained model is capable
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of predicting the sensor accuracy that the sensor will return when moving the
sensor to another position. Thirdly, we propose a novel approach based on the
gradient of this model, capable of pointing to the direction that will increase the
sensor measured accuracy using just an image as input. We apply this approach
iteratively in a Visual Servoing control loop so that at the end of the iterations,
the sensor accuracy for a given strawberry is optimized. Our proposed visual
servoing method is a type of Extremum Seeking Control [10] for function
maximization. However, instead of using visual servoing to a directly visible
feature, it uses the gradient of the model to improve sensor positioning towards
optimizing the predicted sensor accuracy. To the best of our knowledge, this
is the first time such an approach has been implemented and documented
in the literature. Additionally, we present a more simplified solution that
utilizes predictions of sensor accuracy from the Accuracy Estimation Model for
different displacements, thereby enabling the direct positioning of the sensor
to the location of maximum sensor accuracy.

Next, this work explores sections on the Contributions and the Organi-
zation of this Thesis.

1.3
Contributions of this Thesis

The key contributions of this thesis are detailed below:

– Implemented a strawberry instance detector and developed a sensing ap-
proach for safe manipulation in autonomous strawberry picking, identify-
ing safe regions for manipulation based on rectified instance segmentation
masks [4];

– Demonstrated the relevance of employing Deep Learning models with 3D
data inputs for enhanced performance in strawberry instance detection,
additionally improving the identification of clustered strawberries [11];

– Implemented a strawberry detection pipeline designed to solve some of
the positioning constraints of a Spectroscopic sensor able to provide sugar
content data on strawberries [11];

– Assembled and enhanced a simulation environment to closely mirror real-
world conditions by integrating an Unmanned Ground Vehicle (UGV),
robot arm, and 3D camera, along with polytunnel and a strawberry
generator. Custom enhancements included a halogen projector setup
for the spectrometer system and sensing capabilities for simulating the
Spectroscopic sensor accuracy, along with improvements to strawberry
generation to accommodate various heights;
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– Proposed a novel Visual Servoing methodology leveraging the gradient
of a Deep Learning model to iteratively optimize the signal accuracy of
the Spectroscopic sensor through autonomous sensor positioning.

– Designed a Deep Learning model trained to predict the accuracy of a
spectrometer for a given image and desired displacement. This model is
also tailored for use with the proposed gradient method.

– Developed a specific dataset for the designed model, meeting the require-
ments for sensor accuracy prediction and gradient computation for sensor
accuracy optimization.

1.4
Organization of the Thesis

This Doctoral thesis is organized by first presenting the background in
Chapter 2, which initially suggests some key readings, then proceeds to provide
basic concepts and discusses the problems in precision agriculture on which this
thesis is based. Following, Chapter 3 delves into the datasets employed in this
thesis, and Chapter 4 discusses the models and methods used. Next, Chapter
5 provides details on our experiments, while Chapter 6 evaluates the results.
Continuing, Chapter 7 wraps up the study with conclusions and Chapter 8
provides a foundation for future work. Lastly, Chapter 9 lists the publications
made during the PhD journey.



2
Background

In order to better understand the concepts explained in this project, we
recommend some Deep Learning books for beginners and intermediate readers
in this area. The first recommendation is available online [12]. The second and
third recommendations are, respectively, the classic [13] and the current [14]
Deep Learning books. For the integration of computer vision with Robotics,
especially in the context of visual control or visual servoing, we recommend a
comprehensive source [15].

2.1
Deep Learning

The field of image analysis has advanced significantly in the past decade,
moving away from traditional methods that largely relied on computer vi-
sion techniques. These traditional techniques often required handcrafted fea-
tures and time-consuming manual adjustments tailored to specific datasets.
For instance, Belhumeur et al. [16] demonstrated the use of eigenfaces in fa-
cial recognition, highlighting the necessity for carefully designed features in
early computer vision. Similarly, Viola and Jones [17] developed a rapid object
detection framework that became foundational due to its effective feature de-
sign. Lowe’s SIFT algorithm [18] further exemplifies this by providing robust
feature detection in varied image contexts. Lastly, Dalal and Triggs’ work on
histogram of oriented gradients [19] showcased how tailored feature extraction
can significantly improve the accuracy of human detection algorithms. Later,
with the advances in Graphics Processing Units (GPUs) [20], which signif-
icantly enhanced computational speed and efficiency, and the emergence of
Deep Learning, particularly Convolutional Neural Networks (CNNs) [21, 22],
the scenario has been essentially transformed.

CNNs are able to automate the feature extraction process, learning
spatial structures directly from image pixels. The process involves the use of
convolution, an algebraic operation that is applied in parallel across the image
using multiple kernels. These kernels are essentially trainable filters that adapt
during the learning process to become specialized in extracting different types
of image features. The architecture of these networks typically comprises a
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series of convolutional layers, designed to recognize patterns at varying levels of
complexity, and pooling layers, which reduce data dimensions while retaining
dominant features. The convolutional layers with their kernels, through the
training process, enable the network to progress from recognizing generic
patterns like edges to identifying more complex, dataset-specific attributes,
also known as features.

In terms of application, CNNs are frequently used in supervised learning
tasks, where images as inputs are matched with various types of labels,
such as binary values, continuous values (which could be scalar or vector),
bounding box coordinates, masks or a combination of these. During the
training phase, these input/label pairs are used by Deep Learning models
to effectively accomplish the specified tasks as Image Classification, Image
Regression, Semantic and Instance Segmentations which will be explored in the
following subsections. Additionally, we explore the theory of the gradient in a
Neural Network, which is important for understanding the approach proposed
in this work.

2.1.1
Image Classification and Regression

In Image Classification, the objective is to determine the probabilities
that an image belongs to certain established categories, such as the classifica-
tion of strawberries. Models such as VGGNet [23], AlexNet [22], ResNet [24],
and EfficientNet [25] have demonstrated remarkable success in such classifi-
cation tasks. On the other hand, regression tasks require modifications to the
output layer of the network aiming for the model to predict and interpolate
one or more continuous values associated with an image. An example of this
is determining the coordinates of the widest regions of the strawberries.

2.1.2
Semantic and Instance Segmentations

Semantic segmentation is a technique that divides an image into regions
that are semantically comparable, classifying each pixel of the image according
to its respective class. For instance, in agricultural applications, this method
can be used to categorize pixels related to different strawberry classes. Archi-
tectures such as FCN [26], U-Net [27] and SegNet [28] exemplify the implemen-
tation of this technique. Expanding upon this idea, a paper by Le Louëdec et al.
[9] introduced a novel Semantic Segmentation architeture to achieve effective
3D segmentation of strawberries in both agricultural and simulated polytun-
nels using RGB-D data (combining color and depth information). However,
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while effective, semantic segmentation alone may encounter limitations, par-
ticularly in the precise 3D localization of individual objects, as needed in tasks
like automated harvesting.

To address these limitations, Instance Segmentation advances the con-
cepts of Semantic Segmentation by not only classifying each pixel of an image
but also distinguishing between different instances of the same class. For in-
stance, in the classification of strawberries, it differentiates individual straw-
berries from one another, assigning a unique identifier to each one. While
MaskRCNN [29] remains notable in this area for its segmentation quality,
other models like YOLACT [30] offer efficient real-time instance segmentation
and recent advancements in the YOLO family [31] finds the balance between
segmentation quality and speed. Illustrating the practical application of these
concepts, Ge et al. [4] successfully employed MaskR-CNN for precisely iden-
tifying and locating each strawberry as well as classifying their ripeness in
polytunnels. This was essential for enabling their robotic system to efficiently
and safely pick the ripe strawberries while avoiding unripe ones.

2.1.3
Instance Segmentation Performance Measurement

To evaluate the segmentation performance of an instance segmentation
model for a given class, the Intersection over Union (IoU) metric is commonly
used. This metric, which provides a value between 0 and 1, quantifies the
segmentation overlap by dividing the area of intersection by the area of union
between the model’s predicted mask and the labeled ground truth mask. We
illustrate this calculation visually in Figure 2.1.

Figure 2.1: Illustration of IoU Calculation. The red contours encompass the
labeled ground truth mask, while the light blue contours encompass the
predicted mask from an instance segmentation model. The areas shaded in
yellow represent the Area of Intersection (above) and the Area of Union (below)
in the IoU calculation. The rectangles represent the bounding boxes, which
encompass the masks in rectangular form.
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An important confidence criterion defined before the calculation of the
IoU is the confidence score, typically set between 0.70 and 0.95. The confidence
score filters predictions by their reliability, ensuring that only those with high
confidence are considered in the evaluation. To measure overall segmentation
performance for a given class, the IoU is calculated for each instance in the
test set for that class, and then the average of these values is taken.

Another metric that provides a more comprehensive assessment of model
performance for a given class is the Average Precision (AP), which essentially
combines some metrics in its calculation, providing a value between 0 and
1. One of the metrics included in AP is the ’IoU threshold,’ which is the
application of a threshold to the IoU to determine the True Positive detections
(TPs) for IoU values above that threshold, and False Positive detections (FPs)
for values below that threshold. The other two metrics included in the AP
calculation are Precision and Recall. Both metrics utilize the TPs and FPs in
their calculations, but Recall also incorporates the Ground Truths (GTs). For
the calculation of Average Precision (AP), some additional steps are necessary,
since Precision and Recall individually provide only a scalar value, and AP is
derived from the precision-recall curve. Therefore, it is essential to establish
multiple values (i.e., a range) for the ’IoU threshold,’ as well as define a
confidence score for the detections, in order to produce a series of values
for these metrics. For example, by choosing a confidence score of 0.8 for the
detections and employing an IoU threshold range from 0.5 to 0.75, we can
calculate a series of Precision and Recall values and then plot the corresponding
precision-recall curve as shown in Figure 2.2. The AP is then calculated as the
area under this curve.

To calculate the overall AP for a given class, the AP is calculated for
each instance in the test set for that class, and then the average of these values
is taken.

2.1.4
Gradient Computation in Deep Learning

Understanding the fundamental concept of the gradient within a Neural
Network is fundamental as it forms the basis of our proposed solution presented
later in this work. To clarify this concept, we examine a Multi-Layer Perceptron
(MLP) network, commonly referred to as a Dense Network. Consider an MLP
consisting of two inputs (x1 and x2), two hidden layers, and a single output
neuron, which together produce one output (y). The configuration of the
network and terminology used are illustrated in Figure 2.3.

Considering the MLP structure, the computation for the forward pass
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Figure 2.2: Precision-Recall Curve used for AP Calculation. The area under
the curve represents the Average Precision (AP), quantifying the model’s
performance across various IoU threshold levels.

Figure 2.3: Schematic of a Multi-Layer Perceptron and Terminology Used.

begins at the first hidden layer. The net input (i.e. the value before the
activation function g(·)) to each neuron, denoted as u

(1)
j , is the weighted sum of

the inputs plus the bias term for that neuron (Equation 2-1). The application
of the activation function g(·) to these net inputs is presented by Equation 2-
2, demonstrating how the inputs x1 and x2 are transformed through the first
layer’s weights and biases to produce the output O

(1)
j .
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The process continues with the second hidden layer, where the net inputs
u

(2)
j are calculated as the weighted sum of the outputs from the first layer plus

the biases (Equation 2-3), and the outputs O
(2)
j are obtained by applying the

activation function to u
(2)
j , as detailed by Equation 2-4.
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3∑
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ij O
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j , (2-3)

O
(2)
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u

(2)
j

)
(2-4)

Finally, the determination of the network’s output y is based on the
outputs from the second hidden layer. The net input u(3) to the output neuron
is the weighted sum of the second layer’s outputs plus the bias (Equation 2-5),
and the final output y is obtained by applying the activation function to u(3),
as represented by Equation 2-6.

u(3) =
3∑

i=1
w

(3)
i O

(2)
i + b(3) , (2-5)

y = g
(
u(3)

)
(2-6)

With the equations for each layer’s outputs now established, we possess
the necessary components to calculate the gradient of the network’s output
y with respect to an input xk. This calculation, performed through the
application of the Chain Rule, is detailed in Equation 2-7.
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where:

– ∂y

∂O
(2)
i

is the weight w
(3)
i from neuron i in the second hidden layer to the

output neuron.

– ∂O
(2)
i

∂u
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i

is the derivative of the activation function g(·) at the second hidden
layer.

– ∂u
(2)
i

∂O
(1)
j

is the weight w
(2)
ji from neuron j in the first hidden layer to neuron

i in the second hidden layer.

– ∂O
(1)
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∂u
(1)
j

is the derivative of the activation function g(·) at the first hidden
layer.

– ∂u
(1)
j

∂xk
is the weight w

(1)
kj from the input xk to neuron j in the first hidden

layer.

In the theory of calculus, the gradient of a function at a specific point
indicates the direction of the maximum rate of change of the function and also
the rate of change in that direction. Analogously, in the context of a Neural
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Network, the gradient ∂y
∂xk

not only demonstrates how a small change in a
specific input xk affects the output y, but also provides information about
the direction of this change and the magnitude of the change. This work
will investigate and validate the theoretical basis of this principle through
implementation and experiments.

2.2
Robotic Arm Positioning and Visual Servoing

Robotic arm positioning relies on its Degrees of Freedom (DoF), joint
angles, and link lengths, which determine the workspace of a robot to interact
with an environment. An important part of the robotic arm is the end
effector, where tools such as grippers and cameras can be applied to perform
autonomous tasks. If the camera is attached to the end effector (as is the case
in this work), the configuration is called "eye-in-hand", while if the camera is
mounted at a fixed point, it is referred to as an "eye-to-hand" configuration.

Some crucial aspects to understand in robotic positioning are direct
kinematics and inverse kinematics. Direct kinematics involves determining the
end effector’s current 3D position from known joint angles through kinematic
equations. On the other hand, inverse kinematics calculates the required joint
angles in order to move the end efector to desired 3D position. In this case,
the calculation can be a bit more challenging depending on the DoF, but in
practice it is computed with the assistance of libraries.

Visual Servoing (VS) introduces an additional layer of complexity and
capability to robotic positioning, utilizing sensor data to guide the robot’s
movements. The main subdivisions of Visual Servoing are Image-Based Vi-
sual Servoing (IBVS) and Position-Based Visual Servoing (PBVS), each with
distinct advantages and challenges. IBVS operates directly with image coordi-
nates, requiring only the visual data and the detected object, which allows for
more cost-effective implementations but can be prone to noise and complex-
ity. In contrast, PBVS not only depends on detecting the object within the
environment but also significantly relies on the quality of a 3D point cloud of
the environment. In the field of agricultural robotics, advanced visual servoing
techniques are being tailored to specific environmental and operational needs.
Hani et al. [32] developed a visual servoing framework for orchards, employ-
ing a robust feature tracking algorithm that allows precise positioning under
varying environmental conditions. This method primarily utilizes IBVS, focus-
ing on adapting to dynamic scenarios like strong winds and partial occlusions.
Conversely, Shi et al. [33] engineered a ’Global–Local’ visual servoing system
that combines the ’eye-to-hand’ and ’eye-in-hand’ configurations, optimizing
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both the speed and accuracy required for effective tomato picking. A relevant
application of VS to strawberry picking is discussed in the work by Gamba et
al. [34], which combines IBVS and PBVS approaches. Additionally, the PBVS
technique is explored in the work by Ge et al. [4], with a more detailed discus-
sion to follow in the subsequent section.

2.3
Problem: Strawberry Picking

In this section, we explore the autonomous strawberry picking problem,
where the strawberry detection method discussed later in this thesis (i.e.,
Instance Segmentation) directly relates. This discussion is part of a broader
investigation that we have contributed to and have had the opportunity to
publish in a journal [4].

The strawberry picking problem is challenging due to the complexity
of real-world polytunnel environments. It involves not only detecting the
strawberries, but also need to avoid obstacles for safe autonomous robotic
manipulation and picking. The obstacles we address include straps used by
farmers to support and manage plant growth, ensuring optimal sunlight as
well as tables that support the plants and facilitate both drainage and ease of
access for maintenance. Safe picking must avoid hitting and getting caught on
the straps while also not colliding with the tables (maintaining a safe distance).
Both situations can damage the plants, strawberries, and the manipulator. In
Figure 2.4, we illustrate an example of safe regions for picking with robotic
manipulation.

In order to achieve safe manipulation, we have developed a Machine Vi-
sion System that, when provided with a 3D image (i.e., RGB and Depth), is
capable of identifying the 3D locations of strawberries within a safe manipu-
lation region. The diagram of this vision system is illustrated in Figure 2.5.
Besides the input to the vision system being 3D, the fruit detection model
implemented (i.e., Mask R-CNN) solely utilizes the RGB data to determine
the pixel locations of the strawberries. The exploration of using 3D data for
fruit detection is further discussed later in this thesis.

Additionally, we proposed a refined approach, referred to as ’method 2,’
which aims to improve the strap segmentation results through segmentation
rectification, enhancing the safe region reliability. In order to achieve this, first,
the Canny Edge Detection algorithm proposed by Canny [35] was applied to
verify all of the edge points of a segmented strap. Thereafter, we sequentially
applied the Probabilistic Hough Transform algorithm proposed by Kiryati et
al. [36], which uses a random subset from the edge detector to obtain multiple
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Figure 2.4: The safety manipulation region for the strawberry picking robot.
(a) is a front view with the safety region marked by white dash line; (b) is a
side view with the safety region marked by white dash line.

Figure 2.5: Machine Vision System architecture diagram.

lines in the image, including their starting and ending coordinates. All these
coordinates were then used to calculate the line equation y = mx + b that
best interpolates all the points by using least squares. The bounding box
that enclosed all the strap masks, marked by the dash line in Figure 2.6,
was determined by the width of the strap and the fitted line. As shown in
Figure 2.6, to verify whether strawberries are above or below the straps and
assign a warning sign (dangerous or safe) to each fruit, xi is applied to the
line equation to obtain the y and compare it to the ytop + τ . This τ is a
value obtained through the original segmented mask to determine the safe
manipulation region between the line and the position of the top of the fruit.
As shown in Figure 2.6, all cases were defined correctly using the ’method 2’.

Some visual results of this system, showing the location of the ripe
strawberries and indicating whether they are in safe regions for manipulation,
can be observed in Figure 2.7.
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Figure 2.6: Safety assessment for strawberry handling related to strap posi-
tioning. In a ground truth scenario, Cases 1 and 2 would be considered safe for
handling as they are located below the strap. Conversely, Cases 3 and 4 would
be considered dangerous for handling, as they are located above the strap
where the robotic arm could get caught during harvesting, potentially causing
accidents. Using Method 1 (represented by the fragmented strap mask): Cases
1, 2, and 4 would be correctly classified with respect to the safety condition.
However, Case 3 would be incorrectly classified due to the fragmentation of
the strap mask in this instance. With the implementation of Method 2 (rep-
resented by a line passing through the middle of the fragmented mask): All
cases would be correctly classified in relation to the safety condition.

In more detail, this publication can be found in the work of Ge et
al. [4], in which we participated in the expansion of the dataset classes,
in the implementation of the fruit detection model, in proposing a method
for segmentation rectification, in the code to identify the safe regions for
manipulation and in writing several chapters of the journal. Specifically, our
contributions to the paper are found in the following sections: III.A, IV.A,
IV.B, IV.C, IV.D, and in the Visual Results for Figures 3, 10, and 11, as well
as in the experiments in Sections V.B and V.C.

2.4
Problem: Sugar Content Estimation on Strawberries

In this section, we explore the problem of estimating the sugar content
in strawberries. The research conducted in this thesis is fundamental for
developing a strategy for the positioning of a Spectroscopic sensor through
autonomous robotic manipulation. We begin by presenting and discussing two
conventional sensors, which can be observed in Figure 2.8.

The first sensor is the ’Handheld Strawberry Brix Meter’ by Barry
Century®, which operates by using physical samples of strawberries. The
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Figure 2.7: Visual results of the safety solution for the original strap segmen-
tation and the rectified strap segmentation: (a) original images (1,2,3); (b) the
image results of the instance segmentation method; (c) image results of the
instance segmentation method with segmentation rectification (’method 2’);
The green and yellow bounding boxes indicate, the safe (S) and the dangerous
(D) warning signs.

Figure 2.8: Two conventional sensors utilized for sugar content detection in
strawberries: Barry Century® Sensor on the left and PAL-HIKARi® Sensor
on the right.

fruit is squeezed onto the front part of the sensor, after which the sugar
content level is read through an optical viewer on the rear side. This method
tends to provide accurate results but necessitates the destruction of the
fruit for measurement. The second sensor is the ’Strawberry Infrared Brix
Refractometer’ by PAL-HIKARi®, which functions by touching the sensor
on the strawberry, then displaying the sugar content readings on its built-
in screen. The main disadvantage of this sensor is that it requires multi-angle
measurements for accurate averaging. Moreover, since it necessitates contact
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with the strawberries, there is a risk of contamination and potential damage
to the fruits. Due to the operational complexity of both sensors and the
need for precise handling, their use for automatic data collection with robotic
manipulators, for example, becomes unfeasible.

With advancements in spectroscopy sensors, the work of Wold et al. [8]
introduced a state-of-the-art non-contact, non-destructive sensor capable of
measuring the sugar content of strawberries from a distance of 20cm. Given
these features, this sensor can easily be integrated with autonomous robots for
automated data collection. A schematic diagram of this sensor’s operation is
shown in Figure 2.9.

Figure 2.9: Schematic diagram of the operation of the Spectroscopic Sugar Con-
tent Sensor. The sugar content information is derived from the spectroscopy
data.

The sugar content sensor as described by Wold et al. [8] operates by
projecting a rectangular strip of light that penetrates the fruit and achieves
accurate sensing with just a single measurement. Directly beneath the central
area of this projection, it reads the spectroscopy data at a point referred to as
the inspection point. Positioned 20 cm away from the fruit, the strip of light
area on the fruit measures approximately 25 mm in width and 3 mm in height.
The vertical distance from the center of the projection to the inspection point
is about 12 mm. The inspection point itself has a diameter of about 2-3 mm at
this same distance. The determination of sugar content, quantified as a scalar
value, is derived from the spectroscopy data obtained through processing steps
and regression models, focusing on critical wavelengths around 910 nm, 960
nm, and a shoulder at 984 nm, as highlighted by Wold et al [8]. Figure 2.10
illustrates an example of a strawberry spectrum captured using this sensor,
with the key wavelengths indicated.

The inspection point is a delicate signal and susceptible to noise, thus
there are some problem constraints that need to be considered in order to
ensure a correct measurement, as observed from their controlled environment
experiments. According to the sensor specialists, the main concerns for correct
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Figure 2.10: Example spectrum of a strawberry obtained with the Sugar
Content Sensor. The critical wavelengths for sugar content analysis are marked
for reference.

measurement require that the distance to the berry is within a specified
distance offset (20 ± 1 cm), and that the interaction region does not "fall
off" the berry, meaning both the strip of light and the inspection point must
be fully on the surface of the strawberry at the specified distance. However,
there are also other factors that can affect the sensor accuracy or quality of
the signal, such as occlusions due to leaves, stems, and runners and other
other uncertainties like specular occlusion and photon shot noise. The sensor
accuracy values can be obtained through the processing of the wavelengths
and by establishing a metric to provide a value between 0 and 1. Enhancing
the sensor accuracy to achieve values close to 1 can be done by optimizing
the sensor’s positioning, which may also indirectly mitigate the impact of the
uncertainties on the signal.



3
Datasets

In this chapter, we begin by introducing and analyzing the spectral data
collected from strawberries, focusing on the influence of sensor positioning on
the spectra (Section 3.1). Subsequently, we discuss the acquisition and labeling
of the strawberry datasets (Section 3.2, Section 3.3 and 3.4) used in this
work, with the goal of training models capable of detecting fruit instances and
classifying strawberries, as well as identifying the widest region of strawberries.
Finally, in Section 3.5, we present a summary of the datasets.

3.1
Spectral Data Collection and Analysis

Following the introduction of the Spectroscopic Sugar Content Sensor in
Section 2.4, we proceed towards a more specific phase of the current research.
After carrying out a series of real-world experiments, primarily aimed at
internal testing within the spectroscopy group, we leveraged the opportunity
to also explore the impact of sensor positioning on spectrometer readings.
Utilizing a manually controlled mobile manipulator, we assisted the sensor
group in obtaining spectral data from 10 different strawberries under varying
time and light conditions within a single sunny/cloudy day. Figure 3.1 presents
the day’s temperature and light measurements, showing significant variations
in light intensity due to transient cloud cover changes.

The data collected on this day of experiments consisted primarily of
graphs plotting Relative Intensity against Wavelength from the hyperspectral
sensor, as well as the Distance Offset (∆D) and images of strawberries from a
3D camera. The variable ∆D represents the deviation of the sensor’s distance
from the strawberries, with a tolerance range of ±1 cm, determined using a
3D camera. A positive deviation indicates that the sensor is positioned further
away from the strawberry than the intended distance. Conversely, a negative
deviation means that the sensor is positioned closer to the strawberry than
the intended distance. With the data provided by the team, we normalized the
spectra to make it more comparable between measurements and equalized the
images to enhance the visibility of the strip of light. Below, we present examples
of four unique strawberries (denoted as MB02, MB04, MB05 and MB06) to



Chapter 3. Datasets 39

Figure 3.1: Temperature and Light Throughout Day of Experiments

better understand the problem of how the sensor positioning affected the
quality of the spectroscopy data collected, specifically focusing on explaining
the influence of well-understood variables.

3.1.1
MB02 Analysis

First, we examine the impact of sensor positioning on the MB02 data,
focusing on the Normalized Relative Intensity and the Distance Offset from the
sensor to the strawberry. Figures 3.2 and 3.3 present these aspects respectively.

Figure 3.2: Spectral Data of Sample MB02, where the vertical axis represents
the Normalized Relative Intensity and the horizontal axis represents the
Wavelength in [nm].
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Figure 3.3: Image samples of a single strawberry captured at various times
throughout the day, correlated with the spectral data of MB02.

– For samples 1) and 4): The strips of light are well-centered on the fruit,
and ∆D are within the range, resulting in smooth wavelengths.

– For samples 2), 3) 5) and 6): Despite the strips of light being positioned
more to the right, the wavelengths represented are also smooth.

– For sample 7): ∆D is within the range (the image’s sharp focus confirms
this), but the strip of light is shifted considerably towards the right and
to the bottom of the target. This position of the projection has clearly
affected the quality of the signal.

3.1.2
MB04 Analysis

Following our examination of MB02, we next turn our attention to
the MB04 data to assess the impact of sensor positioning by observing the
Normalized Relative Intensity and the Distance Offset from the sensor to the
strawberry. Figures 3.4 and 3.5 illustrate these measurements.

Figure 3.4: Spectral Data of Sample MB04, where the vertical axis represents
the Normalized Relative Intensity and the horizontal axis represents the
Wavelength in [nm].
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Figure 3.5: Image samples of a single strawberry captured at various times
throughout the day, correlated with the spectral data of MB04.

– For samples 1) to 3): The strip of light is well-centered, and ∆D are
within the acceptable range. In 2), the strip of light is slightly shifted to
the left, but this shift does not impact the wavelength, which remains
smooth.

– For sample 4): Given that the strawberry is clearly out of focus, the
distance exceeds the tolerance, and this condition affected the reading of
the spectrometer.

3.1.3
MB05 Analysis

Continuing our investigation, we analyze the MB05 data for insights into
the effects of sensor positioning. We present both the Normalized Relative
Intensity and the Distance Offset from the sensor to the strawberry. Refer to
Figures 3.6 and 3.7 for these aspects.

Figure 3.6: Spectral Data of Sample MB05, where the vertical axis represents
the Normalized Relative Intensity and the horizontal axis represents the
Wavelength in [nm].
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Figure 3.7: Image samples of a single strawberry captured at various times
throughout the day, correlated with the spectral data of MB05.

– For sample 1): This sample produced a smooth wavelength despite a few
anomalies: the strip of light is shifted to the right and downward, and
∆D far exceeds the acceptable range.

– For samples 2) to 4): All the samples yielded smooth wavelengths.
However, only 2) falls within the correct ∆D range and has a perfectly
positioned strip of light.

– For sample 5) : The strip of light is a bit outside the strawberry (to the
left) affecting the reading of the spectrometer.

3.1.4
MB06 Analysis

Lastly, we examine the MB06 data, focusing on how sensor positioning
influences the spectroscopy signal. The Normalized Relative Intensity and the
Distance Offset from the sensor to the strawberry are displayed on Figures 3.8
and 3.9.

Figure 3.8: Spectral Data of Sample MB06, where the vertical axis represents
the Normalized Relative Intensity and the horizontal axis represents the
Wavelength in [nm].
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Figure 3.9: Image samples of a single strawberry captured at various times
throughout the day, correlated with the spectral data of MB06.

– For samples 1) to 5): ∆D are within the acceptable range, except for
3), which slightly exceeds the range. Despite the varied positions of the
strips of light on this strawberry, the wavelength remains smooth in all
instances.

– For sample 6): Part of the strip of light is significantly shifted to the left
of the strawberry’s surface. Likewise, the inspection point may also be
misaligned, which had an impact in the reading of the spectrometer.

The analysis conducted here was relevant in order to establish the ’Strawberry
Inspection Criteria’ to be presented in the Section 4.1.

3.2
Fruit Instance Segmentation Datasets

The datasets for fruit instance segmentation are composed of multiple
scenes within polytunnels, captured using stereo cameras, where each scene
contains multiple strawberries. Because the fruit detection models that we are
using focus on instance segmentation, each strawberry instance was labeled
with a unique identifier to distinguish individual objects within the same
category. This process, known as instance labeling, requires marking the pixel-
level region inside each fruit with a distinct mask. Thus, each strawberry within
an image is treated as a separate instance, allowing the models to identify each
instance independently. In addition to the instance labeling, the fruit detection
models also necessitate assigning a class to each instance. In this work, that
means that every strawberry, while being identified as a separate entity with
its unique identifier, also needs to be categorized under one of three classes:
Ripe, Unripe or Affected. Figure 3.10 shows examples of strawberries from
each of the mentioned classes. Subsequently, Figure 3.11 displays an example
of a scene and its corresponding instance label from the Dataset.

For training, validation, and testing purposes, the dataset employed was
obtained from polytunnels in Norway in 2019 (NO2019 Dataset). We labeled
the dataset to include only the categories of ripe, unripe, and those affected by
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Figure 3.10: Two examples of each class of strawberries: Ripe, Unripe, and
Affected

Figure 3.11: Example of Instance Segmentation for Strawberry Detection.
Top image: Captured scene in the polytunnel featuring multiple strawberry
instances. Bottom image: Corresponding instance segmentation label, where
each color represents a unique instance of a detected strawberry. The class
information for each instance is stored separately in an associated metadata
file, not visually represented in this image.

fungus or other diseases. To more effectively evaluate the results that will be
presented in the results section, we have also used a dataset from the United
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Kingdom (UK Dataset) as reported in [9]. Additionally, we self-collected a
dataset from Norway in 2023 (NO2023 Dataset) and created another dataset
from a simulated strawberry polytunnel environment (this last one is explained
in detail in Section 3.4). The labeling process for these datasets was conducted
manually, using an annotation tool [37].

3.3
Widest Region Detection Datasets

Utilizing the instance segmentation datasets, we processed the data to
obtain individual strawberry images. This derived dataset specifically targets
the detection of the widest horizontal region of each fruit. The ’widest region’
is defined as the area on a strawberry that has the largest horizontal span
when viewed from the camera’s perspective, essentially the part of the fruit
that extends the most from one side to the other. In this context, the X-
coordinate is determined by the central point along the horizontal axis of this
widest region, and the Y-coordinate corresponds to the vertical position of this
midpoint on the strawberry. For each strawberry image, the dataset defines the
output as a two-dimensional vector, indicating these pixel coordinates of the
widest region.

In order to conduct the labeling process, we developed a custom tool
that labels the location of the widest region for each fruit. The user interface
of the tool displays a single strawberry image and allows the labeler to choose
the widest horizontal span with a simple click. This action then generates a
label consisting of a pair of values, corresponding to the X and Y coordinates
of that instance, ready for use in training. We selected only a subset of each
dataset for labeling, due to the high volume of strawberries present in the
scenes. Examples of these labelings are illustrated in Figure 3.12.

3.4
Simulated Test Set

In order to create a simulated test set, we used the strawberry plant
generator to be described in Section 4.2.2 to randomly generate a total of 30
scenes encompassing a diverse array of strawberry plants, with a cumulative
count of 274 strawberries. For annotating this simulated dataset, we employed
the same instance segmentation annotation tool referenced in [37], as well
as our labeling tool for determining the widest region of each strawberry, as
previously described. It is important to highlight that the simulated dataset is
limited to only two classes: ’Ripe’ and ’Unripe’.
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Figure 3.12: Four illustrative examples from the widest region detection
dataset. The images are labeled with the X and Y pixel coordinates of the
widest region, indicated by the red dots in the images.

3.5
Datasets Summary

The datasets for Fruit Instance Detection and the Identification of the
Widest Regions used in this research are summarized in Table 3.1.
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Table 3.1: Overview of the datasets used for fruit instance detection and widest
region identification. Datasets marked with (*) were split into training, valida-
tion, and testing sets with proportions of 80%, 10%, and 10% respectively. For
the remaining datasets, all data was used for testing purposes. The instance
segmentation datasets are scenes containing many strawberries, while for the
widest region detection datasets are single strawberries.
Dataset # Training # Validation # Testing

Images Images Images
Fruit Instance Segmentation* 1445 181 180
(NO2019)
Widest Region Detection* 5484 685 685
(NO2019)
Fruit Instance Segmentation - - 45
(UK/NO2023)
Widest Region Detection - - 315
(UK/NO2023)
Fruit Instance Segmentation - - 30
(Simulated)
Widest Region Detection - - 274
(Simulated)



4
Models and Methods

This chapter describes the methodology adopted in this research, which
begins with the Strawberry Autonomous Inspection Criteria (Section 4.1) and
then presents the real and simulation robot setup (Section 4.2).

Next, we describe the fruit instance segmentation models (Section 4.3),
discussing the nuances of both a baseline model and an enhanced model. We
then detail our approach to identifying the widest region of the fruit (Section
4.4), comparing a contour-based detection approach with a learning approach.
Upon establishing these methods, we proceed to outline the integrated pipeline
configuration designed for practical application, as detailed in Section 4.5.

Finally, we introduce our network gradient-based method aimed at
maximizing the spectrometer accuracy through positioning, as detailed in
Section 4.6. The approach begins with data acquisition, utilizing a grid
scanning technique that scans across various positions on the strawberry.
The method proceeds with selecting a reward function that simulates sensor
accuracy, developing an accuracy estimation model, and applying the network
gradient-based method to Visual Servoing.

4.1
Strawberry Autonomous Inspection Criteria

The capability of the Spectroscopic sensor to accurately measure the
sugar content in strawberries is generally linked to the sensor’s positioning
relative to the fruit, as investigated in the Section 3.1. Considering the outlined
factors, we define the following criteria that our autonomous inspection system
must meet:

– Scan Ripe and Unripe strawberries only;
– Ensure the strip of light stays within the strawberry’s surface;
– Position the inspection point directly on the strawberry;
– Maintain the sensor within the specified distance offset (20± 1 cm);
– Avoid occlusions, such as leaves, stems, and runners.

Following the inspection criteria above, Figure 4.1 visually demonstrates
how the strip of light from the spectroscopy system targets the strawberry and
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the point where the data is read, denoted inspection point. Additionally, the
figure presents scenarios to be autonomously avoided, as they do not meet the
inspection criteria, and potential solutions for these cases through autonomous
sensor positioning.

Figure 4.1: Illustration of the spectroscopy system operation (on the left) and
examples of undesirable positions (highlighted with a light red background)
along with the solutions for these (highlighted with a light green background).

In this work, we address autonomous sensor positioning using a mobile
manipulator and a vision system, which is discussed in the following sections.

4.2
Robot Setup and System Design

In this section, we present our robot setup and system design of our real-
world mobile manipulator, detailing the integration of the spectroscopy system
and a 3D camera. We also present a simulation that mirrors the physical setup,
including the strip of light of the spectroscopy system and the 3D camera.
Additionally, we present virtual sensors to simulate the spectroscopy accuracy,
a virtual strawberry generator and the emulation of strawberry polytunnels
which are used in this work.

4.2.1
Real Mobile Manipulator

Our mobile manipulator design integrates the Omnidirectional Agricul-
tural Robot Thorvald Slim [38] with the industrial robotic arm Mitsubishi
RV-2AJ. The robotic arm is mounted on the agricultural robot and features 5
Degrees of Freedom (DoF). At its end effector, it is equipped with a 3D camera
to visualize the environment and a spectrometer system used for measuring the
sugar content in strawberries, configuring a eye-in-hand setup. The design of
our mobile manipulator is presented in Figure 4.2, illustrating the integration
of components.
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Figure 4.2: Mobile Manipulator comprising the Thorvald Slim UGV, the
Mitsubishi RV-2AJ Manipulator, equipped with the Spectrometer System and
a 3D Camera. Additionally, a 3D LiDAR is included specifically for future
applications in autonomous navigation.

4.2.2
Simulation

We conducted an enhanced simulation that closely mirrors the real-
world equivalents of the agricultural robot, robotic arm, 3D camera, and
spectrometer system, along with the polytunnel environment and a strawberry
plant generator that includes the simulation of strawberries.

Initially, we show a comparison between the real and simulated mobile
manipulators, as presented in Figure 4.3.

As illustrated in Figure 4.3, the model of the 3D camera was mounted
onto the model of the spectrometer system in a configuration that replicates
their real-world positioning, which is shown in further detail in Figure 4.4.

Additionally, it is important to mention that the simulated spectrometer
system does not emulate spectral readings, but we addressed the simulation
of the strip of light projector. This enhancement involved the use of multiple
virtual lamps, initially oriented to project light forwards. To accurately repli-
cate the real rectangular projector’s illumination, we developed a script that
positions these lamps within the spectrometer model for desired angles. We
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Figure 4.3: Comparison Between the Real (left) and Simulated Mobile Manip-
ulator (right).

Figure 4.4: Illustration of the Real (up) vs. Simulated (down) Sensors Posi-
tioning: 3D Camera and Spectrometer System. The simulated spectrometer
system matches the real spectrometer in dimensions, and the coupling of the
3D camera to the sensor also matches the real-world configuration.

calculated the necessary aperture angle and subdivided it into smaller angles.
This division allowed the alignment of several lamps, each with a projection di-
ameter of 3mm at a distance of 20cm. Such adjustments in the lamp positions
enabled the accurate projection of the rectangular shape, measuring 25mm in
width by 3mm in height, at a distance of 20cm from the spectrometer sys-
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tem to a target fruit. Figure 4.5 compares the real strip of light projected to
a real strawberry against the simulated strip of light projected to a virtual
strawberry.

Figure 4.5: Comparison of the real strip of light projected on a real strawberry
(left) versus the simulated strip of light projected on a virtual strawberry
(right).

In our simulation, two Laser Range Finders (LRFs) have been integrated
to provide sensing for the positioning of both the strip of light and the
inspection point on the strawberry’s surface. We have adjusted the LRF for
the strip of light to have the same aperture angle as the array of lamps that
we implemented in the simulation, ensuring that we capture all readings from
the strip of light. For the inspection point, we have set a single reading for the
LRF to sense that point at 12mm below the center of the strip of light. The
main reason for this is to simulate the spectrometer accuracy, but it will be
explained in more detail in Section 4.6. Figure 4.6 illustrates both the beams
of the strip of light projector and the sensing beams of the LRFs.

For the simulation of strawberry plants, we used a randomized strawberry
plant generator [39]. This tool enabled the specification of a variety of features
ranging from berry models and textures to leaf orientations, as outlined
in Table 4.1. Additionally, we modified the generator to produce virtual
strawberries at varying heights, thereby introducing additional complexity
into the test set to better mimic real-world conditions. Figure 4.7 provides
an example of a comparison between a real scene and a simulated scene.

Lastly, we present the simulation of polytunnels which can be observed
in Figure 4.8.

Another important implementation for the simulation is the automatic
distribution of random strawberry plants within the polytunnel trails. This
implementation allows for the predefined specification of both the desired
number of strawberries per row and the total number of rows. The system
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Figure 4.6: llustration of the strip of light projector beam and the sensing
beams of the LRFs. The left image shows the simulation in Gazebo with the
strip of light beams in green and the LRF beams in blue. The right image
shows the LRFs readings in RViz, with the strip of light sensing in pink and
the inspection point sensing in white. Notice in these images that the projector
beams are aligned with the sensing beams, ensuring that all readings from the
extent of the strip of light and the inspection point are captured by the LRFs.

Figure 4.7: Comparison between a real scene (left) and a simulated scene
(right).

automatically aligns these plants along the trails, ensuring a consistent spacing
with a small random deviation between each plant. Figure 4.7 presents 3 plants
within a single trail of the polytunnel, while Figure 4.8 similarly displays
15 plants in a single trail. For the purposes of our study, we will adopt the
configuration as presented in Figure 4.7, utilizing 3 plants in a single trail.
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Table 4.1: Diversity of the original Strawberry Plant Generator
Feature Description
Berry Models 5 unique models representing shapes
Berry Textures 7 textures representing stages of ripeness
Berry Size Randomized berry size
Berry Pose Randomized position and orientation
Calyx Models 10 unique models
Stem Models 5 unique stem models for different leaf

heights and berry orientations
Leaf Models 5 unique models
Leaf Pose Randomized position and orientation

Figure 4.8: Comparison between the real polytunnel (left) and simulated
polytunnel (right).

4.3
Fruit Instance Segmentation Models

This subsection examines the Deep Learning segmentation techniques for
fruit instance detection adopted in this paper. The discussion begins with the
baseline method, MaskRCNN, a widely used model for the identification and
classification of fruits in complex agricultural environments. This model, as
well as the subsequent enhanced approach, relies on the labels described for
their training process. The enhanced approach builds upon the capabilities of
the baseline MaskRCNN model, aiming to achieve more accurate segmentation
performance specifically tailored to the unique challenges encountered in fruit
instance detection.

4.3.1
Baseline: MaskRCNN

The baseline model that we employed for the instance segmentation
task is MaskRCNN, responsible for taking an RGB image as input and
identifying the location and classification of each strawberry in the image.
This model serves as the basis upon which we compare the performance of an
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enhanced segmentation approach. In this model, the input is processed through
a Backbone Network (e.g. ResNet [24]) combined with a Feature Pyramid
Network (FPN), to produce feature maps. These maps are then used by a
Region Proposal Network (RPN) to propose potential object locations. The
next stages of the model refine these proposals, obtaining bounding boxes and
assigning class labels, while simultaneously generating segmentation masks
for each instance. The output is a combination of these masks, bounding
boxes, and class labels for each object, such as strawberries, in the image.
The architecture of MaskRCNN is illustrated in Figure 4.9.

Figure 4.9: MaskRCNN architecture flowchart showing the process from input
image to the output.

In the Section 4.3.2, we present the modifications to the backbone of the
MaskRCNN framework, aimed at improving the fruit instance detection.

4.3.2
Improved: MaskRCNN-D

The enhanced version of MaskRCNN, denoted as MaskRCNN-D, inte-
grates depth information into the original architecture. Modifications to the
backbone network were necessary to accommodate the additional depth chan-
nel, which were implemented following recommendations from the original
GitHub wiki for MaskRCNN 1. Figure 4.10 illustrates this integration of depth
information into the MaskRCNN model.

The inclusion of depth information addresses a significant challenge
in fruit instance segmentation: the high incidence of occlusion among the
fruits. When fruits are clustered together, traditional RGB data may not
provide enough differentiation for the algorithm to accurately segment each
instance. Depth data introduces a new potentially lighting-invariant dimension
of information that significantly aids in distinguishing fruits that are in close
proximity, particularly in terms of their relative positions along the depth axis.

1MaskRCNN Wiki, 2018. Available: https://github.com/matterport/Mask_RCNN/wik
[Accessed November 5, 2023]

https://github.com/matterport/Mask_RCNN/wiki
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Figure 4.10: Illustration of the MaskRCNN model modified to integrate depth
information within its backbone. The inputs are shown as Input (RGB) for
the original MaskRCNN and Input′ (RGB-D) for MaskRCNN-D, indicating
the addition of depth data. The kernels Kernel and Kernel′ are shown to
represent the convolutional operations in each model. The output illustrates
the instance segmentation with overlaid bounding boxes and segmentation
masks, highlighting the detected instances. Each detected instance is also
classified into one of the predefined categories, but these classifications are
not represented in this figure.

This adjustment was inspired by the unpublished research of (Orestis, 2018)2,
who demonstrated up to 31% AP (Average Precision) increase in performance
on various Datasets when incorporating depth data into the model.

4.4
Fruit Widest Region Detector

This section introduces two approaches for detecting the widest region
of a strawberry, the primary objective of which is to accurately pinpoint the
X and Y coordinates of this region. The first approach is the ContourMax
method, a direct and learning-free approach that operates without the need
for pre-labeled data. The second is a Deep Learning alternative, requiring labels
for its training as mentioned earlier.

4.4.1
Baseline: ContourMax

Our algorithm, referred to as ContourMax, processes an input known as
contour, which is derived from instance segmentation or instance labeling that
delineates the outline of an object. It is designed to pinpoint the widest hori-
zontal segment of a strawberry by looping through each unique Y-coordinate
of the contour data. For each Y-level, it determines the horizontal span by
locating the extreme X-coordinates that lie on this horizontal line. The pro-

2Orestis, 2018, "Does Depth Matter? RGB-D Instance Segmentation with MaskRCNN",
unpublished manuscript, available at: https://github.com/orestis-z/mask-rcnn-rgbd. Ac-
cessed on: November 5, 2023

https://github.com/orestis-z/mask-rcnn-rgbd
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cess involves comparing each width to find the maximum, updating this value
along with the corresponding Y-coordinate when a wider segment is identified.
The algorithm concludes by returning the Y-coordinate of the maximal width
and the X-coordinates of the boundaries of this segment. The Y component of
the widest region corresponds to the identified Y-coordinate, and its X com-
ponent is defined as the midpoint between the X-coordinates of the segment’s
boundaries. An illustration of this algorithm in discerning the widest region of
a strawberry by its contour is shown in Figure 4.11.

Figure 4.11: Illustration of the baseline ContourMax algorithm identifying the
widest region of a strawberry. Each panel shows an instance of a strawberry
with its contour highlighted, and the widest region marked with a horizontal
red line which is the output of the ContourMax algorithm. The white dot
represents the X and Y pixels for the widest region.

4.4.2
Improved: VGG-WSCNN

To improve the precision in identifying the widest region of the straw-
berries, we employed an enhanced version of the VGG-16 architecture by in-
corporating Weight Standardized Convolutions (WSCNNs). This choice was
made because the classic VGG-16 model did not offer enough precision for ac-
curately pinpointing the widest region of the strawberries. These modifications
have been applied to the non-residual model structure of VGG-16, and accord-
ing to the authors, such advancements offer greater stability during training,
a reduced tendency for overfitting, and improved generalization capabilities
[40, 41]. In this enhanced model, we modified the output layer to act as a re-
gressor, which is illustrated in Figure 4.12, outputting two values representing
the X and Y coordinates of the widest region’s pixels.

Coupled with this Deep Learning approach, we implemented a pre-
processing step that augments the reliability of input data. To mitigate the
inaccuracies from instance detectors, which can arise due to occlusions from
overlapping strawberries or leaves, the system generates a bounding box around
the initial contour from the instance detector (or label). This box is then
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Figure 4.12: Modification of the VGG-16 architecture to incorporate WSCNNs
and a regression output layer. On the left, the original CNN architecture with
a classification output layer using softmax for predefined classes. On the right,
the modified CNN’ with an output layer configured for regression, using a
sigmoid function to output pixel coordinates (X,Y) for the widest region of
the strawberries.

expanded, forming a crop region that ensures inclusion of the full strawberry
within the regressor’s analysis frame. Such enhancement of the input area
adds robustness against incomplete detections, helping the regression model
to accurately locate the fruit’s widest section.

After describing the two methods implemented for detecting the widest
region of strawberries (Contourmax and VGG-WSCNN), Figure 4.13 provides
a simplified comparative visualization of the two approaches.

Figure 4.13: Simplified comparison of Widest Region Detection Methods:
The top pathway shows the ContourMax method, from the extraction of
the contour from the instance segmentation model output to identifying the
coordinates of the widest segment. The bottom pathway illustrates the Deep
Learning approach, utilizing the modified VGG-WSCNN model to infer the
widest region coordinates.
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4.5
Fruit Detection Pipeline and Strawberry Approach

The integrated Fruit Detection Pipeline is built upon the combination
of the Fruit Instance Detection and Widest Region Detection methods, with
the incorporation of point cloud data from a 3D camera. This pipeline
operates autonomously to process scenes with multiple plants and strawberries,
ultimately identifying the widest region of each strawberry in 3D space. The
schematic of the pipeline can be observed in Figure 4.14.

Figure 4.14: Illustration of the Fruit Detection Pipeline workflow, beginning
with the input of RGB image data (scene) and depth information, which may
vary depending on the method used. The scene contains strawberries, and the
output is the 3D location of each strawberry within that scene.

The objective of the pipeline is to generate goals targeting the widest
region of strawberries for moving the spectrometer to specific positions through
the use of Position-Based Visual Servoing (PBVS). An important aspect of the
goals is maintaining a frontal distance of 20cm between the spectrometer and
the target fruit, as mentioned in the problem description.

At this point, we introduce the coordinate systems to be used from now
on in this work, as shown in Figure 4.15.

The first coordinate system expresses the camera’s position at a point
p = [x, y, z] relative to the robotic arm’s base. The second coordinate system
indicates the camera’s position at a point p̄ = [x̄, z̄] relative to the current
strawberry’s widest region, discarding the ȳ coordinate because it is kept fixed
at 20cm from the spectrometer. Furthermore, the displacement vector between
two camera positions p̄1 and p̄2 in the plane is defined in Equation 4-1.

d = p̄2 − p̄1 = [∆x, ∆z] , (4-1)

4.6
Network Gradient Visual Servoing Approach

The precise position of the widest region, achieved using the Multi-Step
PBVS (to be detailed in Section 4.6.4), may not be optimal in terms of sensor
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Figure 4.15: Coordinate Systems used in this work. The camera is positioned
to face toward the strawberry’s front. The displacement vector d indicates the
vertical (∆z) and horizontal (∆x) camera movement from a point p̄1 to a point
p̄2 in the plane.

accuracy. We therefore subsequently apply an Image-Based Visual Servoing
(IBVS) method to improve the position. In order to lay the groundwork for our
improved IBVS method, we initially acquire a dataset through grid scanning
(Section 4.6.1). Next, we design a reward function to label the dataset and then
prepare it (Section 4.6.2) for training our accuracy estimation model (Section
4.6.3). Following this, we present an initial solution (Section 4.6.5) for the
optimal positioning problem determined by the sensor accuracy prediction
from the estimation model. Finally, we utilize the estimation model and apply
gradient theory to develop our Network Gradient Visual Servoing approach
(Section 4.6.6).

4.6.1
Data Acquisition Through Fruit Grid Scanning

The data acquisition process is derived from our grid scanning method
implemented. This method leverages the Multi-Step PBVS to scan specific
points on each strawberry, thereby saving the camera positions relative to their
widest regions, as well as the LRFs’ readings, and fixed-size images around the
center of the spectrometer positioning for these displacements. These images
can contain part of a strawberry, a whole strawberry, or multiple strawberries,
depending on the displacement. These measurements are utilized as inputs for
a reward function, which will be detailed in the next section.

To obtain a grid list of all the points for a single strawberry, the process
begins by using the segmented mask, obtained from the fruit detector, for
the specific fruit. This mask is dilated to ensure coverage of all the border
pixels of the strawberries. Subsequent, binary erosion is applied to the dilated
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mask to slightly shrink it, followed by the selection of a subset of pixels at
regular intervals, as defined by a specified spacing λ. This creates evenly spaced
points, reducing the number of target pixel points. Figure 4.16 illustrates the
acquisition of pixel targets through the image processing of the mask obtained
by the fruit detector.

Figure 4.16: Illustration of pixel target acquisition through the image process-
ing of the mask obtained by the fruit detector. The images show, from left to
right, an image of the strawberry, the enhanced mask, and finally, the evenly
spaced points with spacing λ. The targets are subsequently transformed from
pixel to 3D coordinates.

Finally, a Scaling Factor (SF) is calculated to convert the pixel spacing
λ directly into 3D coordinates, considering a fixed forward distance (ρ) to the
fruit. This distance includes the 20cm specified in the inspection criteria in
Section 4.1, plus an additional 8cm accounting for the offset from the camera
to the front of the spectrometer. Therefore, given this setup, the pixel spacing
λ is multiplied by the SF to transform the targets from pixels to 3D coordinates
in centimeters, allowing the sensor to be moved in the plane at the distance ρ

during the grid scanning process. An illustration of how the SF is calculated is
presented in Figure 4.17. By employing the small angle approximation, a fixed
scaling factor is derived from the center of the image.

After detailing the process of obtaining a grid list for each strawberry and
specifying the data to be saved, we apply this procedure to a chosen number
of strawberries in order to build a dataset, as outlined in Algorithm 1. Within
the simulation environment, we implemented a technique to systematically
generate new strawberry plants in the virtual space, replacing the previous
ones. This allows for the creation of a varied dataset without the need to move
the mobile base, as this work is only focused on the robotic arm’s positioning.
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Figure 4.17: Perspective projection illustration for Scaling Factor (SF) calcula-
tion. The diagram shows a camera facing a strawberry at a fixed distance ρ. To
calculate the scaling factor, consider two adjacent pixels (∆P = 1) and mea-
sure the physical distance between their projections on the strawberry (∆S).
The scaling factor is then determined by the ratio of ∆S to ∆P .

4.6.2
Reward Function and Preparation of the Data

The reward function was designed to simulate the accuracy of the
spectrometer’s readings, which are influenced by its positioning relative to
a strawberry. Ideally, we aim to utilize the actual spectrometer accuracy, but
the feedback for sensor accuracy measurement is an aspect yet to be integrated
by the corresponding section of the project. Our reward function is calculated
utilizing the Laser Range Finders (LRFs) readings for both the strip of light
projection (LRFA) and the inspection point (LRFB). The calculation of our
reward function is detailed in Equation 4-2.

R = − (σLRFA + |optdist − µLRFA|+ |optdist −RLRFB|+ ∆insp) (4-2)

where:

– σLRFA represents the standard deviation of the readings from LRFA. It
penalizes the misalignment between the strip of light and the fruit, which
also accounts for occlusions. If σLRFA is large, this may indicate that the
strip of light is partially outside the fruit’s surface, or an occlusion, such
as a leaf, is obstructing the light.

– |optdist − µLRFA| calculates the absolute difference between the target
optimal distance (optdist) and the average of the readings from LRFA
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Algorithm 1: Data acquisition through fruit grid scanning.
Data: Number of strawberries to scan
Result: Data acquisition for the strawberries

1 for strawberry in range(1, Number of strawberries to scan + 1) do
2 Identify all widest regions of strawberries using the fruit

detection pipeline;
3 foreach strawberry widest region do
4 Position the camera at that region using Multi-Step PBVS;
5 Calculate the grid list for that strawberry;
6 foreach scanning point in the grid list do
7 Employ PBVS to position the camera accurately at the

point;
8 Save the following data:;
9 Image around the center of the spectrometer FoV;

10 Camera position relative to the widest region;
11 LRFs’ readings;
12 end
13 Move to the next strawberry widest region;
14 end
15 Remove all strawberry plants from the environment;
16 Repopulate the environment with new strawberry plants;
17 end

(µLRFA). This term penalizes deviations of the strip of light from the
predefined ideal distance.

– |optdist −RLRFB | measures the absolute discrepancy between the target
optimal distance and the scalar reading from LRFB (RLRFB). It penalizes
deviations of the inspection point from the predefined ideal distance.

– ∆insp is the absolute difference between the scalar reading from LRFB

(RLRFB) and the central reading from LRFA (RLRFA). It penalizes occlu-
sions between the strip of light and the inspection point.

Building upon the data acquisition obtained in the previous section
and applying the Equation 4-2, we present the rewards associated with the
displacements for all the scanned strawberries. Initially, Figure 4.18 shows
the rewards on a blue graph for horizontal displacements (with vertical
displacements near zero), and on a red graph for vertical displacements (with
horizontal displacements near zero).

Analyzing the blue graph in the Figure 4.18 we can observe that the
horizontal axis is a bit symmetric, reflecting the near-symmetrical nature of
the strawberries in the simulation. As the absolute value of ∆x increases, the
rewards decrease due to the strip of light beginning to deviate from the fruit’s
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Figure 4.18: Reward Graphs × Displacements (in meters): Blue Graph for
horizontal displacements and Red Graph for vertical displacements. The origin
(0, 0) represents the widest regions corresponding to zero displacement.

surface, which is even more pronounced with further displacement from the
center.

Turning to the red graph in the same figure, we can notice when
decreasing ∆z values, the rewards increase, consistent with the strawberry
being rounder at the top, which means the strip of light is more likely to be on
the fruit’s surface. Conversely as ∆z increases, the rewards diminish because
the strip of light might partially come off the fruit depending on the fruit’s
size. For elevated ∆z absolute values, we can notice larger concentration of
lower rewards even further depending on the fruit’s size, not only because the
strip of light might be slightly off the fruit but also because the inspection
point is likely moving off the strawberry as well.

In the sequence, we present the heatmap for the rewards, showing how
it is distributed for the displacements, of all the scanned strawberries, varying
both ∆z and ∆y, in Figure 4.19.

In Figure 4.19, we observe that the highest concentration of rewards is
not necessarily in the origin. This suggests that achieving the widest region
does not guarantee the highest rewards. These findings underscore the need for
a model that is capable of learning to maximize rewards, thereby optimizing
the simulated sensor accuracy of the spectrometer.

Finally, we selected three strawberries data to observe the behavior of
the reward curve in relation to the isolated ∆z and ∆x, as shown in Figure
4.20.

We can observe in Figure 4.20 that the reward-displacement curves
for isolated ∆x and ∆z displacements are well-behaved. This investigation
suggests that the choice of employing Deep Learning algorithms is potentially
well-suited for this case, not being necessary the use of exploratory algorithms,
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Figure 4.19: Heatmap of Reward × Displacements (in meters) for all the
scanned strawberries. The origin (0, 0) represents the widest regions corre-
sponding to zero displacement.

Figure 4.20: Reward Graphs × Displacements (in meters) for three selected
strawberries.

such as Reinforcement Learning.
With this perspective in mind, we proceed with the preparation of

labeled data for the accuracy estimation model, which will be presented in
the next section. This preparation involves the creation of a dataset that will
be utilized for training, validating, and testing the model. The inputs for data
creation include two components: an image and a displacement, while the
output comprises a single component: reward. All data components undergo
normalization, especially the rewards, which are transformed into a measure of
accuracy, taking on values ranging from 0 to 1. It is important to mention that
each input-output pair is specifically associated with an individual strawberry.
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The configuration of our input-output pairs is detailed as follows:

– Input 1: Image I1 corresponding to a given camera position p̄1.

– Input 2: The displacement p̄2 − p̄1 between two camera positions.

– Output: The sensor’s accuracy Acc2 corresponding to the image I2.

To generate the accuracy estimation dataset, we initially filtered the
data acquired from the prior grid scanning procedure to isolate a total of
940 unique strawberries (associated with an overall total of 64,633 camera
positions). This step ensures that the same strawberries are not used across
the training, validation, and testing sets, maintaining distinct and separate
samples for each phase. In the sequence, we establish the total number of
samples for the dataset, where each sample consists of inputs/output pairs.
Next, we determine the proportions of 80%, 10%, and 10% for the training,
validation, and testing sets, respectively. We present in Algorithm 2 the method
for generating a desired set.

Algorithm 2: Desired Set Generation
Result: A list containing the samples of a desired set.

1 Initialize an empty list for a desired set;
2 while list size < (proportion × total number of samples)+1 do
3 Select a random strawberry sample and a random displacement

for the same strawberry with corresponding images I1 and I2,
ensuring that |p̄2 − p̄1| < 0.5 cm
(≈ 20% of the strawberry diameter, ensuring minor variations);

4 Input 1: I1;
5 Input 2: p̄2 − p̄1;
6 Output: Calculate Acc2 derived from Equation 4-2;
7 Add the pair (Inputs and Output) to the list;
8 end

A summary of the dataset obtained is shown in Table 4.2.

Table 4.2: Summary of the Accuracy Estimation Dataset. The total number
of samples is 256,000.

Description # Training # Validation # Testing
Data Data Data

Strawberries 752 94 94
Samples 204800 25600 25600
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4.6.3
Accuracy Estimation Model

The objective of the accuracy estimation model is to predict the potential
sensor accuracy of a positioning adjustment by analyzing a current image
and a desired displacement. To achieve this, the architecture of the accuracy
estimation model was designed taking into account the input-output pairs
as specified in the previous section. The architecture is divided into three
main components: one for processing the image input, another for handling
the displacements input, and a final component for combining the outcomes
from the previous components to estimate the sensor accuracy.

The component of the model responsible for the image input utilizes a
CNN as its backbone, whose primary objective is to extract feature maps
from the image input. For the displacement inputs, the model employs a
Dense Network (i.e., a Neural Network) that processes the displacement by
extracting relevant features and transforming the input into a format that can
be integrated with the feature maps. After processing these inputs, the feature
maps derived from the image are flattened into a one-dimensional vector,
which is then concatenated with the features derived from the displacement
input. This concatenated feature is fed into another Dense Network, which
integrates the information and produces a single output value that represents
the estimated sensor accuracy. The schematic of the model’s architecture is
shown in Figure 4.21.

Figure 4.21: Schematic of the Accuracy Estimation Model Architecture



Chapter 4. Models and Methods 68

This custom model is trained end-to-end using the training data de-
scribed in the previous section. It serves as the base of our improved solutions,
which are presented in detail in the Sections 4.6.5 and 4.6.6.

4.6.4
Baseline: Multi-Step PBVS

As a baseline method, we use the PBVS approach described in Sec-
tion 4.5. In order to address errors related to perspective changes and to align
the sensor precisely at the center of the widest regions of the strawberries,
we have implemented a tracking feature. This feature, essential for tracking
a target strawberry among multiple strawberries in an image, uses Euclidean
distance to compare the 3D coordinates of strawberries at two distinct mo-
ments, providing the PBVS system with updated positions of the strawberries
after approaching them. The sensor accuracy achieved in this position is the
baseline for performance comparisons of the improved methods. This process
is applied in a loop, such that after processing each strawberry, the system
moves on to the next strawberry until all the widest regions in a scene are
addressed.

4.6.5
Improved 1: Grid-Based Solution (GBS)

Initially, we introduce an approach that leverages the previously intro-
duced Accuracy Estimation Model, designed to position the sensor at the point
of maximum predicted sensor accuracy. Unlike the Multi-Step PBVS that re-
lies on image features, this proposed method focuses on function maximization
through grid search, avoiding the dependence on specific image features. This
approach processes batches, each consisting of pairs of a given image and multi-
ple displacements derived from a pre-established grid. The approach considers
that the image in a batch contains a strawberry or part of it, and predicts the
sensor accuracy for all displacements within a batch, as shown in Figure 4.22.

The solution to finding the best position [x∗, z∗] to move the end effector
in order to achieve maximum reading accuracy of the sensor is determined
by choosing the displacement with the highest predicted sensor accuracy
[∆x∗,∆z∗]. Therefore, the robot will move to the position illustrated in
Equation 4-3. x∗ = xcurrent + ∆x∗,

z∗ = zcurrent + ∆z∗,
(4-3)
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Figure 4.22: Illustration of the process for obtaining the sensor accuracies using
a pre-established grid. On the left side of the figure, we present the accuracy
estimation model receiving a batch of size n of displacements alongside
corresponding duplicates of a single image to predict the sensor accuracy
for each displacement. On the right side of the figure, we illustrate the pre-
established grid of size n× n for the same image.

Visually, Figure 4.23 illustrates the process of updating the sensor’s
current position using the optimal coordinates [x∗, z∗] returned by the model.

Figure 4.23: Illustration of applying the optimal displacement determined
by the accuracy estimation model. The left image shows a strawberry with
the sensor at the initial position for accuracy optimization. The optimal
displacement [∆x∗, ∆z∗], as determined by the model, is applied to the sensor’s
current position. This adjustment results in a new position depicted in the right
image, representing the predicted optimal location.

In practical situations, the PBVS approach described in Section 4.5 is
used to position the sensor close to the fruit initially. Once the sensor is
positioned near the fruit, the grid-based solution aids in guiding the robot’s
movement towards the position [x∗, z∗]. Upon reaching this position, the
process is applied to the next strawberry, continuing in this manner until all
strawberries in the scene have been addressed.
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4.6.6
Improved 2: Network Gradient Visual Servoing (NGVS)

Our network gradient-based method leverages the trained Accuracy
Estimation Model to compute the gradient of the accuracy output Acc with
respect to the input displacement [∆x, ∆z], denoted as ∂Acc

∂[∆x,∆z] . Unlike the
GBS method, which maximizes a function using grid search, this approach
employs direct iterative gradient computations. This computation follows the
theory presented in the background section, but becomes considerably more
complex to calculate for our dual-input architecture with feature fusion. In
practice, however, there are direct solutions available using modern libraries
to calculate gradients for specified outputs with respect to specified inputs.

One peculiar aspect of the Accuracy Estimation Model is that selecting
the displacement input as [0, 0] along with an image input I1 theoretically
predicts the sensor accuracy of the current image I1 for the current camera
position. A key component of our proposed method involves the calculation of
the gradient at this zero displacement, which serves to identify the direction
and magnitude of a displacement (i.e. an offset) that should be applied to the
current camera position to increase the output value (i.e. sensor accuracy).
Specifically, in Visual Servoing, the gradient’s outcome is used to guide the
control loop, enabling iterative adjustments to the end effector’s positioning
to maximize the spectrometer accuracy, as illustrated in Figure 4.24.

Figure 4.24: Illustration of our Network Gradient Visual Servoing model. The
red arrow symbolizes the flow of gradient information through the Accuracy
Estimation Model from the Accuracy output towards the Displacement input.

As illustrated in Figure 4.24, the ’Accuracy Estimation Model’ receives
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a constant displacement input of [0, 0] and an image input I1. It computes the
gradient of the accuracy output Acc with respect to the displacement [∆x, ∆z],
denoted as ∂Acc

∂[∆x,∆z] . This gradient informs the ’Motion Update and Image
Acquisition’ block, which adjusts the end effector’s positioning accordingly,
and acquires a new image for the next cycle, ensuring continuous improvement
of the sensor accuracy within the system. The motion update in a single step of
the loop, which adjusts the current position based on the calculated gradient
is formally defined by Equation 4-4.

xi+1 = xi + ∂Acc
∂∆x

,

zi+1 = zi + ∂Acc
∂∆z

,

(4-4)

The control loop repeats until the magnitude of the gradient vector is
smaller than a certain predefined threshold. Figure 4.25 visually exemplifies
this process, showing an example where the loop terminates after achieving a
gradient vector with a magnitude sufficiently small.

Figure 4.25: The figure illustrates two steps in a control loop employing the
NGVS method. The initial gradient, calculated from the first image where the
strawberry is partially occluded by a leaf, indicates the direction and mag-
nitude for sensor movement. Following the gradient information, the sensor’s
position is adjusted, resulting in the second image. Subsequently, a second gra-
dient is calculated, yielding a vector with a magnitude sufficiently small. This
indicates an optimal positioning without occlusion, thereby triggering the stop
mechanism in the control loop.

We assume that at the beggining of a first iteration the input image
contains a complete or partial part of a strawberry. A pseudo-algorithm
describing the accuracy optimization process using the gradient method is
presented in Algorithm 3.
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Algorithm 3: Pseudo-algorithm for the NGVS.
Result: Maximized spectrometer accuracy.

1 Initialize i = 0 and camera position [xi, zi];
2 while

∣∣∣ ∂Acc
∂[∆x,∆z]

∣∣∣ > Threshold do
3 Capture image I1i

;
4 Compute gradient ∂Acc

∂[∆x,∆z] at [0, 0];
5 Apply the computed gradient to the current position to

determine the new camera position [xi+1, zi+1];
6 Move end effector to new position and capture new image Ii+1;
7 i← i + 1;
8 end

In practical situations, our NGVS method employs the PBVS approach
described in Section 4.5 in order to approach the fruit. Once in proximity to the
fruit, it transitions to the NGVS, positioning the sensor in order to maximize
the sensor accuracy. This process is applied in a loop so that, following the
maximization of the sensor accuracy for a strawberry, the system proceeds
to the next strawberry. This continues until the sensor’s accuracies for all
strawberries in a scene are maximized.

It is important to emphasize that our model requires only an image to
operate, enabling its application in real-time (30 FPS or 0.03s). In contrast,
using sensor readings would result in a delay of 2 seconds per iteration.



5
Experimental Setup

The datasets discussed, previously presented in Table 3.1, were obtained
using a real Intel®RealSense™ D435 camera. As for the datasets for simulation,
detailed in Tables 3.1 and 4.2, they were generated through a simulation
of the stereo camera, designed to closely mimic its FoV and Depth sensing
capabilities. Specifically, the simulation of the 3D camera includes parameters
that add noise to enhance the realism of the camera simulation, as shown in
Table 5.1.

Table 5.1: Noise Parameters for the Simulated RealSense D435 in Gazebo.
Sensor Component Noise Mean Standard Deviation
Color Camera 0.000 0.007
IR Camera 1 0.000 0.050
IR Camera 2 0.000 0.050
Depth Camera 0.000 0.100

The virtual stereo camera, along with other components such as the
Thorvald Slim, Mitsubishi RV-2AJ, Strawberry Generator, Laser Range Find-
ers, Strip of Light Projector and Polytunnel, were simulated in Gazebo using
ROS Noetic. The Strip of Light Projector was emulated by employing multiple
ROS lamps using a Flashlight Plugin 1.

An NVIDIA®RTX™ A2000 Laptop GPU was used to handle the com-
putational demands of inference, manage the training phases of the trainable
models, and run all the simulation in real time. The instance segmentation and
widest region detections’ experiments were carried out by training the Fruit
Detection algorithm and the Widest Region Detector as standalone models
to optimize their individual performances. After training these models and
obtaining the accuracy dataset through the use of both the best end-to-end
pipeline (i.e., MaskRCNN-D and VGG-WSCNN) and the grid scanning tech-
nique, we proceeded to train the Accuracy Estimation Model separately.

The subsequent sections delve into the core experimental analysis, con-
centrating initially on two primary objectives: Fruit Instance Segmentation and

1Flashlight Plugin. Available: https://classic.gazebosim.org/tutorials?tut=flashlight
[Accessed February 28, 2024]

https://classic.gazebosim.org/tutorials?tut=flashlight_plugin&cat=plugins
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Fruit Widest Region Detection. In sequence, we discuss the Accuracy Estima-
tion Experiments followed by the Visual Servoing Experiments. The Visual
Servoing Experiments specifically utilize the Baseline (Multi-Step PBVS), the
Grid-Based Solution, and the Network Gradient Visual Servoing approaches,
which are detailed earlier respectively in Sections 4.6.4, 4.6.5, and 4.6.6.

5.1
Fruit Instance Segmentation Experiments

For the task of fruit instance segmentation, we employed TensorFlow 2
(TF2). The model used was an adapted version of the MaskRCNN, originally
developed by Waleed Abdulla [42] and subsequently updated for compatibility
with TF22. Key configurations applied to both segmentation approaches
(i.e., MaskRCNN and MaskRCNN-D) include early stopping (ES) to prevent
overfitting, an image resolution set to 1024 × 1024 pixels, and the use of
ResNet101 as the backbone network for feature extraction. An important
feature of R-CNN is Transfer Learning, which utilizes pre-trained weights from
established datasets. Motivated by the enhanced efficiency and generalization
capabilities it provides, we used weights from the SceneNet dataset [43]. In
order to improve the convergence process, we used a strategy called exponential
decay schedule for the learning rate. This technique methodically reduces the
learning rate with each epoch, enabling swift initial learning and progressively
finer adjustments to the model’s weights as training advances. The Table 5.2
outlines some of the key training configurations used for both models.

Table 5.2: Training configurations for fruit instance segmentation experiments.
Configuration MaskRCNN MaskRCNN-D
Transfer Learning SceneNet (RGB) SceneNet (RGB-D)
Epochs (ES) 84 97
Learning Rate [10−3, 10−4] [10−3, 5× 10−4]

Another important tunable feature implemented in the model for straw-
berry detection was to discard all depth information beyond 30 cm from the
camera. This adjustment is effective in the polytunnels where strawberries are
known to be closer than this threshold, thus focusing the model’s accuracy on
the typical zone for strawberries.

2Mask-RCNN-TF2, 2022. Available: https://github.com/ahmedfgad/Mask-RCNN-TF2
[Accessed November 5, 2023]

https://github.com/ahmedfgad/Mask-RCNN-TF2
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5.2
Fruit Widest Region Detection Experiments

The ContourMax model employed for this task is a direct algorithm that
operates without the need for hyperparameter tuning, making it straightfor-
ward to use. For the learning model, we adapted the VGG architecture within
the PyTorch framework, replacing its conventional CNNs with WSCNNs [41].
The resulting model, VGG-WSCNN, consists of 16 trainable convolutional lay-
ers. The input images are resized to a resolution of 224 × 224 pixels with a
square aspect ratio, corresponding to the largest dimension of the fruit’s ex-
panded bounding box. An early stopping (ES) criterion was also employed
to prevent overfitting during training. The table 5.3 summarizes the training
configurations for the VGG-WSCNN model. Transfer learning was not applied
due to the architectural changes introduced by WSCNNs, making the original
pre-trained weights not usable.

Table 5.3: Training configurations for the VGG-WSCNN model used in the
widest region detection.

Configuration VGG-WSCNN
Transfer Learning None
Epochs (ES) 17
Learning Rate 10−4

5.3
Accuracy Estimation Model Experiments

In the accuracy estimation experiments, the best end-to-end pipeline (i.e.,
MaskRCNN-D and VGG-WSCNN) was employed to identify the strawberries’
widest regions. Additionally, the dataset previously presented in Table 4.2 was
normalized for model training, following the configuration presented in Table
5.4.

Table 5.4: Normalization parameters for model training.
Data Type Normalization Range
Image pixels [0, 1]
Reward (Acc) [0, 1]
Camera position (p̄) [0, 1]
Displacement (p̄2 − p̄1) [-1, 1]

The details of our Accuracy Estimation Model’s architecture are shown
in Table 5.5.

Early stopping (ES) was used to prevent overfitting during training. Table
5.6 shows the training configuration for the Accuracy Estimation Model.
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Table 5.5: Accuracy Estimation Model Architecture Details.
Layer Description
Layers for Input 1
Input Size (Image) 224 x 224 x 3
Backbone VGG16 for backbone
Backbone Output 25088 features after Flatten operation
Layers for Input 2 (Displacement)
Input Size (Displacement) 2 x 1
First Dense Layer 64 neurons
Second Dense Layer 128 neurons
Combined Layer
Feature Combination 25216 total features
First Dense Layer 4096 neurons
Second Dense Layer 4096 neurons
Output Layer 1 neuron, sigmoid activation
Output Size (Accuracy) 1 x 1

Table 5.6: Training configurations for the Accuracy Estimation Model.
Configuration Acc. Est. Model
Transfer Learning None
Epochs (ES) 11
Learning Rate 10−4

5.4
Visual Servoing Experiments

In the Visual Servoing experiments, we utilized the KDL library in
Python for inverse kinematics calculations, which features an important capa-
bility to avoid singularities. For the Grid-Based Solution (GBS), we employed
a set of 320 displacement, ranging from -3.2 cm to 3.2 cm in the x-axis and
from -3.9 cm to 3.9 cm in the y-axis. This range slightly exceeds the dataset
range presented earlier in Section 4.6.2, ensuring coverage and additional mar-
gin for variability that may occur during the experiments. For the Network
Gradient Visual Servoing (NGVS), in order to compute the gradients of the
accuracy output with respect to the displacement input of our Accuracy Es-
timation Model, we employed PyTorch’s Autograd feature. It is important to
mention that we do not perform denormalization on the gradient, instead we
clip the result between -3 and 3 and use it to automatically determine both
the direction of positioning (orientation from the gradient) and the step size
for positioning (magnitude from the gradient).

We conducted two types of experiments, the first involving both real and
simulated environments to determine the performance of the Multi-Step PBVS
(Baseline) for reaching the desired widest region and achieving the distance
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offset. In this phase, the baseline is evaluated on 200 real strawberries and 200
simulated strawberries, aiming to assess the performance of the best end-to-end
pipeline when integrated into the manipulator. The second type of experiment
focuses exclusively on simulation, comparing the Baseline with the GBS and
the NGVS to determine which method provides superior and more consistent
sensor accuracy. For this comparison, the methods are tested on 1000 unique
virtual strawberries.



6
Results and Discussions

This chapter presents the outcomes of the Fruit Instance Segmentation,
Fruit Widest Region Detection, Accuracy Estimation Model, and Visual
Servoing, examining the performance of the algorithms through quantitative
metrics and visual comparisons, based on test data. The results for these
components are displayed in sequence in the following sections.

6.1
Fruit Instance Segmentation Results

Initially, we present the normalized confusion matrices for the two in-
stance segmentation models, MaskRCNN and MaskRCNN-D. These matri-
ces are derived from a confidence score of 0.8 for the detections, as refer-
enced in [44]. The evaluation covers three test sets: NO2019, UK/NO2023,
and Simulated, as shown in Figure 6.1. The confusion matrices indicate that
MaskRCNN-D outperforms MaskRCNN for all the three test sets, exhibit-
ing higher accuracy in classifying the categories of Ripe, Unripe, and Affected
strawberries. This is evidenced by higher true positive rates along the diagonals
and reduced misclassification rates in the off-diagonal elements of the matrices.
It is important to note that unlike the other datasets, the ’Simulated’ dataset
does not have a separate ’Affected’ category. Instead, predictions for ’Unripe’
and ’Affected’ strawberries were combined into a single ’Unripe’ category.

Figure 6.1: Normalized confusion matrices for MaskRCNN and MaskRCNN-D
across the NO2019, UK/NO2023, and Simulated test sets.

To complement these findings and provide a more comprehensive assess-
ment of model performance, we adopt a methodology similar to Ge et al. [4],
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using the Average Precision (AP) for the two instance segmentation models.
AP calculations are influenced by the Intersection over Union (IoU) threshold,
which determines True Positives (TPs) and False Positives (FPs) detections.
In line with the COCO benchmark standards [45] and mask scoring on MaskR-
CNN [44], we consider detections with a confidence score of 0.8 and employ
an IoU range threshold from 0.5 to 0.75 to calculate AP for each class, as vi-
sually explained in Section 2.1.3. The mean Average Precision (mAP) is then
computed as the mean of these AP values across all classes, providing a single
performance summary that accounts for various levels of detection difficulty.
The equations used for these calculations are shown in Equation 6-1.

Precision = TPs
TPs + FPs ,

Recall = TPs
GTs ,

AP =
∫ 1

0
p(r) dr.

(6-1)

where TPs denote True Positives, FPs denote False Positives, GTs refer to
Ground Truths, and AP is the Average Precision which is equivalent to the
area under the precision-recall curve, ranging from 0 to 1, with 1 being perfect
detection performance. Here, p(r) represents the precision as a function of
recall r. Comparative tables that involve these metrics can be viewed in Table
6.1 for AP scores, and Table 6.2 for mAP scores.

Table 6.1: Comparison of AP scores for MaskRCNN and MaskRCNN-D on
various test sets. The columns under ’Ripe’, ’Unripe’, and ’Affected’ represent
the detection classes for strawberries: ’Ripe’ for strawberries in a ripe state,
’Unripe’ for strawberries that are not yet ripe, and ’Affected’ for strawberries
affected by fungal or other diseases.

Test Set MaskRCNN MaskRCNN-D
Ripe Unripe Affected Ripe Unripe Affected

NO2019 0.86 0.85 0.82 0.94 0.91 0.90
UK/NO2023 0.80 0.81 0.79 0.89 0.90 0.87
Simulated 0.82 0.79 - 0.94 0.89 -

Table 6.2: Comparison of mAP scores for MaskRCNN and MaskRCNN-D on
various test sets.

Test Set MaskRCNN MaskRCNN-D
NO2019 0.84 0.92
UK/NO2023 0.80 0.89
Simulated 0.81 0.92

As detailed in Table 6.1, MaskRCNN-D, integrating depth information,
consistently outperforms the baseline MaskRCNN across all test sets and
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strawberry classifications (ripe, unripe, and affected). The performance im-
provement is especially pronounced in the simulated environment, likely due
to the smoother depth information from the simulated stereo camera, offering a
more idealized representation compared to real-world scenarios. Further anal-
ysis of the mAP scores in Table 6.2 supports these findings, showing significant
enhancements with MaskRCNN-D: increases of 8.70% for NO2019, 10.83% for
UK/NO2023, and 13.66% in the simulated environment. This highlights the
depth integration’s effectiveness in MaskRCNN-D, demonstrating its substan-
tial impact across various testing conditions.

For a detailed visual examination of the MaskRCNN and MaskRCNN-
D models, Figure 6.2 presents comparative examples of the models’ perfor-
mance on instance segmentation tasks. The integration of depth information
in MaskRCNN-D not only improves the overall visual results but also signif-
icantly enhances the model’s ability to distinguish between closely clustered
strawberries, as evidenced by the examples in the figure.

6.2
Fruit Widest Region Results

In order to evaluate the performance of the fruit widest region detectors,
we use the Root Mean Squared Error (RMSE) metric. The RMSE is derived
from the Mean Squared Error (MSE), which calculates the average squared
difference between the estimated and actual values as defined in Equation 6-2.

MSE = 1
n

n∑
i=1

(
(Xr,i −Xp,i)2 + (Yr,i − Yp,i)2

)
,

RMSEpixels = N ×
√

MSE,

(6-2)

where Xr,i and Yr,i are the labeled pixel coordinates, Xp,i and Yp,i are the
predicted pixel coordinates for the i-th data point. The variable n indicates
the number of data points in a test set, and N represents the dimension of the
square image, as both labels and outputs were normalized. The performance
results for the standalone Widest Region Detector (derived from the ground
truth segmentation) are presented in Table 6.3. Additionally, the combined
results of the Fruit Instance Detector and the Widest Region Detector,
showcasing the pipeline’s effectiveness, can be found in Table 6.4.

Table 6.3: Comparison of RMSE scores for the standalone ContourMax and
VGG-WSCNN on various test sets.

Test Set ContourMax VGG-WSCNN
NO2019 13.06 10.51
UK/NO2023 12.67 10.26
Simulated 12.47 10.21
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Figure 6.2: Visual examples of inputs (RGB) and outputs from MaskRCNN
and MaskRCNN-D. Each row represents a different example. This figure
illustrates the segmentation capability of the models, showing how detected
instances are outlined.

Table 6.3 shows that VGG-WSCNN outperforms ContourMax in pin-
pointing the widest fruit region across various test sets. Table 6.4 further re-
veals that combining MaskRCNN-D with VGG-WSCNN (Pipeline 4) leads to
the lowest RMSE scores, indicating that the end-to-end solution is the most
effective configuration for precise widest region detection in both real and
simulated environments. To highlight the differences reflected in the metric
outcomes, Figure 6.3 showcases visual results from a pipeline approach, using
the best-performing detector (MaskRCNN-D) for fruit instance detection. It
assesses the capabilities of the two different Widest Region Detectors on both
real and simulated datasets.

In the real-world dataset examples (Ri), it is evident that the learned
approach for locating the widest region generally shows better results. This is
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Table 6.4: Comparison of RMSE scores for various pipelines on different
test sets. Pipe 1: MaskRCNN + ContourMax, Pipe 2: MaskRCNN + VGG-
WSCNN, Pipe 3: MaskRCNN-D + ContourMax, Pipe 4: MaskRCNN-D +
VGG-WSCNN.

Test Set Pipe1 Pipe2 Pipe3 Pipe4
NO2019 24.06 19.74 14.76 12.62
UK/NO2023 26.43 21.82 15.56 13.35
Simulated 26.08 21.74 12.84 11.30

Figure 6.3: Comparative visualization of pipeline results using MaskRCNN-D
and alternating the widest region detector, where each Ri corresponds to a
pair of images from real-world data and each Si to a pair from simulated data.
These pairs contrast the detection outputs of ContourMax (left) versus VGG-
WSCNN (right).

particularly noticeable in examples Rb and Rc, where the instance segmentation
outcome was affected by leaf occlusion. Due to the ContourMax’s reliance
on segmentation accuracy, the widest region was not accurately identified in
these cases. However, the learned model, which depends only on the expanded
ROI from the segmented masks, provided satisfactory outcomes even in these
challenging scenarios. When examining the simulated dataset examples, as in
Sa it is noted that part of the strawberry was outside the camera’s field of view.
However, the learned approach still managed to identify a point for the widest
region that was closer to the desired location. In the case of Sb, although
the segmentation by the detector was not perfect, the learned method still
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outperformed the contour-based approach.

6.3
Accuracy Estimation Model Results

The Accuracy Estimation Model is a regression model, thus we evaluate
its performance using the Root Mean Squared Error (RMSE) metric as defined
in Equation 6-3. 

MSE = 1
n

n∑
i=1

(Accr,i − Accp,i)2,

RMSEaccuracy =
√

MSE.

(6-3)

where Accr,i is the sensor accuracy ground truth and Accp,i is the predicted
sensor accuracy for the i-th data point. The variable n indicates the number of
data points in a test set. The performance results for the Accuracy Estimation
Model are presented in Table 6.5. The sensor accuracies range from 0 to 1,
corresponding to 0 and 100%.

Table 6.5: RMSE score for the Acc. Estimation Model on the Testing Dataset.
Test Set Accuracy Estimation Model
Testing Data 0.104

The RMSE score of 0.104, as shown in Table 6.5, represents a 10.4% error
margin. In our application, this level of error is acceptable, as our main solution
(i.e., NGVS) does not directly use the sensor accuracy prediction, but rather
the gradient of the model’s accuracy output with respect to the displacement
input.

For the next set of experiments, we delve into theoretical validations
by visually examining the model’s response to a zero displacement input,
represented as (0,0). This specific input scenario implies no camera movement,
thereby testing the model’s ability to predict the sensor accuracy of the current
image without any displacement. The outcomes of these tests for a singular
strawberry instance in different positions are shown in Figure 6.4.

We can observe that the model was able to interpret a displacement
input of (0,0) as an instruction to estimate the sensor accuracy of the present
image, confirming the alignment between theoretical expectations and practical
performance.
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Figure 6.4: Evaluation of the Accuracy Estimation Model under zero displace-
ment condition. In the figure, "Pred." represents the accuracy prediction from
the model, and "G.T." denotes the ground truth accuracy.

6.4
Visual Servoing Results

Initially, we employ the Baseline, which utilizes the best end-to-end fruit
detection pipeline (i.e., Pipeline 4), for reaching the desired widest region
and achieving the specified distance offset from the sensor to the fruits. This
evaluation is accomplished by calculating the minimum, maximum, average,
and standard deviation of the achieved distance offsets for both the real and
the simulated environments. The results are presented in Table 6.6.

Table 6.6: Performance of the Visual Servoing Baseline in achieving the
specified distance offset.

Error Type Real (cm) Simulated (cm)
Minimum -0.970 0.000
Maximum 0.820 0.001
Average 0.201 0.000
Std. Dev. 0.479 0.000

We can observe that the simulation results for reaching the distance
offset are ideal, despite the inclusion of parameters that add noise to enhance
the realism of the simulated environment previously presented in Table 5.1.
According to our experimental observations, the point cloud noise stands out
as the most significant factor being much noiser in real environments than
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simulation. In our system, we mitigate this noise by implementing a technique
where we read a 4 × 4 pixels grid in the point cloud around the desired
point and calculate the average of the depths. Despite the noise problem,
these results demonstrate that the fruit detection pipeline when integrated
with the robotic arm performs satisfactorily for both simulation and real-world
scenarios, meeting the distance offset specification (i.e., ±1cm).

In the sequence, we proceed to evaluate all the Visual Servoing methods
applied to the 1000 unique virtual strawberries generated for this assessment.
To illustrate this, Figure 6.5 presents the true normalized rewards (i.e.,
sensor accuracy) for these virtual strawberries using the Baseline, Grid-Based
Solution (GBS), and Network Gradient Visual Servoing (NGVS), alongside
displaying the Ground Truth (GT) for comparison. In order to obtain the
GT, we used the grid scanning approach mentioned earlier to scan the various
positions on each strawberry and returning the maximum sensor accuracy
found.

The scatter plots illustrate that the NGVS method consistently achieves
higher normalized rewards closer to the GT across all samples, outperforming
both the Baseline and the GBS. Notably, the NGVS demonstrates a narrower
clustering of data points, with fewer outliers, which visually implies more
consistent performance. Next, we evaluate the methods through metrics of
the mean, standard deviation, and the margin of error for the 95% confidence
interval of the mean. The findings are presented in the Table 6.7, which presents
a comparative analysis of the methods.

Table 6.7: Accuracy and consistency evaluation for the Visual Servoing meth-
ods.

Metric Baseline GBS NGVS GT
Mean 0.901 0.918 0.945 0.973
Standard Deviation 0.114 0.115 0.077 0.047
Margin of Error (95% CI) 0.007 0.007 0.005 0.003

From the table, we can observe that both the GBS and the NGVS out-
performed the baseline, having better average sensor accuracy and consistency.
The superior performances of GBS and NGVS are attributed to their use of
the Accuracy Estimation Model, which was trained using a normalized reward
function (i.e., sensor accuracy), differently from the baseline which follows the
training on the widest region, without considering situations that might reduce
the sensor accuracy. However, a limitation in GBS that affects the efficacy in
optimizing the sensor positioning concerns its reliance on the sensor accuracy
predictions from the Accuracy Estimation Model, which we previously demon-
strated to have an RMSE of 10.4%. In contrast, the NGVS showcases superior
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Figure 6.5: Comparison of the Normalized Reward Distributions x Samples for
the Visual Servoing methods.

results by utilizing our novel network gradient-based approach in an iterative
control, optimizing the sensor’s position towards maximum sensor accuracy.

In order to make a comparison between the methods in pairs, we plotted
two Kernel Density Estimate (KDE) graphs, chosen for their effectiveness in
capturing the distribution of data points accurately. These graphs, comparing
two distinct sets of comparative methods, are shown in Figure 6.6.

The upper graph presents the KDE of reward differences between NGVS
and the Baseline method, while the lower graph similarly employs KDE
for comparing NGVS against GBS, highlighting the distribution of their
reward differences. In both graphs, the KDEs suggest a concentration of
reward differences around the mean, indicating relatively small differences in
performance between the methods. However, the tail on the right hand side
of the zero line, indicating situations in which NGVS has better performance,
is notably longer than the left hand side. This aligns with previous analyses,
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Figure 6.6: Kernel Density Estimate Comparative Analysis. Top image: com-
parison between NGVS and Baseline. Bottom image: comparison between
NGVS and GBS.

supporting the conclusion that our novel approach provides more reliable and
consistent outcomes.

6.5
Performance analysis

To visually illustrate the performance of the gradient method, including
variations in orientation and magnitude across different scenarios, we present
eight illustrative examples in Figure 6.7.

The illustration presents a series of cases where the gradient vectors sug-
gest Visual Servoing signals in orientation and magnitude aimed at optimizing
the accuracy of the sensor’s readings on the fruit’s surface in the simulated
environment.

In the first case, the strip of light’s position is offset leftward and
downward from the strawberry, leading to the gradient to direct the sensor
towards a region that would reposition the strip of light more centrally on the
fruit’s surface. A similar observation is made in the second case, yet here the
adjustment is symmetrical to the first, with the gradient indicating a shift to
the opposite side.

The third case reveals a strip of light displacement further left, with the
gradient vector signaling a corrective action to the right. The fourth scenario
presents a more pronounced gradient magnitude pointing upwards, a response
to the strip of light and inspection point being critically offset downward,
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Figure 6.7: Eight examples of NGVS Performance in Various Scenarios. The
red arrow on each case represents the orientation and magnitude in which the
controller should follow in order to improve the sensor accuracy.

nearly missing the fruit. The fifth scenario mirrors the fourth, yet here the strip
of light’s misalignment is to the right, with the gradient magnitude significantly
pointing to the left as a corrective measure to align the strip of light and
inspection point precisely on the fruit’s surface.

In the final three cases, occlusions are evident, with the gradient vectors
indicating a direction for the manipulator to move the sensor away from the
occlusion, suggesting doing so with small magnitude.

The visual examples support the findings, confirming the effectiveness
of the gradient system in pointing to the position that increases the sensor
accuracy.

In order to provide a deeper insight into the behavior of the gradient
within our iterative control, employing the NGVS, we present the frames from
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four complete trajectories in our real-time simulator. The first frame in each
trajectory begins with the initial position estimated by the Pipeline 4 and
then follows the gradient method in pursuit of maximizing the accuracy of the
sensor’s readings accuracy. It is important to note that the final position used
is related to the position over the trajectory frames with the highest predicted
sensor accuracy. The first trajectory of interest is illustrated in Figure 6.8.

Figure 6.8: First trajectory of interest, consisting of eight frames. Each pair in
the figure displays an input frame (image) and its respective gradient vector,
provided by the NGVS.

In Figure 6.8, we observe in the first frame that the strip of light is
completely misaligned with the strawberry. This occurs because the gradient
method employed does not update the position of the widest region to correct
for errors related to perspective changes as mentioned earlier. Consequently,
the gradient directs towards the interior of the strawberry to enhance the
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sensor’s positioning. After the first position adjustment, the gradient becomes
more precise in its direction, increasing in magnitude until a significant
improvement in predicted sensor accuracy is observed in subsequent frames.
At this moment, the positioning adjustment slows until it reaches the optimum
point as determined by the gradient. Following this analysis, we present the
second trajectory of interest in Figure 6.9.

Figure 6.9: Second trajectory of interest, consisting of six frames. Each pair in
the figure displays an input frame (image) and its respective gradient vector,
provided by the NGVS.

In the trajectory illustrated in Figure 6.9, we observe that the gradient
method directed the manipulator’s control to incrementally optimize the
sensor’s reading accuracy, initially avoiding leaf occlusion, and finally achieving
a position where both the strip of light and the inspection point were considered
optimally. Following this analysis, we examine another trajectory example
shown in Figure 6.10.

Figure 6.10 presents another example of sensor accuracy optimization
through sensor positioning under occlusion. The method navigates the sensor
out of the leaves’ occlusion, ensuring that both the strip of light and the inspec-
tion point are positioned directly on the strawberry’s surface. Subsequently,
we proceed to analyze the results in a different scenario, as shown in Figure
6.11.
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Figure 6.10: Third trajectory of interest, consisting of four frames. Each pair in
the figure displays an input frame (image) and its respective gradient vector,
provided by the NGVS.

Figure 6.11: Fourth trajectory of interest, consisting of six frames. Each pair in
the figure displays an input frame (image) and its respective gradient vector,
provided by the NGVS.
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In this final example shown in Figure 6.11, we observe a more extreme
case of occlusion caused by leaves and a smaller, unripe strawberry. Regarding
the gradient’s behavior, we observe minor adjustments aimed at incrementally
improving the sensor accuracy through positioning, keeping the strip of light
more centralized on the fruit which avoided occlusion from the leaf on the right.
However, ideally, the iterative gradient method should have also avoided the
occlusion caused by the smaller strawberry. The table 6.8 provides a summary
of the outcomes for each trajectory analyzed in our simulation.

Table 6.8: Summary of Outcomes for Each Trajectory in the Simulation
Trajectory Outcome

#1 The gradient method directed toward the interior of the
strawberry, significantly improving the sensor’s position-
ing and accuracy until the optimal point was reached.

#2 Gradient method directed incremental adjustments to
avoid leaf occlusion, gradually improving sensor accu-
racy until an optimal position was achieved.

#3 Optimization of sensor accuracy through positioning to
avoid occlusion by leaves, ensuring both the strip of light
and the inspection point are directly on the strawberry
surface.

#4 Minor adjustments aimed at incrementally improving
sensor accuracy through positioning, keeping the light
strip more centralized on the fruit and avoiding occlu-
sion from the leaf on the right, but ideally should have
also avoided occlusion caused by the smaller strawberry.

6.6
Validation

For the final results in this work, we aim to demonstrate how our network
gradient-based method, trained exclusively with simulated data, performs
when faced with real-world images. We expect a marked improvement of these
results when real images and spectral data become available for training in the
future.

It is important to mention that we will not conduct an iterative analysis
due to the unavailability of the necessary data. Instead, we will present sets
of real-world scenarios, utilizing data from the same day as the study detailed
in Section 3.1. In these examples, given the real-life conditions, the distance
between the sensor and the strawberry may vary within the specified distance
offset. For the first result, we present the outcome in Figure 6.12.

In Figure 6.12, we analyze the gradient’s response to manually removing
the stem and leaves from two distinct strawberries. We observe that, when
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Figure 6.12: First set of examples of the NGVS Performance in real-world sit-
uations. The red arrow on each case represents the orientation and magnitude
in which the controller should follow in order to improve the sensor accuracy.

the strip of light is obscured by occlusions (images on the left), the gradient
directs away from the occlusion. In contrast, once the occlusions are manually
cleared (images on the right), we note different behaviors: in the first case,
the gradient points upwards to enhance the sensor’s reading accuracy while in
the second, the gradient is nearly zero, indicating a potential stopping point.
Following this analysis, we present other results in Figure 6.13.

Figure 6.13: Second set of examples of the NGVS Performance in real-
world situations. The red arrow on each case represents the orientation and
magnitude in which the controller should follow in order to improve the sensor
accuracy.



Chapter 6. Results and Discussions 94

In Figure 6.13, we demonstrate the gradient’s behavior at four different
points on a specific strawberry. Our analysis reveals that the gradient consis-
tently points towards the region of the strawberry that would allow the strip
of light to cover more of the fruit’s surface, thereby enhancing the accuracy
of the sensor’s readings. Following this discussion, we present other results in
Figure 6.14.

Figure 6.14: Third set of examples of the NGVS Performance in real-world sit-
uations. The red arrow on each case represents the orientation and magnitude
in which the controller should follow in order to improve the sensor accuracy.

In Figure 6.14, we observe the gradient response to four different positions
on a specific strawberry, which presents a challenging diagonal orientation.
However, the gradient directions are reasonable and align with expectations
for sensor accuracy optimization. Finally, we introduce other results in Figure
6.15.

In Figure 6.15, we analyze the gradient’s behavior in four different
situations on a specific strawberry. In the first two images, the gradient
points with high magnitude outward from the strawberry’s calyx, which would
trivially enhance the accuracy of the sensor’s readings. In contrast, the lower
two images present scenarios where, depending on the stopping criteria, the
sensor’s positioning might oscillate from right to left. In practice, our algorithm
is designed to prevent indefinite oscillations by detecting such behavior and
then selecting the position of highest sensor accuracy within the oscillation
period, which in this situation would be represented by the left image. The
table 6.9 provides a summary of the outcomes for each set of examples analyzed
under real-world conditions.
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Figure 6.15: Fourth set of examples of the NGVS Performance in real-
world situations. The red arrow on each case represents the orientation and
magnitude in which the controller should follow in order to improve the sensor
accuracy.

Table 6.9: Summary of Real-World Examples as Analyzed in the Study
Example Set Outcome

#1 The gradient directs away from occlusions; after manual
clearing, it points upwards to enhance sensor reading
accuracy or remains nearly zero, indicating a stopping
point.

#2 Demonstrates consistent behavior of the gradient point-
ing towards regions that enhance the coverage of the
strip of light on the fruit, improving sensor accuracy.

#3 The gradient shows reasonable directions in response
to a challenging diagonal orientation of the strawberry,
aligning with expectations for sensor accuracy optimiza-
tion.

#4 In different scenarios, the gradient either points signif-
icantly outward from the calyx or oscillates, with the
algorithm designed to prevent indefinite oscillations by
selecting the optimal position within these movements.



7
Conclusions

7.1
Fruit Instance Segmentation and Widest Region Detection

In this work, we demonstrated the value of depth-enhanced Deep Learn-
ing models in fruit detection. Our study shows that depth information sig-
nificantly enhances fruit detection, with our results indicating up to a 13.7%
improvement in mean Average Precision (mAP) when integrating depth data
into the MaskRCNN-D model, suggesting that this approach should be more
explored in the literature.

The learned approach for identifying the widest fruit region outperformed
our direct algorithm, reducing the RMSE error by up to 20%, highlighting the
potential of Deep Learning models in handling complex agricultural tasks.

The integration of our end-to-end pipeline, combining fruit detection with
MaskRCNN-D and widest region identification using an enhanced VGG-16
model, resulted in a notably low localization error, achieving a root mean
square error (RMSE) as low as 11.3 pixels on a 224× 224 cropped strawberry
image. This represents a 57% reduction in RMSE compared to the baseline
pipeline. The end-to-end pipeline is particularly suited for real-time field
applications, operating with two main components: widest region localization
at 30 FPS, and fruit detection using MaskRCNN-D at 5 FPS. Furthermore, we
demonstrated its effectiveness by integrating it with a robotic arm performing
visual servoing.

7.2
Novel Network Gradient Visual Servoing Method

We successfully developed a novel Network Gradient Visual Servoing
approach that leverages Deep Learning gradients to enhance the simulated
accuracy of a spectral sensor. Our findings demonstrate that the network
gradient theory can be effectively applied as a control signal for robotic
positioning in simulated environments, and to the best of our knowledge,
this approach has never been implemented or documented in the literature
before, highlighting its novelty and potential impact. Additionally, the reward
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function we developed was instrumental in helping the model learn how to
avoid occlusions from leaves, stems, and other strawberries. Statistically, our
method shows a significant improvement of approximately 5% over the baseline
in terms of sensor accuracy in the simulated testing environment. Moreover,
the reliability of the method is evidenced by a reduction in the standard
deviation of about 33%, indicating more consistent performance. Furthermore,
the iterative control aspect of the gradient method is capable of running at 30
FPS, making it suitable for real-time control applications.

The initial real-world results of applying the gradient method are promis-
ing, as they are outcomes without any fine-tuning on the model trained with
data derived from simulation. This demonstrates the method’s potential for
effective real-world applications.



8
Future Work

8.1
Fruit Instance Segmentation and Widest Region Detection

Future work will involve testing the vision system’s capabilities with an
actual spectrometer designed to accurately estimate sugar content. This feature
is crucial for automated harvesting, particularly for determining the optimal
time for harvesting strawberries based on their ripeness level.

Additionally, planned developments will involve adapting MaskRCNN-D
to include a specialized head for the widest region detection. This adaptation
aims to reduce GPU usage and improve efficiency. The potential integration
of other recent Neural Network architectures, such as the YOLO family [31],
may also enhance the system’s performance.

Integrating these models with embedded systems like NVIDIA®Jetson
Nano™ is another important aspect of future research. This integration, along
with the use of mobile manipulators, will facilitate practical field applications.
Our goal is to employ autonomous agricultural robots, such as Thorvald
[38], in conjunction with manipulators like UR-3e, to perform navigation and
manipulation tasks based on the fruit detections.

Our simulator uses randomly generated strawberries. Enhancing the
strawberry plant generation through the including of additional dimensions
of variation, such as fungal infections and irregular shapes, is crucial. This will
create an even more sophisticated simulated environment, essential for testing
our methods.

8.2
Novel Network Gradient Visual Servoing Method

Upcoming activities will involve carrying out tests in real-world settings
using our present Network Gradient Visual Servoing method, employing a
developed strip of light projector. We will further propose new architectures
for the Accuracy Estimation Model to improve the sensor accuracy prediction
and consequently improve the gradient method. Following this, our objective is
to derive sensor accuracy measurements directly from a real spectrometer and
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proceed to retrain our model. Additionally, we plan to investigate other Visual
Servoing methods and explore the potential requirement for implementing
Reinforcement Learning with this new set of real spectroscopy data.

We aim to advance the development of the Network Gradient Visual
Servoing controller to produce 3D vectors, enabling movement beyond the 2D
plane. However, for this to function effectively, reducing point cloud noise in
real environments by establishing a filter is an important prerequisite. We plan
to adopt approaches similar to those discussed in the work of Ge et al. [4] to
address this.

Autonomous synchronized navigation for the mobile manipulator is a key
objective. To achieve this, we plan to integrate navigation sensors, such as 3D
LiDAR and GPS, and apply the concept of Topological Navigation [46], aiming
at achieving full autonomy within polytunnels.



9
Publications during the Doctorate

During the doctoral journey, a total of five papers have been published,
with an additional paper currently being prepared for journal submission.
Below is a list of these publications.

– Depth-Enhanced 3D Deep Learning for Strawberry Detec-
tion and Widest Region Identification in Polytunnels [11].
Lins Tenorio, G., Khaksar, W., & Caarls, W. In Proceedings of
the International Conference on Agents and Artificial Intelligence
(ICAART2024), February 2024.

– Automatic visual estimation of tomato cluster maturity in
plant rows [5]. Lins Tenorio, G., & Caarls, W. In Machine Vision and
Applications (MVAP), May 2021. Qualis A3.

– Fruit Localization and Environment Perception for Strawberry
Harvesting Robots [4]. Ge, Y., Xiong, Y., Lins Tenorio, G., & From,
P. J. In IEEE Access, October 2019. Qualis A3.

– Comparative Study of Computer Vision Models for Insect Pest
Identification in Complex Backgrounds [47]. Lins Tenorio, G., Mar-
tins, F. F., Carvalho, T. M., Leite, A. C., Figueiredo, K., Vellasco, M.,
& Caarls, W. In Proceedings of the 12th International Conference on
Developments in eSystems Engineering (DeSE2019), October 2019.

– Comparação de modelos de Machine Learning aplicados a pre-
visão de casos totais de Dengue [48]. Carvalho, T., Lins Tenorio, G.,
Vellasco, M., Figueiredo, K., & Caarls, W. In Proceedings of the XVI
Encontro Nacional de Inteligência Artificial e Computacional, October
2019.
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