XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: AUV AUTO-DOCKING APPROACH BASED ON REINFORCEMENT LEARNING AND VISUAL SERVOING Autor: MATHEUS DO NASCIMENTO SANTOS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
WOUTER CAARLS - ADVISOR
Nº do Conteudo: 65926
Catalogação: 24/01/2024 Liberação: 05/11/2024 Idioma(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=65926&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=65926&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.65926
Resumo:
Título: AUV AUTO-DOCKING APPROACH BASED ON REINFORCEMENT LEARNING AND VISUAL SERVOING Autor: MATHEUS DO NASCIMENTO SANTOS
Nº do Conteudo: 65926
Catalogação: 24/01/2024 Liberação: 05/11/2024 Idioma(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=65926&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=65926&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.65926
Resumo:
In the growing field of underwater robotics, Automated Underwater
Vehicles (AUVs) are becoming more important for a range of uses, such as
exploration, mapping, and inspection. This dissertation focuses on studying
the main challenges of AUV auto-docking, considering a customized 3D
simulated environment. The research breaks down this challenging task into
two main parts: cage pose estimation and AUV control strategy. Using a mix of
traditional and new methods, including fiducial-based systems, Convolutional
Neural Networks (CNN), and Reinforcement Learning (RL), the study carries
out experiments to check system performance and limitations.
A significant aspect of this dissertation is using a 3D simulated environment
to facilitate the development and testing of auto-docking algorithms
for AUVs. This environment simulates crucial underwater dynamics, robotic
sensors, and actuators, allowing for experimenting with different pose estimation
techniques and control strategies. Additionally, the establishment of an
RL-friendly 3D simulated environment stands as a relevant contribution, offering
a reusable platform that not only validates the auto-docking algorithms
developed in this study but also serves as a foundation for future RL-based
underwater applications.
In summary, the dissertation explores a range of scenarios to evaluate the
efficacy of various auto-docking techniques. It initially utilizes visual servoing
along with a traditional PID controller, followed by the introduction of more
advanced methods like CNN-based pose estimators and Reinforcement Learning
controllers. These methods are assessed both individually and in hybrid
combinations to gauge their suitability and limitations for understanding the
main challenges behind the AUV auto-docking.
Descrição | Arquivo |
COMPLETE |