$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC | MARC |



Título: LIMIT LAWS FOR DYNAMICAL SYSTEMS WITH SOME HYPERBOLICITY
Autor: ANSELMO DE SOUZA PONTES JUNIOR
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  SILVIUS KLEIN - ADVISOR
Nº do Conteudo: 67507
Catalogação:  08/08/2024 Liberação: 08/08/2024 Idioma(s):  ENGLISH - UNITED STATES
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=67507&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=67507&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.67507

Resumo:
The study of statistical properties of dynamical systems has been an active research area in recent decades. Its main goal is to investigate when certain deterministic chaotic systems exhibit stochastic behavior when examined through the lens of a relevant invariant measure. Some of the key tools employed in deriving such results are the spectral properties of the transfer operator. However, certain skew product systems, including random and mixed random-quasiperiodic linear cocycles, do not fit this approach. Very recent works have obtained limit laws for these systems by studying the Markov Operator. The purpose of this dissertation is to explain how these operators can be used to derive limit laws, such as Large Deviations Estimates and Central Limit Theorem, for certain skew-product dynamical systems.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui