XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: ADVANCEMENTS IN TIME SERIES MODELING: USING MODERN OPTIMIZATION AND ROBUSTNESS TECHNIQUES WITH SCORE-DRIVEN MODELS Autor: MATHEUS ALVES PEREIRA DOS SANTOS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
DAVI MICHEL VALLADAO - ADVISOR
Nº do Conteudo: 67022
Catalogação: 13/06/2024 Liberação: 26/04/2025 Idioma(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=67022&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=67022&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.67022
Resumo:
Título: ADVANCEMENTS IN TIME SERIES MODELING: USING MODERN OPTIMIZATION AND ROBUSTNESS TECHNIQUES WITH SCORE-DRIVEN MODELS Autor: MATHEUS ALVES PEREIRA DOS SANTOS
Nº do Conteudo: 67022
Catalogação: 13/06/2024 Liberação: 26/04/2025 Idioma(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=67022&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=67022&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.67022
Resumo:
The study of time series plays a pivotal role in the decision-making
process, giving rise to numerous methodologies over time. Within this context,
score-driven models emerge as a flexible and interpretable approach. However,
due to the significant number of parameters involved, the estimation process
for these models tends to be complex. To address this complexity, this
study aims to evaluate how the adoption of modern optimization techniques
impacts the final performance of the model. Beyond simplifying the parameter
estimation process, this shift in paradigm allows for the integration of new
techniques, such as robust optimization, into the model formulation, thereby
potentially enhancing its performance. The SDUC.jl package, which facilitates
the adjustment and prediction of score-driven models based on unobservable
components using modern optimization techniques, represents one of the main
contributions of this study. By utilizing well-known time series to illustrate its
functionality and monthly electrical load data from the Brazilian system, the
study was able to demonstrate the flexibility of the package and its robust
performance, even during periods of regime change in the data, thanks to the
application of robustness techniques.
Descrição | Arquivo |
COMPLETE |