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Abstract

Santos, Matheus do Nascimento; Caarls, Wouter (Advisor). AUV
auto-docking approach based on reinforcement learning
and visual servoing. Rio de Janeiro, 2023. 139p. Dissertação
de Mestrado – Departamento de Engenharia Elétrica, Pontifícia
Universidade Católica do Rio de Janeiro.

In the growing field of underwater robotics, Automated Underwater
Vehicles (AUVs) are becoming more important for a range of uses, such as
exploration, mapping, and inspection. This dissertation focuses on studying
the main challenges of AUV auto-docking, considering a customized 3D
simulated environment. The research breaks down this challenging task into
two main parts: cage pose estimation and AUV control strategy. Using a mix of
traditional and new methods, including fiducial-based systems, Convolutional
Neural Networks (CNN), and Reinforcement Learning (RL), the study carries
out experiments to check system performance and limitations.

A significant aspect of this dissertation is using a 3D simulated envi-
ronment to facilitate the development and testing of auto-docking algorithms
for AUVs. This environment simulates crucial underwater dynamics, robotic
sensors, and actuators, allowing for experimenting with different pose estima-
tion techniques and control strategies. Additionally, the establishment of an
RL-friendly 3D simulated environment stands as a relevant contribution, offe-
ring a reusable platform that not only validates the auto-docking algorithms
developed in this study but also serves as a foundation for future RL-based
underwater applications.

In summary, the dissertation explores a range of scenarios to evaluate the
efficacy of various auto-docking techniques. It initially utilizes visual servoing
along with a traditional PID controller, followed by the introduction of more
advanced methods like CNN-based pose estimators and Reinforcement Lear-
ning controllers. These methods are assessed both individually and in hybrid
combinations to gauge their suitability and limitations for understanding the
main challenges behind the AUV auto-docking.

Keywords
Auto-docking; Convolutional Neural Networks; Reinforcement Learning;

AUV; 3D Simulation.



Resumo

Santos, Matheus do Nascimento; Caarls, Wouter. Técnica de
acoplagem automática de AUV baseada em aprendizado
por reforço e servovisão. Rio de Janeiro, 2023. 139p. Dissertação
de Mestrado – Departamento de Engenharia Elétrica, Pontifícia
Universidade Católica do Rio de Janeiro.

No campo em crescimento da robótica subaquática, Veículos Subaquáti-
cos Automatizados (AUVs) estão se tornando cada vez mais importantes para
uma variedade de usos, como exploração, mapeamento e inspeção. Esta disser-
tação foca em estudar os principais desafios da acoplagem automática de AUVs,
considerando um ambiente 3D simulado personalizado. A pesquisa divide essa
tarefa em duas partes principais: estimativa da pose da garagem e estratégia
de controle do AUV. Utilizando uma mistura de métodos tradicionais e novos,
incluindo sistemas baseados em marcos fiduciais, Redes Neurais Convolucio-
nais (CNN) e Aprendizado por Reforço (RL), o estudo realiza experimentos
para verificar o desempenho e as limitações do sistema.

Um aspecto significativo desta dissertação é o uso de um ambiente 3D
simulado para facilitar o desenvolvimento e o teste de algoritmos de acopla-
gem automática para AUVs. Este ambiente simula dinâmicas subaquáticas,
sensores robóticos e atuadores, permitindo experimentar diferentes técnicas de
estimativa de pose e estratégias de controle. Além disso, o estabelecimento
de um ambiente 3D simulado amigável para RL representa uma contribuição
relevante, oferecendo uma plataforma reutilizável que não apenas valida os al-
goritmos de acoplagem automática desenvolvidos neste estudo, mas também
serve como base para futuras aplicações subaquáticas baseadas em RL.

Em resumo, a dissertação explora uma série de cenários para avaliar a
eficácia de várias técnicas de acoplagem automática. Inicialmente, ela utiliza
servo-visualização junto com um controlador PID tradicional, seguido pela
introdução de métodos mais avançados, como estimadores de pose baseados
em CNN e controladores de Aprendizado por Reforço. Esses métodos são
avaliados tanto individualmente quanto em combinações híbridas para medir
sua adequação e limitações para entender os principais desafios por trás da
acoplagem automática de AUVs.

Palavras-chave
Acoplagem Automática; Redes Neurais Convolucionais; Aprendizado

por Reforço; AUV; Simulação 3D.
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1
Introduction

1.1
Robotics

Robots have been incorporated into daily life over the last half-century:
what was once only science fiction has now become a reality. Today, everyone
living in the developed world benefits from the advances in robotics in everyday
life [1]. Specifically, mobile robots have several applications in industries and
factories [2]. These include transporting parts between gantries, conveyors, air
tubes, and other processes, transportation among non-sequential processes,
long-distance deliveries along winding and trafficked paths, and individualized
item positioning at designated stations. However, a number of complex issues
due to the unstructured and hazardous conditions make it difficult to operate in
certain environments such as underwater, air, and space, even though today’s
technologies have allowed humans to land on the moon and robots to travel to
Mars.

1.2
Marine Robotics

Considering those challenging environments, the underwater one is gen-
erally overlooked as most of the research focuses its attention on land and
atmospheric issues. Consequently, the scientific society has not been able to
explore the full depths of the ocean, and its abundant living and non-living
resources [3].

In that context, marine robotics systems can help society to better
understand marine and other environmental issues, protect the ocean resources
of the Earth from pollution, support Oil and Gas companies to perform tasks
at hazardous high depths, and efficiently utilize them for human welfare [4].

Considering the more contemporary innovations, one of the pioneers of
the Autonomous Underwater Vehicles (AUVs) industry worth mentioning is
the Autonomous Benthic Explorer (ABE) vehicle, illustrated in Figure 1.1.
Designed for deep-sea mapping and data collection, it was launched for the
first time in 1997 [5].
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(a) Turtle MSV illustration. (b) ABE launching.

Figure 1.1: Pioneer underwater vehicles. (a) Turtle, the first manned subversive
vehicle in history [5], (b) ABE, one of the first industrial AUVs [5].

From the main types of subsea robots (gliders, autonomous surface vehi-
cles, benthic crawlers, etc.), we are most interested in autonomous underwater
vehicles, about which the number of projects and design proposals has been
growing fast, recently.

1.3
Autonomous Underwater Vehicles

AUVs are unmanned, untethered robot submarines that operate fully
independently to carry out pre-programmed operations and surveys [6]. Ac-
cording to [4], AUVs endurance typically ranges from a few hours to several
days, although rapid technological developments are now bringing long-range
operations within the possibilities, with endurance stretching to weeks or even
months [7, 8].

Autonomous Underwater Vehicles are widely used in many fields of
application: they are employed for scientific purposes (e.g., exploration and
surveillance of archaeological sites), to complete industrial tasks at high depths
(for instance they are exploited in the Oil and Gas industry), to carry out
reconnaissance and patrolling missions in the military field, or even to conduct
search and rescue duties [9].

Depending on their depth rating and size, AUVs can be equipped with a
range of sensors (Conductivity, Temperature, Depth sensor, Acoustic Doppler
Current Profilers, chemical sensors, photo cameras, sonars, magnetometers,
gravimeters, etc.). However, the lack of tether, and hence of direct power input,
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limits the sensor power consumption and duration of activity [9]. Therefore,
the battery duration of AUVs is generally a limiting factor for a mission. This
restriction adds the need for a surface support vessel to launch and recover
the vehicle, something which increases the cost of the mission and makes the
operational outcome more dependent on sea conditions [10].

In order to overcome this problem, a docking system is an alternative,
since the AUV can dock and recharge its battery [11]. The docking system can
be defined as a permanent structure on the seafloor, where the vehicle could
charge the batteries and transfer the results of a mission, which would reduce
the need for frequent launch and recovery operations at the surface, making
the technology more cost-effective, safe, and robust. Also, it would enable the
possibility of permanently residing AUVs ready for subsea operations, which
would further extend the capabilities of the AUV technology. To this end,
autonomous docking is required [10, 12, 13].

1.3.1
AUV Docking Systems

According to [14], underwater docking systems are what enable un-
manned charging and data collection for AUVs, and have been actively stud-
ied since the last century [15]. Conventional AUV docking systems are usu-
ally custom-designed to match up with specific AUV outlines and structures
[16, 17, 18].

The idea of a docking station garage aims to provide the required
interfaces to support the AUV during the execution of the target missions.
Docking station garages perform as fully integrated service stations with
improved capabilities, not merely as locations for charging and data transfer.
These garages may hold AUVs in a secure setting, greatly reducing the dangers
involved in open-water deployments. Additionally, these garages are made to
be modular and adjustable, allowing them to house a variety of AUV sizes and
types. They act as central nodes where numerous AUVs can dock concurrently
for upkeep, data synchronization, and energy replenishment, streamlining
operations and lowering overhead. Currently, there are many concepts for AUV
garages, three variants are commonly used [15]:

– Framed modular garage: This concept consists of a prismatic frame
constructed from tubular beams forming the corners, connected as an
open structure. The advantage of this solution is a low added mass
relative to the internal storage volume enveloped. However, in the
simplest implementation, this solution would not allow a smooth AUV
re-entry and would need to be designed specifically for each vehicle cross-



Chapter 1. Introduction 23

section. Figure 1.2 illustrates an example of a framed modular docking
station built for the FlatFish AUV project [19].

– Tubular garage: This concept consists of an open tube of a diameter
larger than that of the AUV. It is convenient for cylindrical or torpedo-
shaped AUVs, for which the lost volume is minimum and the added
inertia associated with the trapped water and the hydrodynamic added
mass is limited. This concept could have two add-on variants to make
docking easier and to allow adaptation to a variety of AUV diameters.
First, a propeller could be added to help the deceleration of non-hovering
AUVs just prior to and during mating with the garage in the case of
bottom support, generating an artificial current against the approaching
vehicle. Second, by a pumping-out effect, a guiding bottle would help stop
non-hovering vehicles after they had entered the garage. Since torpedo-
shaped AUVs are very popular due to their excellent hydrodynamic
characteristics, most docking systems are tailored for such kinds of AUVs
[20, 21, 22].

These docking stations utilize cone-shaped entrances to provide the
AUVs with positioning tolerance and collision guidance. Figure 1.2
depicts the docking system designed for the SPARUS II AUV [23].

– Flying Garage: A novel concept of docking station garages that can
be deployed in areas where the seabed is not accessible [24]. Figure 1.2
shows a flying garage designed for the DeepLeng AUV [25].

One of the challenges associated with docking systems is related to the
localization of this structure by the AUVs. In general, some steps are considered
in order to localize and dock the AUV properly. This challenge is defined by
the literature as homing [15]. The homing operational phase includes a number
of aspects, the principal ones being relative position identification, navigation
control, and target detection. In some cases, the solutions will be predicated
on the capability of the AUVs, while in others, specific solutions will have to
be identified [16, 17].
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(a) Flatfish framed modular docking sta-
tion.

(b) SPARUS II AUV torpedo-shaped dock-
ing station design concept.

(c) AUV DeepLeng Flying docking station.

Figure 1.2: Docking station garages examples: (a) FlatFish framed modular
garage, developed by SENAI CIMATEC and DFKI [19], (b) Toperdo docking
station concept of Sparus II AUV. An acoustic modem on top (black) and 4
light beacons (yellow) at the front [23], and (c) AUV DeepLeng Flying docking
station [25].

Different techniques can be applied in order to perform homing, such as
using acoustic systems [23], electromagnetic [20], optics [21], and image-based.
According to [26], cruising-type AUVs go straight ahead and enter the cylinder-
shaped or corn-shaped seafloor station. On the other hand, hovering-type
AUVs land at the seafloor station from above because the shape of hovering-
type AUVs is more complicated than cruise-type AUVs. In order to complete
the docking procedure, the AUV must estimate the relative position of the
station in real-time with sufficient accuracy. In underwater fields, acoustic
signals and visible light are available for relative positioning (Section 2.3.2
details it). In general, the acoustic signal is available up to long distances but
with low resolution. The visible light has opposite properties [26]. Therefore,
image-based systems are considered since they can deliver equivalent and even
more efficient results, saving costs when compared to the other techniques.

To align with the terminology commonly used in relevant applications,
the term “docking garage” will be referred to from now on as the “cage”.
Throughout this work, more details are provided about the homing task since
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the primary goal of it is to propose a homing localization approach.

1.4
Motivation

As described in the previous Section, one of the concerns associated with
the usage of docking stations is related to the AUV’s approach to localize
the station and the required steps to docking it correctly on the target
structure. For harsh underwater environments, the self-localization of AUVs is
the basis for accomplishing the aforementioned tasks, which could guarantee
the proposed work.

Significant resources are required to ensure proper self-localization of
AUVs without available reference signals provided by the Global Positioning
System (GPS) or the acoustic positioning systems such as Long Baseline (LBL)
[14]. The state-of-the-art applications consider onboard sensors based on visual
feedback due to low cost and performance, which in most cases attend the
imposed requirements [27, 28, 29].

However, the localization using vision-based algorithms applies visual
landmarks to create visual maps of the environment, which can result in a
complex task due to the abrupt dynamic light conditions, decreasing visibility
with depth and turbidity, and image artifacts like aquatic snow [30]. Moreover,
underwater images are essentially characterized by their low visibility once the
light is exponentially attenuated as it travels in the water and the scenes result
in poorly contrasted and hazy [31]. The extent to which the robot navigates,
the map grows in size and complexity, increasing the computational complexity
to solve the target algorithms.

Given the mentioned challenges associated with underwater image pro-
cessing, the main performance impacts are related to the computational over-
head that makes real-time processing difficult. This is where machine learning
comes into play as a promising solution. Machine learning algorithms are adept
at handling complex data and can be trained to better understand and inter-
pret underwater imagery [32]. They can adapt to the unique challenges of the
underwater environment and offer improved accuracy and robustness in nav-
igation tasks [31]. Recent localization research developments have witnessed
dramatically increasing performance in autonomous driving [33], autonomous
micro aerial vehicles [34], augmented reality, and virtual reality [31], which
promoted the rapid development of novel machine learning-based algorithms.
According to [2], inspired by the machine learning algorithms on the ground
and in the air, the underwater approach has been increasing the number of
academic research in this field, especially in laboratory circumstances with
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high accuracy and robustness.
Therefore, one of the primary motivations behind this research is to

simplify the docking homing process for AUVs by studying and implementing
machine learning techniques. Conventional approaches often struggle with
unique and challenging underwater conditions, such as fluctuating lighting
and limited visibility. Implementing machine learning might offer a more
efficient and robust solution to these challenges. Moreover, considering machine
learning techniques for this research not only addresses immediate challenges
in AUV auto-docking but also lays the foundation for future research and
advancements in this field.

However, in machine learning applications, environment interpretation,
based on images is usually formulated as a pixel labeling task. Given an under-
water image, the goal is to produce either a complete semantic segmentation of
the image into classes such as marine life, water, static objects, and dynamic
objects or a binary classification of the image for a single object class [35].
As training machine learning and deep learning models require huge amounts
of carefully labeled data, this task, also referenced as data labeling or data
annotation, can impose an unfeasible scenario for a complex application due
to the occurrence of noisy labeling.

To address the issue of noisy labeling, the scarceness of specialized auto-
mated tools for data labeling in underwater environments, and the unfeasibility
of obtaining a sizable dataset for training, this work proposes, as its primary
focus, the encouragement of applying Reinforcement Learning (RL) algorithms
into the underwater environment to provide an agent capable of performing
autonomous tasks by using its policy along with visual servoing techniques to
guide a simulated AUV during the docking homing process, also referenced in
this work as auto-docking task.

Finally, the implementation of the RL paradigm in simulated underwater
environments, as demonstrated in this work, serves as an important stepping
stone for the field since the use of simulation-based RL allows for a risk-free,
cost-effective way to iteratively improve the autonomous task capabilities, by
evaluating the agent’s performance under different conditions. In addition,
it encourages researchers to adopt and experiment with RL paradigms for
underwater robotics, speeding up the solution’s prototyping and testing and
validation cycles.
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1.5
Goals

Therefore, the main goals of this work field of research are to investigate,
explore, and conduct experiments towards the AUV’s auto-docking task on a
3-Dimensional (3D) simulated environment. A key component of this research
is the application of machine learning methods, specifically targeting the
challenge of localization — a fundamental aspect of AUV’s navigation subject.

In the context of this research, the task of auto-docking for AUVs focused
on the localization aspect is broken down into two main challenges. The first
is determining the relative position and orientation of the docking garage, or
“cage”, with respect to the AUV, referred to as cage pose estimation. The
second involves proposing a control strategy to guide the hovering AUV
toward the identified cage pose effectively. Figure 1.3 depicts the high-level
architecture proposed to achieve the described goals.

Figure 1.3: Proposed AUV auto-docking system high-level architecture design.

1.6
Proposed solution

As depicted in Figure 1.3, the system is composed of three main sub-
systems: simulation bringup, the main application, and the AUV simulation.
The first one is responsible for receiving the environment and robot description
file and setting up the simulation environment accordingly. The environment
setting up covers the configuration of image acquisition simulated sensors, the
underwater dynamics physics, and all related components required to make
the simulation environment meet these work requirements.
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The second subsystem is responsible for the functionalities of cage pose
estimation and the AUV controlling.

The last subsystem consists of the AUV’s simulated onboard sensors
and actuators. The main workflow starts off from the simulation environment
setting up and proceeds to the image acquisition step. The data acquired is
processed and forwarded to the cage pose estimation algorithms, in order to
identify the next action taken by the controller expecting to localize the target
object (docking cage). One of the goals of this work is to identify the docking
station by testing different machine learning methods, since this technique may
present different result performances based on the application scope.

Figure 1.4 delineates the sequence of operations required to execute the
auto-docking task, in accordance with the specifications outlined in the scope
of this research project.

Figure 1.4: Proposed AUV auto-docking steps to perform the task.

As illustrated in Figure 1.4, the auto-docking task comprises four main
steps: starting pose, cage pose estimation, controlling, and docked pose. The
first one consists of a random starting position within a predefined range,
which should guarantee that the cage can be within the AUV camera’s Field



Chapter 1. Introduction 29

Of View (FOV). This approach will guarantee the evaluation of the capability
of generalization of the obtained results.

The second step consists of the cage pose estimation, which should receive
the image stream from the AUV camera and output the target cage pose
relative to the robot. This modular component should be self-contained, with
a well-defined interface, aiming at making possible the interchanging between
different techniques.

The third step is responsible for taking the controlling actions to guide the
AUV toward the cage estimated pose. As the cage pose estimation component,
it should have a modular architecture, to make possible the evaluation of
different techniques.

The last step consists of reaching the docked pose, which, in this work,
is considered as a pose outside the cage since the main challenge is regarding
localization, not the fine controlling to avoid collisions.1

Furthermore, the work aims to investigate the relevant metrics to evaluate
the auto-docking process performance in order to make feasible the application
of the proposed approach in a real field test.

1.7
Contributions

From the content presented in the following Chapters, this work goes
through the required steps to carry out experiments toward auto-docking.
During those steps, the following contributions can be highlighted, as an
overview:

– 3D Simulated Underwater Environment for Auto-docking: One
of the major contributions is the creation of a 3D simulated environment
tailored for auto-docking applications. The simulation includes all the
necessary resources and underwater dynamics required for representa-
tive testing. In that context, a unique addition to the UUV Simulator
branch is an underwater LED plugin (illustrated in Figure 4.8), specif-
ically implemented to enhance the realism and utility of the simulated
environment for auto-docking tasks. This addition provides an extra layer
of complexity and is useful for scenarios requiring visual cues or markers.
Additionally, the simulated environment is compatible with Reinforce-
ment Learning algorithms, allowing for real-time training and testing.

1Usually, the docked pose is inside the docking garage with all required connectors
plugged to it. However, other controlling techniques can be considered to tackle this specific
challenge, as presented in [22].
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– Supervised Learning-Based Pose Estimation: A Convolutional
Neural Network was trained for pose estimation using a dataset that
did not require labeling. This streamlines the process and significantly
reduces the overhead associated with manual data labeling. Moreover,
transfer learning techniques were applied from architectures that initially
were trained to interact with another type of paradigm. More details are
provided in Section 3.1.2.

– Reinforcement Learning Encouragement: This work figures as an
encouragement for future underwater research considering reinforcement
learning methods to solve complex tasks. As an example of a complex
task, as presented in this work, a Reinforcement Learning agent is pro-
posed to control the AUV under different scenarios. Then, an assessment
of the agent’s performance is done, considering a PID controller as a
reference, aiming to illuminate the strengths and weaknesses of each ap-
proach in an auto-docking context, providing valuable insights for future
work.

– Knowledge Foundation for Future Challenges: This research serves
as a reference, for the authors, for lessons learned for future related works.
Additionally, it can be considered as a relevant technical starting point
for the authors and other researchers to investigate deeper and more
complicated challenges related to AUVs and underwater robotics.

1.8
Text Structure

This document is structured as follows:
This Chapter presented a brief introduction to the study covering the

motivation for performing the auto-docking task using machine learning,
RL, and Visual Servoing techniques; the state of the art of AUVs; a brief
introduction to docking systems; and the main goals behind this project.

In Chapter 2, we present the background that was relevant to our chal-
lenge, which encompasses computational resources, agreed-upon conventions,
intricacies of the simulation environment, supporting theories, and state of the
art of the main subjects with a focus on underwater applications.

In Chapter 3, we present the methodology adopted to carry out the
experiments and to evaluate the methods. Additionally, it should cover the
theoretic formulation, implemented algorithms, and evaluation metrics.

In Chapter 4, the procedure required to enable the experiments’ execution
is presented.
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In Chapter 5, the obtained results are presented, focusing on key per-
formance metrics. A subsequent section provides a comparative analysis to
evaluate the relative advantages and disadvantages of each proposed method.

Finally, in Chapter 6 we present our conclusion, based on the results
presented in Chapter 5, and suggest future works, that might add relevant
progress to this project.



2
Background

In the present Chapter, the background concepts required for carrying
out the auto-docking task, considering a simulated environment, are detailed.
These consist of the simulation environment, the method to detect the cage,
and the control algorithm.

2.1
Simulation Environments

A 3D virtual world is an unreal environment represented considering the
same dimensions of the application working area. The concept is to link digital
technology and computer vision and become a tool to carry out engineering
studies, design analysis, and architectural projects [36]. It has been applied
to various applications such as the simulation of manufacturing plants, the
planning of robotic work cells, and robot operating systems.

The 3D underwater environment simulation imposes some challenges
intrinsically related to the difficulty of realistically modeling hydrodynamic
forces acting on the robot itself and the complex environments in which the
operations take place. According to [37], the main requirements to meet the
main challenges faced by the underwater environment simulation are:

– Physical fidelity for the simulation of rigid-body dynamics and collisions;

– Interface with robotics middlewares, which are commonly used by the
vehicles and systems to structure the software scope (e.g., ROS, ROCK);

– Low complexity for the setup of new world scenarios and robot models;

– Extensibility for integration of additional modules;

– Adequate documentation;

– Regularity of updates and maintenance;

– Capability of multi-robot simulation;

– Open-source application with permissive licenses (e.g., MIT, BSD,
Apache).

At the first stage, three simulation tools were considered as potential
choices. Unity3D [38], UUV Simulator [37] and UWSim [39] (Figure 2.1)
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meet all of the requirements mentioned above. However, they present different
functionalities that figure as a trade-off. Thus, a trade study was performed in
order to define the most appropriate tool, considering the scope of this work.
The following Sections detail the evaluated aspects of the trade study.

(a) UWSim. (b) Unity3D.

(c) UUV Simulator.

Figure 2.1: Potential simulators considered for this work, primarily: (a)
UWSimulator, (b) Unity3D, and (c) UUV Simulator.

2.1.1
Simulator Tools Overview

UWSim and UUV Simulator are ROS-based tools that provide third-
party rendering and physical engines. Meanwhile, Unity3D is a general-purpose
simulation tool commonly used as a gaming development platform. It uses
PhysX by NVIDIA [40] as a physics engine to simulate the behavior of
objects regarding their physical environment and forces acting upon them.
For rendering, it considers third-party assets that can be purchased or shared
by other users.

According to [38], UWSim is a tool that has been implemented in C++,
makes use of the Open Scene Graph (OSG) and osg Ocean libraries for ren-
dering, and a built-in package aimed to provide the required underwater dy-
namics. Moreover, it provides an XML-based interface to describe the elements
present in the simulation environment. In addition, [37] defines the UWSim as
a tool that offers a wide range of sensor models, provides realistic renderings of
underwater environments due to its graphics engine OpenSceneGraph library
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and has been used in several academic publications. The physics engine is used
only for handling contact forces and the implementation of the vehicle dynam-
ics, including the simulation of thruster forces, it is located in one monolithic
ROS node, but it could be modified to adhere to a more modular structure or
interfaced with an external platform such as Matlab, if necessary. Setting up
a new simulation, however, requires the configuration of the scenario, vehicles,
and other objects in a single XML description file, which can make this task
laborious.

According to [37], UUV Simulator is an extension for Gazebo, which
supports multiple underwater vehicles (ROVs and AUVs) and robotic manip-
ulators with the high-fidelity representation of hydrostatic and hydrodynamic
forces. Several commonly used sensors are included, e.g., underwater camera,
pressure sensor, Inertial Measurement Unit (IMU), Magnetometer, DVL, etc.
Models for fins and thrusters are also included for actuation. UUV Simulator
allows researchers to create complex underwater environments with models al-
ready included for seabeds, lakes, shipwrecks, etc. It uses the Object-Oriented
Graphics Rendering Engine (OGRE) as a rendering engine and counts on the
Gazebo hydrodynamics built plugin to simulate the underwater dynamic.

2.1.2
Criteria Definition

According to [41], in order to evaluate the performance of a mobile
robot based on a simulation, the simulation must be of sufficient precision
and accuracy.

From the [42] perspective, similar to other machine learning applications,
for the Reinforcement Learning methods, the acquisition of training data is one
of the more challenging tasks. The quality of training data closely correlates
to the quality of the simulation environment generating this data. Thus,
the quantity of the training data depends on the speed of the simulation
environment. Therefore, developers need a reliable simulation environment
with a physical model representing their process environment well enough to
produce meaningful data. Based on that, this Section aims to detail the criteria
adopted to define the simulation tool for emulating the required environment
to accomplish the goals of this work. [43] defines metrics to compare Gazebo
and Unity simulators and supports the criteria definition for this work. The
criteria aspects definition are described below, according to the scope of this
work:

– Graphical fidelity: This metric is not commonly considered in
the benchmarks works that compare the performance simulators
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[44][41][45][46]. However, as this metric impacts directly the RL algo-
rithms performance [44], it was considered. Visual Technologies avail-
ability such as High Dynamic Range (HDR) [41], Reentrancy Comput-
ing [44], GPU processing [45], and shader runtime compilation [46] were
considered.

– Physics engine: Underwater hydrostatic and hydrodynamics physics
representation support.

– Community support: Maintenance frequency, discussion forums, num-
ber of projects already supported, and documentation.

– AUV basic motion structure (sensor, joints, links) description:
The complexity of representing the AUV sensors and actuators elements
and their respective physics along with ROS.

– Underwater rendering plugins (or assets) availability: Number of
software components capable of representing the visual dynamic of the
underwater environment (e.g., fog, suspended particles, and vortex).

– Computational performance: Real-time computing and resources
allocation.

Table 2.1 concentrates on the main aspects evaluated during the trade
study. All of the simulators were tested and the technical information was
validated, aiming to choose the best option for the proposed work.

From the first aspect, graphical fidelity, Unity has a considerable advan-
tage over the others, since it has the High Definition Render Pipeline (HDRP)1,
which provides a remarkable graphical performance when compared to the
other alternatives.

For the physics engine, UWsim and UUV Simulator meet the require-
ments for underwater simulation. However, UUV Simulator has a slight ad-
vantage since it also simulates the plume caused by the interaction between
the AUV thruster forces and the water. Unity does not have a specific asset
for simulating both hydrodynamics and hydrostatics.

Considering the community support aspects, only the UWSim does
not provide a consistent level of maturity since there is no well-structured
documentation, dedicated forums, or updated repositories.

1According to [40], HDRP is a high-fidelity scriptable render pipeline built by Unity to
target modern (Compute Shader compatible) platforms. HDRP utilizes physically based
Lighting techniques, linear lighting, HDR lighting, and a configurable hybrid Tile/Cluster
deferred/Forward lighting architecture. It gives the tools needed to create applications such
as games, technical demos, and animations to a high graphical standard.
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Regarding the AUV description capabilities, UUV Simulator provides
all interfaces compatible with ROS. Meanwhile, the other alternatives only
provide one ROS-compatible interface.

Evaluating the underwater rendering plugins, UWSim has an advantage
since the representation of visual effects and phenomenons exceeds the expec-
tations for this type of application.

In terms of computational performance, according to the documentation
of each alternative, they are capable of delivering real-time-based simulations.
Unity3D has an advantage since it can use GPU programming to leverage the
simulation performance.
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Table 2.1: Simulators trade study assessment.

Criteria UWSim Unity3D
UUV
Simulator

Winner

Reality
fidelity

HRP

OpenGL Up to 8k OpenGL Unity3D

HDR

NVidia-based

Physics
engine

Hydrostatic Hydrostatic

Hydrodynamic Hydrodynamic UUV
Simulator

Plume

Community
support

Poor
Documentation

Massive
Documentation

Massive
Documentation

Outdated
Repository

Updated
Repository

Updated
Repository

UUV
Simulator

ROS
Support

ROS
Support

AUV
Description

XML URDF URDF

SDF UUV
Simulator

XACRO

Rendering
Plugin

OSG

Fog and
Debris

Crest
Ocean

Gazebo
Plugin

UWSim

Performance

Real
Time

Real
Time

Real
Time

GPU
Programming

Unity3D
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Therefore, the chosen simulator was the UUV Simulator since, beyond the
discussed features, it also provides a set of AUVs that already has the control
algorithms stack implemented and tested, in some cases even in relevant fields.

2.1.3
UUV Simulator

UUV Simulator consists of a Gazebo-based package that provides a well-
structured environment to simulate unmanned underwater vehicles. In this
work, UUV Simulator is responsible for delivering the AUV simulation (in-
cluding motion, sensing, and control), the physics simulation (hydrodynamic
and hydrostatic), the water rendering pipeline, and the ROS stack, including
the interaction with the sensor’s data, frames transformation and all required
data that the simulation should provide. Figure 2.2 depicts the UUV Simula-
tion software structure.

Figure 2.2: UUV Simulator software stack [37].

UUV Simulator uses Gazebo 9 as a backbone. Gazebo [47] is the primary
simulation tool of the ROS community. As ROS is used for an increasing
amount of robots [41], Gazebo has extensivly been proven a useful tool for
simulating robots specifically mobile robots.

As the physics simulation engine, UUV Simulator uses the Open Dy-
namics Engine (ODE). ODE is a free, industrial-quality library for simulating
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articulated rigid body dynamics that uses XWindows and OpenGL to render
the scene being simulated.

As the visualization framework, OGRE is used. The OGRE library is a
scene-oriented, flexible 3D engine written in C++ designed to make it easier
and more intuitive for developers to produce applications utilizing hardware-
accelerated 3D graphics. The class library abstracts all the details of using
the underlying system libraries like Direct3D and OpenGL and provides an
interface based on world objects and other intuitive classes.

2.2
Auto-Docking

As introduced in the previous Chapter, the auto-docking task can be cat-
egorized as a “localization” challenge, which figures as one of the main aspects
of underwater autonomous navigation. According to [48], Underwater naviga-
tion is a challenging work from the aspect of control, construction, and design,
one must face constraints that are not encountered in other environments.
Naturally, there is a great research opportunity in the implementation and de-
signing of new algorithms and technology for the navigation and localization
of AUVs.

According to [49], due to the lack of underwater GPS, localization in
the ocean is much more challenging than on land. Common approaches for
obtaining a submerged device’s position are based on acoustic pings, such
as Ultra-Short-Baseline Localization (USBL) or LBL [10]. From [12], Inertial
Navigation System [13] and Dead-Reckoning [13] are methods for navigation
and localization of AUVs. These systems depend on acceleration, water speed,
and vehicle velocity to determine the AUVs’ position. They don’t need to
send/receive signals externally, ideal for the long-range mission [10], the main
issue is position error, which grows over time, termed accuracy drift [10].

None of the techniques mentioned is a perfect solution to the challenges,
in practice it is common for a vehicle to employ a combination of these
procedures. However, in this work, the visual servoing approach is considered
since one of the premises of this work, as illustrated in Figure 1.4, is to start
the auto-docking task at a certain distance from the cage, making possible the
visualization of it and hence the implementation of this technique.

Therefore, the next Section provides an overview of the Visual Servoing
paradigm, followed by the methods considered to be implemented to estimate
the cage and control the AUV. For each of them, it is provided a “Work Scope”
subsection describing the method’s role within the scope of this work.
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2.2.1
Visual Servoing

According to [50], movement and control-related tasks for autonomous
vehicles generally consist of a complex challenge, requiring integration of
different areas of engineering, including computer vision, dynamic systems
modeling, and robot control. The vehicles are developed mainly using two
approaches: path planning and visual servoing, both of which allow guiding a
robot through a series of positions in the joint or task space, from an initial to
a desired position.

Visual servoing is a well-known approach to guide robots using visual
information. Image processing, robotics, and control theory are combined in
order to control the motion of a robot depending on the visual information
extracted from the images captured by one or several cameras [51], in which
case the motion of the robot induces camera motion, or the camera can
be fixed in the workspace so that it can observe the robot motion from a
stationary configuration [52]. Usually, it consists of two intertwined processes:
tracking and control. Tracking provides a continuous estimation and update of
features during the robot/object motion. Based on this sensory input, a control
sequence is generated. In addition, the system may also require an automatic
initialization part which may include figure–ground segmentation and object
recognition [50]. Figure 2.3 depicts this process.

A typical example is to extract image features, recognize the desired
object by matching image features to a geometrical model, and compute
its position and orientation (pose) relative to the camera (robot) coordinate
system. This Cartesian–space information is used to move the robot to the
desired pose. Considering the conventional methods, to estimate the pose of
the object, the model of the object must be available. To move the robot based
on the visual information extracted in the camera frame, the visual sensor
has to be calibrated with respect to the robot [41]. The previous example
demonstrates a typical challenge covered by this field, also known as the
position-based visual servoing system. In this work, this type of system is
considered, since the auto-docking challenge can be applied to it.
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Figure 2.3: Major components of a visual servoing system: Initialization
(visual servoing sequence is initialized), Tracking (the position of features
used for robot control are continuously updated during the robot/object
motion), Robot Control (based on the sensory input, a control sequence is
generated)[52].

The Visual Servoing approach arose in 1979 when Hill and Park ([53])
introduced the term visual servoing to distinguish their approach from earlier
work. In 1980, the following taxonomy of visual servo systems was introduced
in [53]:

– Dynamic look-and-move systems: These systems control the robot
in two stages: the vision system provides input to the robot controller
that then uses joint feedback to stabilize the robot internally. As pointed
out by [53] nearly all of the reported systems adopt this approach.

– Direct visual servo systems setup: Here, the visual controller directly
computes the input to the robot joints, and the robot controller is
eliminated.

Considering the first taxonomy, according to [54], currently, three types
of visual servoing exist depending on how this information is used: image-based
visual servoing (IBVS), position-based visual servoing (PBVS) and hybrid
visual servoing (HVS). IBVS control [53], uses coordinates on an image plane
corresponding to observation points S that vary over time and are used to
calculate an error associated with the reference, which is then used to calculate
a compensation signal to guarantee its convergence to zero. PBVS control [53],
takes the object’s orientation and positioning as parameters that are compared
to the reference to calculate its error, while the HVS control method [53],
is based on an integration of the above methods to formulate the control
law. Visual control can also be classified according to the camera position.
If the camera is static in the robot’s workspace, it is called an eye-to-hand
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configuration. If the camera is positioned on the robot, i.e., if the robot’s
movement moves the camera, the configuration is called eye-in-hand.

As mentioned before, this work is based on the position-based control sys-
tem. Therefore, this system should be covered in this Section and throughout
this document.

2.2.2
Position-Based Control

According to [41], PBVS is usually referred to as a 3D servoing control
since image measurements are used to determine the pose of the target with
respect to the camera or some common world frame. The error between the
current and the desired pose of the target is defined in the task (Cartesian)
space of the robot. According to [55], the advantage of the PBVS is that
the pose of the end-effector can be controlled relative to the target directly
and naturally, while the drawbacks are that the pose and motion estimation
is prone to camera calibration errors, target model accuracy, and image
measurement noise. These challenges have been successfully addressed by many
researchers to eliminate image errors caused by an uncalibrated camera and
suppress the image noise due to the vibration of the camera resulting from
flexible manipulators [54]. Figure 2.4 illustrates the frames involved in a PBVS
application.

Figure 2.4: Camera projection diagram showing the desired (F∗) and the
current (F ) frame, where R and t denote the rotation and translation from
the robot to the target object, respectively [56].

Using a conventional PBVS method, as a premise, a 3D camera calibra-
tion is required in order to map the 2D data of the image features to the Carte-
sian space data. This is to say that the intrinsic and extrinsic parameters of
the camera must be evaluated. Intrinsic parameters depend exclusively on the
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optical characteristics, namely, lens and Charge-Coupled Device (CCD) sensor
properties. The calibration of intrinsic parameters can be operated offline in
the case that the optical setup is fixed during the operative tasks of the robot.
Extrinsic parameters indicate the relative pose of the camera reference system
with respect to a generic world reference system. It is assumed that the world
reference system is exactly the object frame so that the extrinsic parameters
directly give the pose of the camera with respect to the target. Obviously, the
extrinsic parameters are variable with a robot or target motion, and an online
estimation is needed in order to perform a dynamic look-and-move tracking
task [52]. Section 3.1.1 depicts the mathematical background to compute the
camera’s intrinsic parameters.

Moreover, PBVS includes methods based on analysis of 2D features
or direct pose determination using 3D sensors. In order to recognize those
reference features in the scene, plenty of techniques can be considered, such
as photogrammetric, stereo vision, and depth from motion. Another common
technique used in this field is based on the usage of fiducial markers. Figure
2.5 shows the block diagram that represents the PBVS control chain, which
highlights the feature’s identification of a crucial role in the system.

Figure 2.5: Typical Block Diagram of a Position Based Control [54].

The present study investigates the utilization of fiducial markers as a
means of facilitating feature extraction and recognition, as previously refer-
enced. Accordingly, a comprehensive examination of this methodology is pre-
sented in the ensuing section.

2.3
Fiducial Markers

Visual fiducials are artificial landmarks designed to be easy to recognize
and distinguish from one another. Although related to other 2D barcode
systems such as QR codes [57], they have significant goals and applications.
With a QR code, a human is typically involved in aligning the camera with
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the tag and photographs it at a fairly high resolution, obtaining hundreds
of bytes, such as a web address. In contrast, a visual fiducial has a small
information payload (perhaps 12 bits). Still, it is designed to be automatically
detected and localized even when it is at very low resolution, unevenly lit,
oddly rotated, or tucked away in the corner of an otherwise cluttered image.
Aiding their detection at long ranges, visual fiducials are comprised of many
fewer data cells: the alignment markers of a QR tag comprise about 268 pixels
(not including required headers or the payload), whereas the visual fiducials
commonly range from about 49 to 100 pixels, including the payload [58].

According to [58], in the pursuit of retrieving the 6-DOF configuration of
the servoing target, artificial features (fiducials markers) could largely increase
the tracking precision and robustness and reduce the computational cost.
More importantly, extra information could be computed to assist better visual
servoing, such as scale, depth, and rotations.

In underwater robotics, the most commonly used fiducial markers are
passive and active markers that can be detected by imaging devices such as
sonar, LiDAR, or cameras. Passive fiducial markers such as retro-reflective
spheres or reflective tape are often used for underwater positioning and tracking
systems. These markers reflect sound waves or light emitted by the imaging
device back to the sensor, making them easily detectable. Retro-reflective
spheres, for example, are widely used in underwater robotics applications as
they are highly visible in sonar and LiDAR scans and can be easily attached
to underwater structures or vehicles. Active fiducial markers, such as acoustic
beacons or LED lights, are also used in underwater robotics. These markers
emit signals that can be detected by sensors, allowing for accurate tracking
and positioning in underwater environments where passive markers may not
be visible or easily detectable [12].

The AprilTags and ArUco markers are the most common types of fiducial
diffused in underwater applications. In this work, the usage of AprilTags is
considered.

2.3.1
ArUco Markers

According to [59], an ArUco marker is a synthetic square marker com-
posed of a wide black border and an inner binary matrix that makes up its
identifier. From the [60] experiences, the ArUco tags, made available by the
OpenCV library, was used to help estimate the pose of objects in images taken
by a single camera from a single perspective. The OpenCV Aruco module
provides the users with a simple interface to plug in the tag characteristics
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they desire to detect the pose. It takes as input a 2D image containing the
tag along with the camera parameters to estimate the pose of the tag in a 3D
coordinate space relative to the camera. An alternative to ArUco provided by
OpenCV is Charuco, which embeds ArUco-like tags in a chessboard. Charuco
is more accurate than the ArUco grid, thanks to the included chessboard, and
takes advantage of tag-based calibration, which supports occluded or partially
visible calibration patterns [60].

2.3.2
AprilTag Markers

According to [61], the AprilTag algorithm [58] is an improvement of
the ARToolkit pose estimation algorithm. Using the threshold value given
by the user when acquiring the marker, the ARToolkit algorithm can only
get a simple binary image and consequently can obtain information quickly,
but showing poor stability in the complex environment with variable light
intensity. In contrast, the AprilTag algorithm can get tag according to the
gradient of the image, implying that it is more practical. Generally speaking,
the AprilTag algorithm can take advantage of its detection mechanism to detect
partially occluded markers, detect markers more easily, implement real-time
error correction faster, complete simultaneous detection of multiple markers
and carry out relative pose analysis better [61].

Figure 2.6 illustrates ArUco and Apriltag markers. As mentioned previ-
ously, the Apriltags are considered for this work, since their advantages include
their high detection accuracy, low computational cost, and robustness to occlu-
sion and lighting changes [61]. Furthermore, the availability of ROS packages
for Apriltag detection and pose estimation makes their integration into robotic
systems straightforward. These packages provide a simple interface for detect-
ing Apriltags in real time, estimating their poses, and publishing the results as
ROS messages. This integration can be used for a variety of robotic applica-
tions, such as object manipulation, autonomous navigation, and collaborative
robotics.
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(a) ArUco marker 4x4 ID 0. (b) AprilTag tag41h12 ID 15.

Figure 2.6: Samples of ArUco and Apriltag markers.

2.3.3
Work Scope

The fiducial markers are considered in the scope of this work as one of
the methods to estimate the pose of the cage in relation to the robot’s. Section
3.1.1 provides more details regarding the application of this method and how
it should interact with the other components of the proposed system.

2.4
Supervised Learning

One of the techniques considered to estimate the pose of the AUV in
relation to the cage is the supervised learning method, detailed in this Section.

Machine learning represents a large field in information technology,
statistics, probability, artificial intelligence, psychology, neurobiology, and
many other disciplines. With machine learning the problems can be solved
simply by building a model that is a good representation of a selected dataset.
Machine learning has become an advanced area from teaching computers to
mimic the human brain. It has brought the field of statistics to a broad
discipline that produces fundamental statistical, and computational theories
of the learning processes [62].

Supervised learning is the most common machine learning technique in
use today [62]. In the supervised learning paradigm, the goal is to infer a
function f : X → Y , the classifier, from a sample data or training set An

composed of pairs of (input, output) points, xi belonging to some feature set
X, and yi ∈ Y :

An = {(x1, y1), . . . , (xn, yn)} ∈ (X × Y )n. (2-1)
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Typically X ⊂ Rd, and yi ∈ R for regression problems, and yi is discrete
for classification problems.

The second fundamental concept is the notion of error or loss to measure
the agreement between the prediction f(x) and the desired output y. A loss
(or cost) function L : Y × Y → R+ is introduced to evaluate this error. The
choice of the loss function L(f(x), y) depends on the learning problem being
solved. Loss functions are classified according to their regularity or singularity
properties and according to their ability to produce convex or non-convex
criteria for optimization.

In the case of pattern recognition, where Y = {−1, +1}, a common choice
for L is the misclassification error:

L(f(x), y) = 1
2 |f(x)− y| . (2-2)

This cost is singular and symmetric. Practical algorithmic considerations
may bias the choice of L. For instance, singular functions may be selected for
their ability to provide sparse solutions [63].

2.4.1
Convolutional Neural Networks

Artificial Neural Networks (ANNs) are a common choice for representing
the learned mapping f . In [64], it was proposed the first mathematical model of
neurons — the Multilayer Perceptron model. In [65] was proposed a single-layer
perception model by adding learning ability to the MP model. However, single-
layer perceptron networks cannot handle linear inseparable problems (such as
XOR problems). In [66], a multilayer feedforward network was trained by the
error backpropagation algorithm—backpropagation network, which addressed
some problems that single-layer perceptron could not solve.

In the particular area of computer vision, the specific type of neural
network used is called a Convolutional Neural Network. Nowadays, CNNs are
used to construct the majority of computer vision algorithms.

In [67], the concept of CNN is defined. It consists of a feedforward
neural network that can extract features from data with convolution structures.
Different from the traditional feature extraction methods [68], CNN does not
need to extract features manually. The architecture of CNN is inspired by
visual perception [10]. A biological neuron corresponds to an artificial neuron;
CNN kernels represent different receptors that can respond to various features;
activation functions simulate the function that only neural electric signals
exceeding a certain threshold can be transmitted to the next neuron. Loss
functions and optimizers are something people invented to teach the whole
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CNN system to learn what we expect. Figure 2.7 illustrates the main differences
between CNN and Fully Connected (FC) layers.

Figure 2.7: Diagram of CNN and Fully connected layers [67].

According to [63], compared with fully connected networks, CNN pos-
sesses many advantages:

1. Local connections: Each neuron is no longer connected to all neurons
of the previous layer but only to a small number of neurons, effectively
reducing parameters and speeding up convergence.

2. Weight sharing: a group of connections can share the same weights,
which reduces parameters further.

3. Downsampling dimension reduction: a pooling layer harnesses the
principle of image local correlation to downsample an image, which can
reduce the amount of data while retaining useful information. It can also
reduce the number of parameters by removing trivial features.

These three appealing characteristics make CNN one of the most repre-
sentative algorithms in the deep learning field. To be specific, to build a CNN
model, four components are typically needed. Convolution is a pivotal step for
feature extraction. The outputs of convolution can be called feature maps [63].
When setting a convolution kernel with a specific size, it loses information on
the border. Hence, padding is introduced to enlarge the input with zero value,
which can adjust the size indirectly. Besides, to control the density of con-
volving, the stride is deployed. The larger the stride is, the lower the density
is. After convolution, feature maps consist of many features prone to causing
overfitting problems [69]. The procedure of 2-D (two-dimensional) a CNN is
shown in Fig. 2.8.
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Figure 2.8: Procedure of a 2-D CNN [67].

According to [63], after obtaining the feature maps, it is necessary to add
a pooling (sub-sampling) layer in CNN, next to a convolution layer. The job
of the pooling layer is to shrink the convolved feature’s spatial size. As a result
of the dimensionality reduction, the computer power required to process the
data is reduced. This also aids in the extraction of leading characteristics that
are positional and rotational invariant, which preserves the model’s practical
training. Pooling reduces the training time while also preventing over-fitting.

The pooling layer calculates a summary statistic of the surrounding
outputs to replace the network output at certain points. As a result, it aids
in reducing the representation’s spatial dimension, which reduces the amount
of computation and weights required. The pooling procedure is carried out
independently on each slice of the representation. The average of the rectangle
neighborhood, the L2 norm of the rectangle neighborhood, and a weighted
average depending on the distance from the central pixel are all pooling
functions as shown in Figure 2.9. The most frequent method, however, is
maximum pooling, which reports the neighborhood’s most significant output.

Figure 2.9: Examples of maximum and average pooling layers [63].

[63] details a fundamental layer for all CNN networks, the activation
function. It plays a vital role in CNN layers. The filter output is provided
to another mathematical function called an activation function. ReLu, which
stands for rectified linear unit, is the most common activation function used in
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CNN feature extraction. The main motive behind using the activation function
is to conclude the output of neural networks, such as “yes” or “no”. The
activation function maps the output values between 1 to 1 or 0 to 1, etc.
(it depends on the activation function). Non-linear activation functions are
required to build complicated mappings between the network’s inputs and
outputs, which are critical for learning and modeling complex data, including
images, video, audio, and non-linear or high-dimensional data sets.

The FC is the last layer commonly considered for CNN architectures. A
fully connected layer is nothing more than a feed-forward neural network as
shown in Figure 2.10. Fully connected layers are found at the network’s very
bottom layers. A fully connected layer receives input from the final pooling or
convolutional layer’s output layer, which is flattened before being delivered as
input. Flattening the output entails unrolling all values from the output that
were obtained after the last pooling or convolutional layer into a vector (3D
matrix).

Adding an FC layer is a simple technique to learn nonlinear combinations
of high-level features represented by the convolutional layer’s output. In that
space, the FC layer is learning a possibly nonlinear function.

Figure 2.10: FC example presented in [67].

2.4.2
Work Scope

This study investigates the usage of CNNs for building different applica-
tion scenarios, which were taken into account for the auto-docking task.

Therefore, a CNN model should be employed to estimate the cage pose
relative to the AUV’s. The VGG-16 [70] architecture was selected due to
its flexibility in taking an image as input and outputting the seven values
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(x, y, z, qx, qy, qz, qw) corresponding to the cage’s pose (translation and rota-
tion).

Further details regarding the necessary resources for implementing this
method and its proper usage are presented in subsequent chapters.

2.5
Reinforcement Learning

Reinforcement Learning (RL) is a Machine Learning paradigm capable
of optimizing sequential decisions [71]. RL is interesting because it mimics how
humans learn. Humans are instinctively capable of learning strategies that help
people master complex tasks like riding a bike or taking a mathematics exam.
RL attempts to copy this process by interacting with the environment to learn
strategies.

The concept of learning by reinforcement combines two tasks. The first is
exploring new situations. The second is using that experience to make better
decisions. Given time, this results in a plan to achieve a task. For example, a
child learns to walk, after standing up, by leaning forward and falling into the
arms of a loving parent. But this is only after many hours of hand-holding,
wobbles, and falls. Eventually, the leg muscles of the baby operate in unison
using a multistep strategy that tells them what to move and when. You can
not teach every plan that the child will ever need, so instead, life provides a
framework that allows them a way to learn.

From the perspective presented in [72], in a nutshell, RL is based on
rewards and punishments, with the following relevant aspects:

– It differs from normal Machine Learning as it does not look at training
datasets.

– Interaction happens not with data but with environments that depict
real-world scenarios.

– As RL is based on environments, many parameters come into play. It
takes lots of information to learn and act accordingly.

– Environments in RL are real-world scenarios that might be 2D or 3D
simulated worlds or game-based scenarios.

– RL is broader in a sense because the environments can be large in scale,
and there might be a lot of factors associated with them.

– The optimization criterion (rewards) in RL are obtained from the envi-
ronment.
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RL consists of an agent that learns by itself via interaction with the
environment. Figure 2.11 introduces the four elementary components of RL.

Figure 2.11: A plot of the four components required for RL: an agent to
present actions to an environment for the greatest reward. The example on
the left shows a robot that intends to move through a maze to collect a coin.
Example on the right shows an e-commerce application that automatically
adds products to users of baskets to maximize profit [71].

The trial and error learning behavior of RL is dangerous in the real
world, where accidents are to be avoided at all costs. For this reason, RL
is most often carried out in simulators. Learning is based on reward instead
of labels, where the goal is to maximize reward accumulated over time. The
reward can be sparsely distributed, for example, when achieving a goal such as
successfully completing a turn-right maneuver. A reward can also be negative,
i.e., a penalty, for instance, when the car departs from the lane. Hence, the
reward is different from labels and not tied to the local action but to the overall
achievement [72].

Beyond the agent and the environment, one can identify four main
subelements of a reinforcement learning system: a policy, a reward signal, a
value function, and, optionally, an environment model [71].

As defined by [73], a policy defines the learning agent’s behavior at a given
time. Roughly speaking, a policy is a mapping from perceived states of the
environment to actions to be taken when in those states. It corresponds to what
in psychology would be called a set of stimulus–response rules or associations.
In some cases, the policy may be a simple function or lookup table, whereas
in others, it may involve extensive computation, such as a search process. The
policy is the core of a reinforcement learning agent because it alone is sufficient
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to determine the behavior. In general, policies may be stochastic, specifying
probabilities for each action.

Moreover, a reward signal defines the goal of a reinforcement learning
problem. On each time step, the environment sends a single number called
the reward to the reinforcement learning agent. The agent’s sole objective is
to maximize the total reward it receives over the long run. The reward signal
thus defines what the good and bad events for the agent are. In a biological
system, we might think of rewards as analogous to the experiences of pleasure
or pain. They are the immediate and defining features of the problem faced by
the agent. The reward signal is the primary basis for altering the policy; if an
action selected by the policy is followed by a low reward, then the policy may
be changed to select some other action in that situation. In general, reward
signals may be stochastic functions of the state of the environment and the
actions taken.

Whereas the reward signal indicates what is good in an immediate sense,
a value function specifies what is good in the long run. Roughly speaking, the
value of a state is the total amount of reward an agent can expect to accumulate
over the future, starting from that state. Whereas rewards determine the
immediate, intrinsic desirability of environmental states, values indicate the
long-term desirability of states after taking into account the states that are
likely to follow and the rewards available in those states. For example, a state
might always yield a low immediate reward but still have a high value because
it is regularly followed by other states that yield high rewards. Or the reverse
could be true. To make a human analogy, rewards are somewhat like pleasure
(if high) and pain (if low), whereas values correspond to a more refined and
farsighted judgment of how pleased or displeased we are that our environment
is in a particular state.
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Figure 2.12: Reinforcement learning setup where an agent learns by interaction
with an environment. The agent computes an action based on the current state
St. The environment executes the action and moves to a new state St+1 and
yields a reward rt+1. The agent optimizes its policy, i.e., how to choose actions,
by seeking to maximize reward. Adapted from [74].

Following the background provided by [72], in the common RL setup,
depicted in Figure 2.12, an agent interacts with an environment at discrete
time steps t by receiving the state St, on which basis it selects an action at as
a function of policy π with probability π(at|St) and sends it to the environment
where at is executed and the next state St+1 is reached with associated reward
rt+1. Both, state St+1 and reward rt+1, are returned to the agent which allows
the process to start over. The discounted return corresponds to the sum of
rewards that is gained taking infinite time steps and is to be maximized by
the agent. It writes:

Rt =
∞∑

k=0
γkrt+k. (2-3)

Where γ ∈ [0, 1[ is the discount factor. Hypothetically, we could set γ

= 1, so that there would be no decay and future rewards are as important as
the current reward. However, this creates a mathematical problem, because
the sum could go to infinity for positive rewards. Setting γ < 1 makes the
sum of rewards finite and helps the convergence of reinforcement algorithms.
A typical value is γ = 0.99, which decays the rewards over time, making an
agent slightly short-sighted in desiring to collect rewards earlier, rather than
later.

2.5.1
Main RL Techniques

Model-free RL algorithms can be divided into two different families:

– Policy-based RL methods directly try to estimate the policy π(a|s).
Thus, for each state s, the policy π(a|s) tells us which action we should
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take. In practice, policy-based RL methods are often coupled with an
actor-critic approach to stabilize training.

– Value-based RL algorithms or Q-learning, seek to approximate the
optimal action-value function

Q∗(s, a) .= maxπEπ[Rt|s0 = s, a0 = a]. (2-4)

which gives the expected return for taking action a in current state s and
acting according to the optimal policy thereafter. Value-based methods
do not estimate the policy π(a|s). Instead, they choose the optimal action
a∗(s) that maximizes the action-value function.

a∗(s) = argmaxaQ∗(s, a). (2-5)

The actions in RL can be continuous or discrete. In the discrete case, ac-
tion prediction amounts to a classification problem. The set of available actions
is referred to as action space. Pure value-based RL techniques are limited to
discrete actions, while policy-based approaches can handle continuous actions.

One of the most efficient and stable policy-based RL algorithms is TD3.
It builds upon two other approaches, the value-based Deep Q-Network (DQN),
and Deep Deterministic Policy Gradient (DDPG). However, it is essential to
note that there is a wide range of RL methods available [72], and the best
solution for a particular challenge will depend on its unique requirements and
concerns.

2.5.2
DQN

DQN, which was introduced for the first time in [75], is the first scalable
reinforcement learning algorithm that combines Q-learning with deep neural
networks. To overcome stability issues, DQN adopts two novel techniques that
turned out to be essential for the balance of the algorithm: a replay buffer to
get over the data correlation drawback and a separate target network to get
over the non-stationarity problem [73]. DQN uses the Q-learning target

Q(si, ai; θ)← ri + γ max
a′

Q(s′
i, a′; θt), (2-6)

where si and si are the current state and action, ri is the reward, and s′
i is the

next state, all sampled from the replay buffer, and θ and θt are the online and
target network weights, respectively.

The replay buffer ideally contains all the transitions that have taken
place during the agent’s lifetime. When doing Stochastic Gradient Descent,



Chapter 2. Background 56

a random mini-batch is gathered from the experienced replay and used in
the optimization procedure. Since the replay memory buffer holds varied
experiences, the mini-batch that is sampled from it tends to be diverse enough
to provide independent samples.

The moving target problem is due to continuously updating the network
during training and modifying the target values. Nevertheless, the neural
network has to update itself in order to provide the best possible state-
action values. The solution that’s employed in DQNs is to use two neural
networks. One is called the online network, which is constantly updated. In
contrast, the other is called the target network, which is updated only every
N iteration (with N usually being between 1,000 and 10,000). The online
network is used to interact with the environment while the target network
is used to predict the target values. In this way, for N iterations, the target
values that are produced by the target network remain fixed, preventing the
propagation of instabilities and decreasing the risk of divergence. A potential
disadvantage is that the target network is an old version of the online network.
Nonetheless, in practice, the advantages greatly outweigh the disadvantages,
and the algorithm’s stability improves significantly [72]. Figure 2.13 shows the
pseudo-code for the DQN algorithm.

Figure 2.13: DQN pseudo algorithm.
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2.5.3
DDPG

DDPG was the first policy-based RL algorithm to employ deep neural
networks. It inherits characteristics of a policy gradient method [72] and an
Actor-Critic (AC) method [72], which has its structure depicted in Figure 2.14.
It uses two Deep-Q Networks to represent the policies: one for the actor part
and one for the critic part. Thus, the policies can represent problems with
high complexity. One of the big advantages of DDPG is dealing with high
dimensional continuous state and action space, which is necessary to apply
to control problems such as the AUV auto-docking challenge. To have this
feature, the policy of actor part, a CNN, receives a state from an environment
and generates a continuous action.

As mentioned previously, the DDPG algorithm is based on the Actor-
Critic paradigm. According to [74], the network structure of the AC framework
includes a policy network and an evaluation network. The policy network is
called an Actor-network, and the evaluation network is called a Critic network.
The Actor network is used to select actions corresponding to the DDPG, and
the Critic network evaluates the merits and demerits of the selected actions by
calculating the value function. The Actor-network and the Critic network are
two separate networks that share the state information. The Actor network
uses state information to generate actions, while the environment feeds back
the resulting actions and outputs reward. The Critic network uses state and
reward to estimate the value of the current action and constantly adjusts its
own value function.

Figure 2.14: Actor-Critic algorithm structure [75].

In DDPG, The critic Q is learned with standard DQN, while the actor
π is updated according to the deterministic policy gradient

∇aQ(s, a; θQ)|s=si,a=π(si;θπ)∇θππ(s; θπ)|s=si
, (2-7)
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averaged over a minibatch with samples si drawn from the experience replay
buffer. The DPG moves the policy parameters θpi towards actions that have
higher Q values according to the critic.

Figure 2.15 gathers the pseudo algorithm steps to implement the DDPG
paradigm.

Figure 2.15: DDPG pseudo algorithm [72].

2.5.4
TD3

According to [76], the Twin-Delayed Deep Deterministic Policy Gradi-
ent is an off-policy model that recently achieved breakthroughs in Artificial
Intelligence state-of-the-art models with continuous high-dimensional spaces.
TD3 was built on the DDPG to increase stability and performance with con-
sideration of function approximation error [71]. The uniqueness of the TD3
algorithm is in the combination of three powerful Deep Reinforcement Learn-
ing techniques: continuous Double Deep Q-Learning [72], Policy Gradient [71],
and Actor-Critic [72].

The main advantages of TD3 over the pure DDPG are detailed in [77]:

1. A reduced overestimation of a dual Critic network. Since noise (θ)
appears in the sample value (y), the target value Eθ of Q network in
the real case of the learning process is:
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y = r + γ max
a′

Q(s′, a′). (2-8)

Eθ

[
max

a′
Q(s′, a′) + θ

]
≥ max

a′
Q(s′, a′). (2-9)

After updating the Q function many times, errors will accumulate,
leading to a number of bad states being assigned with higher values,
and to a large deviation. A double Q-value network reduces estimation
errors because it decouples the action and updates operations. Using two
independent Critics (sharing experience pool) in the TD3 algorithm, we
can take the minimum value between the two Critics to eliminate the
phenomenon of overestimation and to update the target value. However,
although this may lead to an underestimated value for the strategy, this
is preferable to overestimating it, as cumulative overestimation will make
the strategy ineffective.

2. Smooth regularization of the target strategy. Each step of the TD
update produces a small error, which is more noticeable for approximate
estimates. After many updates, a large number of errors will accumulate,
eventually leading to an inaccurate Q value. When the Actor and Critic
are trained simultaneously, there may be a situation where training
is unstable or divergent. The method includes two aspects. First, a
regularization of the parameters (add noise). Secondly, it updates the
target network every d times after updating Critic. The target network
calculates the update objectives of Critic to improve the value function
convergence, wherein the value function is updated at a higher frequency,
and the strategy is updated at a lower frequency.

Figure 2.16 illustrates the high-level architecture of both methods.

(a) Structure of DDPG algorithm [77]. (b) Structure of TD3 algorithm [77].

Figure 2.16: High-level structures of TD3 and DDPG algorithms.
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According to [76], the steps to implement TD3 are similar to those in
DDPG. Figure 2.17 depicts the algorithm considered to implement TD3.

Figure 2.17: TD3 pseudo algorithm [76].

Initially, two critic networks have to be passed, denoted by the parameters
θ1 and θ2. Most implementations expect you to pass in two independent
DL networks and typically these have exactly the same architecture. The
original algorithm clips the action noise to keep the result close to the original
action. The intent is to prevent the agent from choosing invalid actions.
Most implementations set this value to match the environment’s action space.
It chooses a noise function that matches the action space and smoothing
goals, then reuses the standard deterministic action function from DDPG.
The predicted value is the minimum value from both critics from the target
networks. In other words, it picks the lowest action-value estimation; this is
more likely to be correct due to the overestimation bias. Afterward, both
critics are updated using this prediction of the discounted reward. This helps
to restrain the network that is doing the overestimation.

The inner loop occurs once every d iteration; this delays the policy
update. All other lines are the same as DDPG.

2.5.5
Work Scope

The RL agent proposed for this work should be applied to the controlling
task.

The definition of the method that should be implemented is detailed in
Chapter 3. Based on the context presented in the previous Section, it is es-
sential to carefully design the RL algorithm and the agent’s architecture to
ensure robustness and efficiency because the RL will be used in an under-
water scenario, where environmental challenges like low visibility and high
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pressure present major obstacles. Furthermore, non-stationary dynamics and
sparse reward signals are common in underwater environments, necessitating
quick adaptation and effective learning from limited feedback. Choose a RL
algorithm that can handle non-stationary environments and has a sample-
efficient learning mechanism.



3
Methodology

In this chapter, the methodology adopted for the progression and imple-
mentation of this work is detailed. The approach is experimental, based on the
application of exploratory and deductive techniques for the construction and
interpretation of results.

This work aims to propose a solution for performing the auto-docking
task involving machine learning and RL paradigms. To achieve this objective,
it is explored various scenarios to evaluate their performance. By doing so, it is
expected to provide a comprehensive understanding of the best approaches to
implementing auto-docking, under the scope detail so far, thereby contributing
to the advancement of this field.

In summary, this Chapter follows the workflow considered to detail the
previous Chapter. However, only the block that concerns the experiments,
named as Visual Servoing, is detailed, since the methods proposed to handle
the cage pose estimation and controlling are presented. Figure 3.1 illustrates
the aimed workflow.

Figure 3.1: Workflow adopted for this work. The Visual Servoing scope is
highlighted since the methods chosen to carry out this task are covered in this
chapter, following the depicted order.
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3.1
Proposed Methods

The methods proposed in this Section for performing the auto-docking
task are based on the steps required to accomplish the task: from receiving
an image to delivering the linear and angular velocities. From a high-level
perspective, it comprises the AUV’s pose estimation in relation to the cage
and controlling it to achieve the corresponding goal.

In order to estimate the AUV’s pose in relation to the cage, two
approaches are considered in this work: fiducial-based (detailed in Section 2.3)
and supervised learning-based (detailed in Section 2.4).

Regarding controlling, two approaches are considered in this work: PID-
based and Reinforcement Learning-based (detailed in Section 2.5).

The following Sections detail each of the proposed methods.

3.1.1
Pose Estimation: Fiducial-Based

As defined in [61], visual fiducials are artificial landmarks designed to be
easy to recognize and distinguish from one another, which can be detected and
retrieved from images using a processing algorithm (in a similar manner with
bar-codes or QR-codes. As detailed in Section 2.3, different types of fiducial
markers are available providing their own features to be recognized by specific
algorithms, but all of them are based on the projective geometry concepts
required to estimate the tag’s pose.

In this work, AprilTags [58] is considered as the target family of tags,
since advantages include their high detection accuracy, low computational cost,
and robustness to occlusion and lighting changes (Section 2.3 provides more
details towards the reasons of this definition). For implementing the alignment
method, the apriltag_ros1 ROS open-source package was chosen, given that a
complete software library with tools for generating and detecting the markers
is available [61]. In Figure 3.2 is shown a fiducial marker and the frames and
transformation matrix applied to obtain its pose in the space.

1https://github.com/AprilRobotics/apriltag_ros
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Figure 3.2: The estimation of the position and orientation of a fiducial marker.
This is achieved using the pinhole camera model in which the extrinsic
parameters are determined knowing the intrinsic ones [78].

In this work scope, the center of the cage has known orientations and
translations relative to each tag. Then the docking station target can be auto-
matically pre-aligned with the AUV without requiring additional steps as illus-
trated in Figure 3.13. In order to clarify the interactions, Figure 3.3 illustrates
the AprilTag pose estimation and the transformation interactions between the
cage, the tags and the robot in the proposed simulated environment.

Figure 3.3: Transformations represented in RViz tool. The interaction between
the frames illustrates how the pose estimation is applied using fiducials.

The tags detection and pose estimation workflows are based on the capa-
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bility of the AUV’s camera to capture the tags having a clear view of the tag’s
corners and their respective middle content. Once captured, the apriltag_ros
algorithm is triggered, and processing starts. As illustrated in Figure 3.4, the
output of the ROS package is the transformations between the AUV’s camera
and the tags (/tf), the detect tags numbers (/tag_detections) and the image
containing the detected tags with bounding boxes (/tag_detections_image).

Figure 3.4: apriltag_ros ROS software components.

3.1.2
Pose Estimation: Supervised Learning-Based

Performing robotic learning in a simulator could accelerate the impact
of machine learning on robotics by allowing faster, more scalable, and lower-
cost data collection than is possible with physical robots. This is achieved
because of the knowledge of the environment provided by the simulation. This
information can be used to acquire respective ground-truth data required to
train the supervised learning algorithms properly. In that context, the usage
of Convolutional Neural Networks, detailed in Section 2.4.1, can be leveraged
since the simulators provide one more crucial feature, the acquisition of a
considerable amount of data under different environment configurations.

In this work, the usage of CNN is adopted for estimating the AUV’s pose
in relation to the docking cage. As detailed in Section 2.4.1, there are different
types of architectures composing the CNN taxonomy. For this work, the Spatial
Exploitation based CNNs architecture was chosen. According to [67], this type
of architecture is designed to be invariant to translation, meaning they can
recognize features regardless of their location in the image, a crucial aspect in
pose estimation tasks where the position of the subject can vary.

As a starting point, the dataset was considered one of the primary
resources for analyzing the feasibility of this challenge. Initially, a software tool
was implemented to save a pair of data corresponding to the image acquired,
and the associated cage pose at the same image’s timestamp. Each pair of
image was treated as a sample of the dataset. Figure 3.5 illustrates the workflow
to acquire the dataset.
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Figure 3.5: Dataset acquisition workflow.

As illustrated in Figure 3.5, the only concern was related to the presence
of the cage in the acquired scene. It was done by respawning the robot in
random positions in a certain range. The range was set in order to guarantee
that the cage would be at the scene. In total, 5 thousand of data samples
were acquired. The proportion of 80%, 10%, 10% was considered for training,
validation, and testing, respectively. As noticed, manual labeling was not
required.

An additional point to consider in this work, commonly associated with
the usage of CNNs is the concept of transfer learning. As reported in [69],
this approach allows for the utilization of pre-trained models that have been
trained on large datasets to extract useful features from new data. This can
significantly reduce the amount of computational resources and time needed
to train a model from the beginning. Pre-trained models are usually trained on
varied datasets and can therefore extract more generalized features, improving
the model’s performance on unseen data.

Therefore, Figure 3.6 illustrates the solution adopted in this work to
estimate the AUV’s pose in relation to the cage. This model is an adaptation
of the Domain Randomization for Transferring Deep Neural Networks from
Simulation to the Real World, proposed by [79]. It is based on the original
VGG-16 backbone architecture, and the weights are initialized with the
ImageNet dataset [69]. The head of the network has been replaced with a
3D position predictor that outputs (x, y, z) coordinates and an orientation
predictor that outputs a quaternion (qx, qy, qz, qw).
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Figure 3.6: Adapted VGG-16 architecture considered for this work. The last
layers were removed in order to adapt it to perform data regression instead of
data classification, as originally proposed in [79].

The hyperparameters used in the experiments involving CNN applica-
tions were kept the same as those proposed in [79]. As the primary focus of
this study was not to modify the CNN hyperparameters and the original work
provided satisfactory results, no changes were made. The hyperparameters
considered are detailed in Table 3.1.
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Table 3.1: CNN hyperparameters considered for this work.

Parameter Value
Number of GPUs used 4
Training dataset size 4500
Batch training size 20
Accumulation steps 10

Epochs 120
Beta loss 10

Sample size (Train) 0
Validation dataset size 500
Batch validation Size 30
Evaluation frequency 4

Sample size (Validation) 0
Test dataset size 200
Batch test size 30

Sample size (Test) 0
Image Scale 224

Adam optimizer (lr) 0.0001
Adam optimizer (beta1) 0.9
Adam optimizer (beta2) 0.999

Translation accuracy threshold 0.5

As detailed in 2.4.1, the main purpose of CNNs is to minimize the loss
function, which is used to measure the difference between the predicted values
and the true targets. This concept was applied to both the translation and
orientation components of the network, using the Mean Squared Error (MSE)
as loss function. The MSE calculates the average of the squared discrepancies
between the predicted outputs (ŷi) and the actual targets (yi).

The accuracy associated with the estimated translation and orientation
was individually computed with the objective of providing an intuitive metric
to evaluate global performance during the training and validation steps.

3.1.3
Controller: PID-Based

A PID controller, encompassing Proportional, Integral, and Derivative
terms, serves as the foundation for managing robotic movements in visual
servoing, primarily driven by visual feedback [53].

As detailed in Section 2.2.1, the essence of visual servoing revolves around
visual error, which is discerned from the disparity between the current and
desired camera perspectives. This visual error seamlessly transitions into the
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role of the principal input for the PID controller. In response, the controller
orchestrates corrective maneuvers to minimize the prevalent error. Herein,
the proportional segment modulates the robot’s trajectory in proportion to
the visual error, the integral component grapples with the accumulation
of historical errors, while the derivative facet is forward-looking, making
adjustments based on anticipated errors. Together, they lead to a robust
alignment of the camera’s perspective with the aspired position or the adept
tracking of a dynamic entity. Figure 3.7 illustrates the block diagram adopted
as proposed solution for the PID-based pose controller.

Figure 3.7: Block diagram representation of the AUV’s control system utilizing
a PID-based pose controller.

As illustrated in Figure 3.7, the PID-based controller designed for this
work receives the pose estimation (calculated by its respective components)
as a setpoint (S∗), which consists of the visual error of the current robot
pose for the desired one (both poses are based on visual feedback). This es-
timation is compared to the current pose computed by the robot (S), using
on-board sensors, and serves as input error (e) for the pose controller im-
plemented within this scope of work. Then, the computed velocities outputs
(
[
vx vy vz ωx ωy ωz

]⊤
) are forwarded to the cascade PID controllers im-

plemented by the uuv_simulator ROS package (detailed in Section 2.1.3),
which outputs the control signals (

[
u1 u2 u3 u4

]⊤
) to the thrusters, adher-

ing to the architecture depicted in Figure 4.10.
The velocities, linear and angular, considering the time domain2, are

calculated as per:

– Linear Velocity Control (V): Given e(t) as the error in pose estima-
tion at time t, the linear velocity control is formulated as:

V (t) = Kp · e(t) + Ki ·
∫ t

0
e(τ)dτ + Kd ·

de(t)
dt

. (3-1)

2The PID controller equations presented are primarily formulated in the continuous time
domain. This is a common practice for analytical clarity and initial design considerations.
However, the implemented controllers operate in discrete time. The conversion from contin-
uous to discrete PID control is well-established and not particularly intricate.
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where:

– Kp is the proportional gain,
– Ki is the integral gain, and
– Kd is the derivative gain.

– Angular Velocity Control (ω): Let θ(t) be the angular error at time
t. The angular velocity control is:

ω(t) = Kpθ · θ(t) + Kiθ ·
∫ t

0
θ(τ)dτ + Kdθ ·

dθ(t)
dt

, (3-2)

where:

– Kpθ is the proportional gain for angular error,
– Kiθ is the integral gain for angular error, and
– Kdθ is the derivative gain for angular error.

It ensures that the pose controller computes both linear and angular
velocities based on the difference between the desired pose and the current
pose. Adjusting the PID gains will influence how quickly and accurately the
system responds to pose errors. Table 3.2 gathers the gains considered for this
controller.

Table 3.2: Empirically Determined PID Gains.

Component Proportional (P) Integral (I) Derivative (D)
Linear 0.1 0.05 0.1
Angular 3.5 0.02 3.5

The PID gains provided in Table 3.2 were determined empirically due
to the unavailability of specific knowledge about the robot’s dynamics. An
empirical tuning method was utilized, enabling performance adjustments,
particularly when the robot’s analytical model isn’t available or is too intricate
to formulate.

3.1.4
Controller: RL-Based

In the rapidly evolving landscape of RL, algorithms designed for contin-
uous action spaces have emerged as essential tools for solving a wide array
of complex tasks [71]. Among these algorithms, Proximal Policy Optimization
(PPO) [72], Soft Actor-Critic (SAC) [72], and TD3 (detailed in Section 2.5.4)
have gained significant attention for their robustness, efficiency, and scalabil-
ity [71]. These algorithms are particularly well-suited for applications in 3D
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environments, where the state and action spaces are naturally continuous and
high-dimensional [72].

Consequently, for the execution of the auto-docking experiments within
the RL paradigm, PPO, SAC, and TD3 will be evaluated as candidate
algorithms to this work. The selected algorithm will operate within the control
layer, aligning with the specifications detailed in Chapter 2, establishing the
control domain as the appropriate context for the RL application since the
intricacies associated with image processing present their own set of challenges
and are considered beyond of the scope of this work.

In this section, we detail the methodology employed for evaluating the
candidate algorithms - PPO, SAC, and TD3 — and the architecture for the
reinforcement learning environment tailored for training. The RL training
environment’s main aspects that shall be covered are:

– Reward Formulation: The criteria for evaluating actions and steering
the learning process.

– Action Space Definition: The range and types of actions the agent
can take within the environment.

– State Update Mechanics: The rules governing how the environment
and agent states evolve as actions are taken.

– Observation Collection Protocols: Guidelines for how sensory data
and other observations are collected and processed.

Figure 3.8 illustrates the software components used in this work to build
the target RL training environment.



Chapter 3. Methodology 72

Figure 3.8: High-Level architecture of the software components required to
build the RL training environment.

As illustrated in Figure 3.8, the environment designated as AutoDocking-
v0 serves as the foundational RL training class for our experiments. This
environment interfaces with Gazebo 9 through the OpenAI ROS3, which
manages the simulation to update and extract the information from the
operational environment.

The main environment aspects defined within the AutoDocking-v0 con-
text are:

– State-space: The state space was defined based on the current pose
error and the linear and angular velocities of the AUV.

– Initial states: The AUV’s initial state is set randomly at the start of
every episode. This helps to avoid any bias arising from starting in a
single fixed position. To ensure that the initial position of the AUV is
not directly within the docking station or too close to it, it inhibited the
starting positions along the x and y axes to be within 2 meters of the
maximum workspace limit.

– Terminal states: The terminal states are cases where the agent has
either driven the AUV outside the stipulated workspace bounds or driven
it expertly to the goal position located at the docking station. Moreover,
a timeout of five minutes was set to avoid long episodes without any
representative ending.

3https://bitbucket.org/theconstructcore/openai_ros.git
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– Action space: The action space is defined as a 3-dimensional vector
[ vx, vz, ωz ], representing x and z linear and the z angular velocities,
respectively.

– Reward function: The reward is based on the pose error, as represented
by equation 3-3.

Rt = − (Heading Error + Euclidean Distance) . (3-3)

The agent training is based on the models provided by Stable-Baselines3
[80]. It provides open-source implementations of RL algorithms in Python, us-
ing as main machine learning libraries PyTorch [81]. Its interface allows the
training of an agent in customized or predefined environments, aiming to pro-
vide a solution to validate different techniques from mature implementations
of the main RL methods. The algorithms follow a consistent interface and
are accompanied by extensive documentation, making it simple to train and
compare different RL algorithms towards different applications and scenarios.

Stable-Baselines3 has a well-defined interface that allows different setups
for training the models. To maintain methodological consistency, the hyper-
parameters for the candidate algorithms — PPO, SAC, and TD3 — were
retained at their default settings. The sole modification pertained to the num-
ber of steps executed during the training phase. Table 3.3 gathers the number
of steps considered for each training session.

Table 3.3: TD3, SAC, PPO number of training steps.

Method Number of training steps
TD3 200,000
PPO 200,000
SAC 200,000

The training was conducted in real-time, and a total of two hundred
thousand steps were considered for each training run. Each step is 1s, for
a total of 55h training time. This number was chosen based on community-
accepted benchmarks for similar environments, such as the inverse pendulum
problem. The aim was to minimize the training duration in order to maintain
a feasible work schedule and ensure the project’s timely completion. Table 3.4
gathers the training duration for each proposed method. Section 4.1 details
the computation resources considered to train the models.

The system presented is designed to facilitate the training of the methods
under evaluation. During this phase, the key metrics we focus on are the
average reward earned per step and the mean duration of each episode.
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These metrics offer a straightforward and quantitative basis for assessing the
effectiveness and computational efficiency of any RL algorithm. Figures 3.9
and 3.10 illustrate the results obtained for each method for the reward and
episode duration mean, respectively.

Figure 3.9: Step reward mean curve presented for each considered method.
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Figure 3.10: Episode duration mean curve presented for each considered
method.

As observed, among the methods evaluated, TD3 exhibited superior
performance by showing a faster potential convergence in both key metrics
compared to the other algorithms. Note that episode duration first increases,
because the robot learns to stay within the workspace, and then decreases,
because it learns to reach the goal.

Consequently, based on the results presented, TD3 was selected as the
foundational algorithm for the proposed agent in this study. To generate a
model capable of effectively managing the control aspects of the auto-docking
task, additional training steps are needed. Specifically, two extended training
scenarios were considered: one with 600 thousand steps and another with 1
million steps. Table 3.4 outlines the time required to train each model under
these conditions.

Naturally, the performance of the models for the different number of steps
was evaluated. In line with the evaluation metrics presented previously, Figure
3.11 delineates the performance of TD3 models trained with 200 thousand, 600
thousand, and 1 million steps.
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Table 3.4: Time required to train the models evaluated.

Method Steps Time (hours)
PPO 200,000 56
SAC 200,000 56
TD3 200,000 56
TD3 600,000 166
TD3 1,000,000 282

(a) Episode duration mean curve presented
for the evaluated TD3 models.

(b) Step reward mean curve presented for
the evaluated TD3 models.

(c) Actor loss curve for the evaluated TD3
models.

(d) Critic loss curve for the evaluated TD3
models.

Figure 3.11: TD3 performance comparison for 200k, 600k and 1M training
steps.

Therefore, as observed from the curves illustrated in Figure 3.11, the
TD3 method trained with 1 million action steps is considered as the RL method
model to run the proposed experiments. The subsequent Section delineates the
scenarios that will be executed, taking into account the methods previously
discussed and illustrated.
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3.2
Scenarios

This section outlines the proposed scenarios for evaluating the perfor-
mance of RL and machine learning paradigms in executing the auto-docking
task in various contexts. The first two scenarios are illustrated in Figure 3.12.
The goal is to gain insight into the strengths and weaknesses of different ap-
proaches and determine the most effective strategies for achieving the desired
result.

Figure 3.12: First two proposed scenarios involve utilizing fiducial pose esti-
mation as the basis for them, with the main variations being RL and PID
controllers.

As depicted in Figure 3.12, the first two scenarios are based on the
transformation between the robot and the cage frames. The transformation
is computed by the fiducial pose estimation algorithm, which receives images
from the front camera of the AUV. The fiducial markers, introduced in Section
2.3, are used as a reference for the apriltag-ros package4 to calculate the desired
transformation. Figure 3.13 shows the frame arrangement in this application
considered to compute the transformation between the AUV and the cage.

4https://github.com/AprilRobotics/apriltag_ros
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Figure 3.13: Frames arrangement considered for this work.

As illustrated in Figure 3.13, the World frame is defined in the ENU
system (detailed in Appendix A.3.2) and is used as a reference frame for
all other frames. The AUV frame represents the position and orientation of
the AUV for the world frame. The cage frame represents the position and
orientation of the docking station cage. There is no transformation between
the world and cage frames, since the cage is stationary with respect to the
world frame.

However, there is a transformation between the world and the camera
frames. The camera is mounted on the AUV and is oriented so that its X-axis
points towards the front of the robot and its Z-axis points downwards. This
transformation is necessary to relate the camera’s measurements to the world
frame.

Finally, there is a transformation between the cage frame and a fiducial
marker mounted on it. The fiducial marker is a reference point for the apriltag-
ros package algorithms to estimate the cage’s pose. This transformation is
defined so that the Y-axis of the fiducial points upwards, the X-axis points
towards the front of the fiducial, and the Z-axis points to the right of the
fiducial. Figure 3.14 depicts the transformation tree that is computed by ROS
in real-time in order to reflect the relative positions between the coordinate
systems involved.
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Figure 3.14: ROS TF tree that represents the frame transformations for this
work.

By precisely defining the frames and their inter-relationships, a more
concise representation of the scenarios can be provided:

– Scenario 01: in Scenario 01, the PID approach serves as the primary
controller. This approach receives the target transformation from the
apriltag-ros package through ROS TF messages. After processing the
received frame offset, it sends to the AUV the desired velocities, through
ROS Twist messages, which consist of linear and angular velocities, as
defined in Equation 3-4.

– Scenario 02: in Scenario 02, the RL agent is considered the primary
controller. As in the previous scenario, it receives the target transfor-
mation from the apriltag-ros package through ROS TF messages. After
processing the received frame offset, it sends to the AUV the desired
velocities, through ROS Twist messages, which consist of linear and an-
gular velocities, as defined in the equation 3-4. The RL agent should be
trained before performing those tasks. Once trained, it should be able to
estimate a model of the environment.

As mentioned above, the ROS Twist messages are based on angular and
linear velocities and can be represented as:[

vx vy vz ωx ωy ωz

]⊤
. (3-4)

The linear velocities and angular velocities in the ROS Twist message are
correlated with the position and orientation of an object. The variables vx, vy,
and vz represent the linear velocities of an object along the x, y, and z axes,
respectively, as represented by the ROS Twist message, and the variables ωx,
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ωy, and ωz represent the angular velocities of an object around the x, y, and z
axes, respectively, as represented by the ROS Twist message.

The first two experimental scenarios are based on the pose estimation
capabilities of the apriltag-ros package. However, the third and fourth scenarios
incorporate a different approach to pose estimation, instead using a CNN-based
solution. Despite this change, the RL agent and PID methods used in the first
two experiments remain the same. By comparing the results of these scenarios
to those of the first two, we can assess the impact of CNN’s performance on
the overall system. Figure 3.15 illustrates the setup for the third and fourth
scenarios.

Figure 3.15: Third and fourth scenarios involve utilizing a CNN for pose
estimation, with the RL and PID methods implementing the main variations.

As an overview, the third and fourth scenarios can be detailed:

– Scenario 03: in Scenario 03, the PID approach serves as the primary
controller. This approach receives the target transformation from the
CNN-based pose estimation algorithm, through ROS TF messages. After
processing the received frame offset, it sends to the AUV the desired
velocities, through ROS Twist messages, which consist of linear and
angular velocities, as defined in equation 3-4.

– Scenario 04: this scenario follows the same workflow as the previous,
with one notable difference: the primary controller is the RL agent.
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Figure 3.16: Last two proposed scenarios for this work, combining fiducial and
CNN pose estimation approaches as the basis, with the main variations being
the RL and PID controllers.

Figure 3.16 illustrates the last arrangement considered for this work.
In this case, the pose estimation is a combination of fiducials-based and
CNN-based approaches, using the fiducials if their position can be properly
estimated, and the CNN otherwise. As an overview, they can be detailed:

– Scenario 05: in Scenario 05, the pose estimation task is performed by
the combination of fiducials-based and CNN-based approaches. The main
goal is to evaluate the sum of the contribution of those two methods when
working together. For Scenario 05, the PID controller is considered.

– Scenario 06: this scenario follows the same workflow as the previous
one, with one notable difference: the primary controller is the RL agent.

Once the experimental scenarios are defined, the workflow expected for
conducting the experiments is fully designed. Consequently, the final phase
before contrasting the proposed arrangements is related to the evaluation
metrics specification. The subsequent section delves into the methodologies
adopted for the auto-docking challenge.

3.3
Evaluation Metrics

These metrics collectively provide a comprehensive view of the system’s
performance, ensuring that any improvements or modifications are evaluated
against a robust set of criteria. For the auto-docking task, a distinct set of
evaluation metrics was defined to accurately assess the performance of the
proposed methodologies. Building upon the insights from [82], the following
metrics were selected:

– Success Rates: The ratio of the number of successful docking operations
to the total number of trials. This is calculated as:
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Success Rate = Number of successful dockings
Total number of trials . (3-5)

– Convergence Time: Represents the time taken during one episode to
complete a docking operation, from initiation to successful docking.

– Final Positioning Error (Diff): This metric gauges the discrepancy
in position from the desired docking location. It can be calculated as:

Diff = ∥Desired Position− Final Robot Position∥. (3-6)

– Cos of Angles for Orientation: Evaluates the orientation error based
on the cosine of the angle difference. It’s given by:

cos(θ) = Desired Orientation Vector · Final Robot Orientation Vector
∥Desired Orientation Vector∥ × ∥Final Robot Orientation Vector∥ .

(3-7)
– Accumulative Positioning Error: This metric records the cumulative

error at every time step, providing insights into how the error evolves over
time:

Accumulated Error =
T∑

t=0
|e(t)|. (3-8)

3.4
Overview

In this chapter, it was outlined the methodology used to conduct the
experiments that were aimed at evaluating the effectiveness of the auto-docking
task presented in this work. To accomplish this, it was identified a series of
steps, which are illustrated in Figure 3.17. These steps were carefully designed
to ensure that the results obtained would be reliable and meaningful.

Overall, the proposed methodology involved a number of important con-
siderations, such as the selection of appropriate docking algorithms, the estab-
lishment of realistic simulation conditions, and the identification of suitable
performance metrics.
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Figure 3.17: Auto-docking methodology adopted for this work main workflow.

As Figure 3.17 illustrates, the auto-docking pipeline should receive a
processed image as a primary input, with the chosen method of image en-
hancement appropriately applied. As a variation in the proposed arrangements,
pose estimation is performed using fiducial markers, CNN, and a combination
of them. The estimated pose is forwarded to the second step, the controlling
task. The controlling task is performed by the RL and PID techniques.

At this point, the resources required to evaluate all scenarios are available,
since the ground truth data is provided by the 3D simulated environment.
Finally, the evaluation metrics can be applied and their results can be assessed
in order to provide the conclusions and main assumptions as the output of this
work.

The next Chapter details the workflow considered to build the experi-
mental setup aimed to apply the proposed methodology.



4
Experimental Setup

In this Chapter, it is outlined the experimental setup procedure designed
to implement the methodology described in the preceding Sections. The aim is
to provide a detailed account of the steps involved in the experimental setup
to enable reproducibility and facilitate the understanding of the methodology
and the target results.

Implementing the auto-docking task methodology proposed in the previ-
ous Chapter requires two main types of resources: computational and simula-
tion. The following Sections describe the experimental setup implemented to
achieve the aimed goals.

4.1
Computational Resources

The proposed Auto-Docking methodology involves comparing different
machine learning methods, which require training steps to optimize their
performance. Therefore, it is crucial to use a computational environment
that has hardware capable of executing both simulation and training tasks
efficiently. In this regard, external servers were deemed necessary for this
project.

By using external servers, the computational burden can be distributed
among multiple machines, which can significantly reduce the time required
for training and testing. Moreover, these servers can provide higher processing
power and memory capacity than typical local computers, enabling the imple-
mentation of more complex and demanding algorithms. Table 4.1 represents
the servers’ hardware configuration for this work. As Table 4.1 represents, two
servers are responsible for executing the RL and CNN methods experiments.
A Secure Shell (SSH) remote access was considered to log in on them.

Table 4.1: Hardware details of the machine learning servers.

Server ID RAM Memory GPU Hard Disk Capacity CPU
01 512 GB 4 x NVidia A100-SXM4 80 GB 8 TB x86-64 AMD EPYC 7742 2.25 GHz
02 512 GB 4 x NVidia A100-SXM4 80 GB 8 TB x86-64 AMD EPYC 7742 2.25 GHz
03 512 GB 4 x NVidia A100-SXM4 80 GB 8 TB x86-64 AMD EPYC 7742 2.25 GHz
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4.2
Simulation

The simulation tool considered for the auto-docking task is Gazebo 9,
with the UUV simulator running on top of it. Section 2.1 details the criteria
considered for choosing the UUV Simulator as the solution for providing the
simulated underwater environment. The following Sections detail the steps to
set up the experiments proposed throughout this document.

4.2.1
Ocean and Underwater Environment

To create a realistic underwater environment, it is crucial to include
the ocean cube, which serves as a framework for applying physics, dynamics,
interactions, and rendering effects using Gazebo. The ocean cube determines
the boundaries of the simulated environment, ensuring that the simulation
accurately reflects real-world conditions. This work implemented an ocean
cube with specific dimensions, as shown in Figure 4.1. A comprehensive and
immersive underwater simulation is created by incorporating the ocean cube.

Figure 4.1: Ocean cube dimensions adopted for the simulated environment.

In order to simulate the underwater hydrodynamics interaction, the
UUV Simulator plugin proposed by [57] was considered in this work. The
hydrodynamic plugin used in the UUV Simulator is a component that simulates
the hydrodynamic forces and moments acting on an underwater vehicle. The
plugin is based on the added mass and damping coefficients of the vehicle,
which are obtained through experiments or numerical simulations. It takes into
account the vehicle’s motion and computes the corresponding hydrodynamic
forces and moments, which are then applied to the vehicle’s dynamics model
to update its position and orientation. The hydrodynamic forces include drag,
lift, and added mass forces, while the moments include those resulting from
roll, pitch, and yaw. Moreover, the plugin also includes features such as the
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capability to simulate waves and currents, as well as support for different
vehicle geometries and configurations. The hydrodynamic coefficients can be
set for each vehicle individually, enabling users to simulate a wide range of
underwater vehicles with varying hydrodynamic properties.

As the main configuration parameters for the underwater rendering, the
fog values considered for the simulation are represented in Table 4.2.

Table 4.2: Fog Technical Specifications.

Parameter Value
Color 17, 31, 39, 1.0 (RGBA)

Linear density linear
Starting range 15 meters
Ending range 21 meters

4.2.2
Seabed

The seabed has been identified as a crucial element not only for serving
as a landmark in navigation algorithms but also for feature extraction for
various other purposes. For this project, the goal was to create a seabed that
followed a random pattern, emulating the real-world distribution encountered
during AUV operations. Two techniques were considered for this purpose. The
first technique involved using a specialized Blender plugin specifically designed
for generating realistic surfaces, named Another Noise Tool Landscape. The
second one is based on 2D height map surface generation, where a bitmap
image containing different grayscale values for each pixel is converted into a
surface that corresponds to the grayscale range, considering a scaling factor.
Figure 4.2 illustrates the surfaces generated by the two techniques.

In an effort to create a more authentic surface, the seabed depicted
in Figure 4.2(a) was chosen for this project. To enhance the fidelity of
the underwater environment simulation, a texture that closely resembles the
characteristics of a real-world seabed was applied. This approach contributes
to a more accurate reproduction of the underwater environment.
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(a) Seabed surface generated with ANT
Landscape.

(b) Seabed surface generated by applying
the height map technique.

Figure 4.2: Seabed surfaces considered for this work.

Figure 4.3 displays the selected seabed component, featuring the applied
texture that mimics a realistic seabed.

Figure 4.3: Seabed surfaces considered for this work with the textured surface
applied on the simulation environment.

4.2.3
Docking Station (Cage)

In this project, the docking station also referred to as a cage or garage,
is designed as a modular rectangular prism-shaped frame. The cage is vital
for auto-docking tasks, as it functions as a base for recharging, and mission
data transferring and serves as a georeferenced point. Further details about
the cage’s role in auto-docking tasks can be found in Section 1.3.1. Figure 4.4
showcases the cage employed for this work.

As Figure 4.4 details, the docking station has 6.01 meters of length, 2.37
meters of width, and 1.91 meters of height. For the proposed experiments,
twenty-three fiducial markers were placed at the frontal side of the cage.
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Figure 4.4: Docking station considered for this work.

The docking station is equipped with fiducial markers known as ApriL-
Tags, which are further explained in Section 2.3.2. These markers are crucial
for the performance of the proposed pose estimation algorithm, as they serve
as visual references. Furthermore, the proposed ApriLTag solution utilizes a
bundle concept, where the pose estimation of the entire bundle is determined
through filtered estimations of individual markers rather than computing sepa-
rate estimations for each marker. Figure 4.5 illustrates the proposed ApriLTag
bundle for this work.

Figure 4.5: ApriLTag markers frontal arrangement on the docking station.

Figure 4.6 illustrates the bundles for the right, left, and rear sides of the
cage.
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(a) Cage fiducials bundle of the left side.
Tags from ID 11 to 14.

(b) Cage fiducials bundle of the right side.
Tags from ID 15 to 18.

(c) Cage fiducials bundle of the rear side.
Tags from ID 19 to 22.

Figure 4.6: ApriLTag markers right, left, and rear arrangements on the docking
station.

Figure 4.5 presents the ApriLTags from the tagStandard41h12 family [58]
installed on the cage. A total of twenty-three fiducials are attached to the cage,
with tags ID 00 to ID 22 forming the bundle utilized for pose estimation before
the AUV reaches the docking homing position. Once the homing position is
attained, the tag with ID 10 facilitates a smooth approach.

4.2.4
Desistek Saga AUV

The AUV considered for the experiments is the Desistek SAGA ROV,
an inspection class ROV manufactured by Desistek, illustrated in Figure 4.7.
The dimensions of this vehicle are 420 mm × 330 mm × 270 mm. The mass
of the vehicle is 10 kg, and the maximum depth is 250 m. Maximum surge
speed is 3 knots and maximum heave speed is 1 knot. The vehicle has three
thrusters, which supply a maximum force of 10 N. One of these thrusters is
directed vertically, while the other two are located at the right and left sides
and are directed horizontally.

Although the Desistek SAGA typically functions as a ROV in real-
world scenarios, it is treated as an AUV for this project. This is because the
UUV Simulator offers all the necessary features to operate it autonomously,
eliminating the need for remote control.
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Figure 4.7: Desistek Saga robot, the AUV considered for this work scope.

4.2.4.1
3D modeling

The AUV 3D model was based on the description file implemented by
the UUV Simulator package and considers all of the real dimensions of the
robot, sensors, mechanical joints, actuators, and the color pallet specified by
the Desistek Saga engineers.

4.2.4.2
Sensors

The Desistek Saga vehicle is equipped with an array of sensors designed
to enhance its performance, efficiency, and data collection capabilities in under-
water environments. Considering the sensors implemented in UUV Simulator,
the AUV has:

– Mono camera: a Red, Green, Blue (RGB) camera positioned in the
front part of the vehicle that are supported by one pair of LEDs.

– IMU: models the data collection of acceleration, angular velocity, and
magnetic field to assist in navigation and stability within the simulated
environment.

– Forward-Looking Sonar (FLS): the FLS provides real-time visual-
ization of obstacles in front of the AUV, ensuring safe and efficient op-
eration.

– CTD Probe: the CTD probe gathers data on salinity, temperature, and
depth, enabling researchers to study the physical and chemical properties
of the water column.

– GPS: the Desistek SAGA is also outfitted with a GPS system, which
can help locate the robot in cases of loss or emergencies. Its positive
buoyancy is designed to enable the vehicle to surface, allowing the GPS
to effectively pinpoint its location.
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Among the sensors mentioned, this work utilizes a simulated monocular
camera with a resolution of 768 x 492 pixels. It should be noted that the UUV
Simulator does not replicate the behavior of LED lights. However, as part of
the proposed solution for this work challenge, a Gazebo plugin comprising the
LED physics behavior was implemented.

The LED plugin implemented adheres to the design outlined in [57]. This
plugin enables the flashing and dimming of lights and visual objects within a
3D model. By providing specific parameters to the plugin, the application can
precisely control which lights and visuals to blink. Additionally, the application
can customize the duration and interval time for each light’s flashing, allowing
for a tailored and dynamic experience.

Figure 4.8 illustrates the comparison between two scenarios in the
simulation environment, showcasing the LED functionality in one and its
absence in the other. This visual representation highlights the difference
between active and non-active LED states, enabling a clear understanding
of the LED system’s impact within the simulated context.

Figure 4.8: The impact of LEDs usage in the simulation environment.

4.2.4.3
Controlling

The controlling stack is founded on the cascade PID approach, specifically
designed and implemented for this vehicle by UUV Simulator. Figure 4.10
demonstrates the primary components integral to this task, providing a clear
visualization of the elements and their interconnections within the control
system.

As Figure 4.10 depicts, the controlling stack implemented for
the AUV has two main ROS packages, desistek_saga_control and
uuv_control_cascade_pid. The desistek_saga_control is responsible for bring-
ing up all the application entities through the start_cascade_pid_with_teleop
launch file, which has a version named as start_cascade_pid that covers the
same scope as the first, however without the manual input controller. This
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Figure 4.9: The software stack implemented to control the AUV considering
the cascade PID solution proposed by UUV Simulator.

launch file is input for the uuv_teleop, RViz, and start_thruster_manager.
The uuv_teleop entity brings up the stack responsible for managing the
manual inputs through a compatible joystick1. The interaction with RViz is
accomplished through a config file, which specifies the starting arrangements
for the widgets to visualize the relevant data coming from the simulation.
The start_thruster_manager, detailed in Figure 4.10, is responsible for the
ratio allocation between forces and percentage output, considering a Thruster
Allocation Matrix (TAM) as the config file. The thruster_allocator node
manages the computation of allocation according to the controller setpoints
and publishes the results in the thruster_manager/input topic.

The second package elucidated in Figure 4.10 is the
uuv_control_cascade_pid. This package manages the cascade controllers;
the inner controller deals with acceleration, while the outer controller manages
velocity setpoints and outputs target accelerations. The acceleration controller
subsequently outputs these target accelerations, which are processed by the
thruster_allocator to output the necessary forces to achieve the intended goal.
Ultimately, these forces are processed by the simulation and applied to the
AUV.

In summary, the control stack presented, implemented by UUV Simu-
lator and adapted to meet these work requirements, serves as an abstraction
layer for the control applications. It is configured and designed to align with
the real-world physics models of the AUV, as the proposed work requires pro-

1The precedence of the joystick manual input is higher than the AUV autonomy inputs.
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Figure 4.10: The software stack implemented to control the AUV considering
the cascade PID solution proposed by UUV Simulator.

viding velocity setpoints for processing by the outer controller. This approach
ensures that the AUV is equipped with appropriately designed controllers to ef-
fectively execute the proposed experiments. Figure 4.11 illustrates the detailed
abstraction.

Figure 4.11: Control abstraction considered for this work.

4.3
Experiment’s Workflow

The experiment’s workflow detailed in this Section covers the steps to
consolidate the resources to enable the execution of the six proposed scenarios.
This also includes the mechanisms for capturing and monitoring the key
metrics essential for the understanding and evaluation of each scenario.
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To facilitate the management, loading, and configuration of each pro-
posed algorithm, as well as the automated recording of metric values for each
episode, a dedicated software stack is necessitated. This stack aims to execute
these tasks in an automated fashion. Consequently, the architecture (repre-
sented by a simplified UML [83] class diagram) illustrated in Figure 4.12 has
been implemented to offer a modular interface, enabling effortless switching
between different solutions.

Figure 4.12: Simplified UML class diagram implemented to manage the exper-
iments.

As illustrated in Figure 4.12, the software stack engineered for the
seamless execution of the six predefined scenarios comprises five core classes:

– Client: This class orchestrates the overall behavior of the target system.
It dynamically switches between controller and estimator methodologies
as specified in the config.yaml file and executes the main loop as detailed
in Figure 4.13 to carry out the assigned scenario.

– Controller : This abstract class serves as an interface, laying down the
essential methods and attributes that all inheriting controller classes
must implement.

– Estimator : Similar to the Controller class, this is an interface class
that prescribes the mandatory methods and attributes for all descendant
estimator classes.

– EpisodeManager : This class oversees the life cycle of each episode
within a given scenario. It handles tasks such as robot respawning and
metric tracking for each episode.
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– Metrics: Managed by the EpisodeManager class, this class is responsible
for saving, loading, recording, and formatting all the relevant metrics.

The software stack was implemented in accordance with the algorithm
outlined in Figure 4.13, ensuring each scenario is initiated, executed, and
concluded in alignment with the methodology presented in Chapter 3.

Figure 4.13: Algorithm considered to execute a scenario.

As illustrated in Figure 4.13, three steps rely on defining specific values,
such as the number of episodes, the episode starting pose, and the conditions
to consider an episode as done. The starting points were chosen randomly, in
six different radius distances, as illustrated in Figure 4.14.
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Figure 4.14: Initial points considered for the experiments.

As the techniques approached in this work must be evaluated considering
the same setup, the points were kept the same for all scenarios. The yaw angles
of these starting points were calibrated to ensure that the AUV was always
oriented toward the cage at the outset of an episode. Figure 4.15 showcases
a collection of images captured by the AUV camera at the commencement of
each episode.
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Figure 4.15: Initial points images acquired from the AUV’s camera before
starting each episode.
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In conclusion, the stopping conditions for each episode hinge on either the
AUV being driven outside the predefined workspace boundaries or successfully
navigating to the target location at the docked pose. Additionally, a five-minute
timeout has been instituted to prevent episodes from dragging on without
reaching a meaningful conclusion. Table 4.3 collates the various stopping
conditions proposed for each experimental scenario.

Table 4.3: Episode termination conditions.

Condition Value

Timeout > 5 minutes
Success offset < 0.5 meters
Failure offset > 22 meters

The next Chapter summarizes the results obtained for each proposed
experimental scenario.



5
Results and Discussion

This chapter aims to provide a comprehensive description of the results
obtained through the execution of the experiments proposed and detailed in
the preceding chapters.

The auto-docking experiments are divided into six distinct scenarios,
each representing a unique configuration and set of challenges. These scenarios
are carefully designed to assess various aspects of the auto-docking system,
particularly focused on the AUV’s pose estimation and control challenges.

The primary goal of these experiments is to achieve successful and
efficient docking of the AUV under different conditions. To gauge this, the
first six subsections of this chapter showcase the successful cases along with
the associated metrics for each corresponding scenario, detailing the AUV’s
behavior throughout all episodes.

Subsequently, an evaluation of the commonly successful episodes is
conducted to compare the scenarios and determine if one outperforms the
others, while discussing potential underlying reasons for such performance.

The concluding section consolidates an evaluation focused on the perfor-
mance of the RL agent as compared to the conventional PID control chain.

5.1
Scenario 01

The first scenario focuses on the pose estimation carried out via the
fiducial-based approach, coupled with control logic executed by the proposed
conventional PID Controller, both elaborated in Section 3.1. As an initial data
point, Table 5.1 aggregates the counts of failure and success cases, along with
the variety of failure modes observed across all episodes. This provides insight
into the robustness and reliability of the combination of fiducial-based pose
estimation and PID control in tackling the auto-docking task.

Table 5.1: Episode success and failure metrics for Scenario 01.

Success Count Failure Count Success Rate Not Converged Timeout
11 15 42.31% 5 10
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Based on the information provided in Table 5.1, it’s evident that in most
failure cases, the AUV actively sought to reach the target, specifically in 10
instances. These episodes mostly correspond to situations where the initial
pose of the AUV was at a significant distance from the cage, rendering fiducial
detection unfeasible. In 5 of these episodes, the AUV did manage to detect
the cage but failed to achieve convergence to the target position. Overall,
the system achieved successful convergence in fewer than 50% of the cases.
This performance metric indicates that the solution is neither robust nor well-
generalized for the problem space.

Figure 5.1(a) illustrates the 2D traveled path presented by the AUV for
the 11 successful episodes.

(a) XY projection. (b) Z coordinate variation over the time.

Figure 5.1: Traveled paths performed during Scenario 01 experiments consid-
ering only succeeded cases.

As depicted in the Figures above, using Fiducial algorithms in the
auto-docking system resulted in successful episodes when the distance to
the cage was within 3 meters. However, it was observed that this solution
faced challenges when dealing with tags that did not offer a clear view of
their landmarks. Consequently, the lack of capability of Fiducial algorithms to
process such obscured tags contributed to the system’s limitations in certain
scenarios.

In terms of the behavior presented related to the position variation along
the Z axis, Figure 5.1(b) illustrates the obtained values.

For the Z-axis position control, the trajectory curve suggests that the
controller maintained a smooth control profile, effectively keeping the AUV
near the target altitude without significant perturbations. This implies a stable
and precise Z-axis control mechanism, potentially signifying that the PID
controller successfully mitigated altitude-based errors in this scenario.
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5.2
Scenario 02

The second scenario focuses on the pose estimation performed by the
fiducial-based approach coupled with the RL controller agent. Table 5.2
aggregates the counts of failure and success cases, along with the variety of
failure modes observed across all episodes.

Table 5.2: Episode success and failure metrics for Scenario 02.

Success Count Failure Count Success Rate Not Converged Timeout
14 12 53.85% 4 8

As noticed in Table 5.2, once again, most of the failures were due
to timeout, specifically in 8 instances. These episodes mostly correspond to
situations where the initial pose of the AUV was at a significant distance from
the cage, where fiducial detection is not feasible. In 4 of these episodes, the
AUV did manage to detect the cage, since it moved, but failed to achieve
convergence to the target position. Overall, the system achieved successful
convergence higher than 50% of the cases. This performance metric indicates
a better performance when compared to Scenario 01’s. However, it can not be
considered a robust solution since representative episodes have failed.

Figure 5.2(a) illustrates the 2D traveled path presented by the AUV for
the 14 successful episodes.

(a) XY projection. (b) Z coordinate variation over the time.

Figure 5.2: Traveled paths performed during Scenario 02 experiments consid-
ering only succeeded cases.

As in the previous scenario, the fiducial-based pose estimation method
performs better when the initial pose is in front of the cage, within a range
where the fiducial markers can be identified.



Chapter 5. Results and Discussion 102

However, a unique behavior emerges for episodes where the AUV begins
on the cage’s right-hand side. This pattern can be attributed to a limitation
in the pose estimation algorithm, which struggles to generate accurate bundle
pose estimates when relying solely on a single fiducial marker. Compounding
the issue is the fact that the RL agent’s control loop exhibits a faster
response rate, which leads to frequent changes in the fiducial bundle reference.
Consequently, this results in erroneous pose estimates.

To rectify this specific issue, one viable approach is to increase the
density of fiducial markers on the cage’s right side. By doing so, we can
enrich the sensor data available for pose estimation, thereby enhancing both
the robustness and accuracy of the system’s spatial awareness.

In terms of the behavior presented related to the position variation along
the Z axis, Figure 5.2(b) illustrates the obtained values.

As depicted in Figure 5.2(b), the RL agent exhibits a more aggressive
control strategy. Notably, it reaches the target setpoint in a shorter duration
by demanding higher thrust output from the AUV’s propulsion system. This
suggests that the RL agent optimizes the control actions to minimize time-to-
target while leveraging the available thruster capacity more effectively.

5.3
Scenario 03

The third scenario arranges the CNN-based pose estimator and the PID
controller to handle the auto-docking. Table 5.3 collects the counts of failure
and success cases, along with the variety of failure modes observed across all
episodes.

Table 5.3: Episode success and failure metrics for Scenario 03.

Success Count Failure Count Success Rate Not Converged Timeout
1 25 3.85% 0 26

As indicated in Table 5.3, the cage pose estimator struggled to converge
to an optimal solution. Interestingly, the only episode that succeeded was the
first one, which was also the closest to the target pose. It’s crucial to note,
however, that all instances of failure were attributed to timeouts rather than
boundary violations. This implies that, despite the lack of convergence, the
AUV managed to maintain its pose within the predefined spatial boundaries
throughout the test scenarios.

Figure 5.3(a) describes this experiment’s performance throughout the
execution of the successful cases.
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(a) XY projection. (b) Z coordinate variation over the time.

Figure 5.3: Traveled paths performed during Scenario 03 experiments consid-
ering only succeeded cases.

In terms of the behavior presented related to the position variation along
the Z axis, Figure 5.3(b) illustrates the obtained values.

As observed, the auto-docking system exhibited a limited convergence
rate, with only the first episode successfully reaching the target point. This
behavior is primarily attributed to the lack of accuracy in the estimation model.
The CNN algorithms utilized in the system necessitate a substantial amount
of training images to develop a robust model capable of accurately estimating
the object pose, even in challenging and hazardous environments.

Notwithstanding the convergence limitations, the auto-docking system
displayed a consistent pattern in its behavior, demonstrating a tendency to
approach the target point, albeit without sufficient precision to finalize the
approximation adequately. Figure 5.4 illustrate this pattern, which indicates
that the system possesses some capability to guide the AUV towards the
cage. However, the lack of precision in pose estimation prevents the system
from achieving successful docking with the desired level of accuracy. Further
refinement and extensive training of the CNN algorithms may be necessary
to enhance the system’s performance and achieve reliable and precise auto-
docking capabilities.
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(a) XY projection. (b) Z coordinate variation over the time.

Figure 5.4: Traveled paths performed during Scenario 03 experiments consid-
ering all episodes.

As observed, the AUV consistently employed a heuristic to navigate to-
ward the cage in all episodes. Despite its efforts, the movements executed were
insufficient to achieve precise convergence with the target point. Additionally,
the AUV demonstrated a distinct behavior when controlling the Z axis, ex-
hibiting a notable amount of noise throughout most episodes.

The heuristic-based approach used by the AUV to approach the cage
indicates its capability to initiate the docking process. However, the lack of
accurate pose estimation and control algorithms hindered the system from
achieving a successful and precise docking outcome. Furthermore, the noise
observed in the Z-axis control indicates a potential issue in the control
system’s stability. The inconsistency in controlling the vertical position could
be attributed to lack of variation during the model training; a more robust
dataset would be required.

5.4
Scenario 04

Scenario 04 connects the CNN-based pose estimator and the RL-based
controller. Table 5.4 collects the counts of failure and success cases, along with
the variety of failure modes observed across all episodes.

Table 5.4: Episode success and failure metrics for Scenario 04.

Success Count Failure Count Success Rate Not Converged Timeout
1 25 3.85% 0 26

As Table 5.4 illustrates, the behavior presented in the previous scenario
is similar. The CNN pose estimator remains the same, and the final results
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as well. In order to ensure that, Figure 5.5 illustrates the 2D traveled path
obtained for all episodes.

Figure 5.5: Z coordinate variation over the time for Scenario 04, considering
all cases.

Evidently, the behavior closely mirrors what is presented in Figure 5.4.
The main difference relies on the trajectory policy adopted by the controllers.
The RL agent adopted a smoother policy when compared to the PID’s.
Consequently, the CNN-based estimator, when operating in isolation, failed
to achieve convergence. Given that these results are consistent with those
observed in the previous scenario, we have chosen to consider the performance
metrics from the earlier scenario as applicable to this one as well.

5.5
Scenario 05

In Scenario 05, the combined version of the CNN and fiducial-based
estimator is considered. For this instance, the PID controller is the evaluated
solution to drive the AUV. Table 5.5 collects the counts of failure and success
cases, along with the variety of failure modes observed across all episodes.
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Table 5.5: Episode success and failure metrics for Scenario 05.

Success Count Failure Count Success Rate Not Converged Timeout

17 9 65.38% 0 9

As highlighted in Table 5.5, the AUV’s performance in this scenario is
notably superior, registering a success rate of 65.38%. Remarkably, the AUV
maintained its position within the designated boundaries throughout each
episode, including those where it began at a considerable distance from the
cage. This demonstrates a marked improvement over the behaviors observed
in Scenarios 01 and 02.

Figure 5.6 illustrates the 2D traveled path presented by the AUV for the
17 successful episodes.

(a) XY projection. (b) Z coordinate variation over the time.

Figure 5.6: Traveled paths performed during Scenario 05 experiments consid-
ering only succeeded cases.

As depicted in Figure 5.6(a), the AUV successfully navigated to the
target pose even in challenging conditions, specifically during episodes 25 and
26, where the initial poses were 17 meters far from the target. The trajectories
closely mirror those observed in Scenario 01. This suggests that the CNN-based
estimation effectively took over the navigation tasks when fiducial markers were
not within a detectable range, seamlessly complementing the fiducial-based
pose estimation.

In terms of the behavior presented related to the position variation along
the Z axis, Figure 5.6(b) illustrates the obtained values.

For the Z-axis control outputs, the trajectory exhibited noticeable dis-
turbances compared to the smoother curve trend observed in Scenario 01,
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where the fiducial-based estimator was employed. The behavior seems to in-
corporate characteristics from both Scenario 01 and Scenario 02, manifesting
as short-term variations attributed to the CNN-based estimator. Importantly,
the magnitude of these disturbances is less pronounced than in previous sce-
narios and falls within acceptable limits for this particular experiment.

5.6
Scenario 06

Scenario 06 connects the fiducial-based and CNN-based pose estimators
along with the RL agent controller. Table 5.5 collects the counts of failure
and success cases, along with the variety of failure modes observed across all
episodes.

Table 5.6: Episode success and failure metrics for Scenario 06.

Success Count Failure Count Success Rate Not Converged Timeout

17 9 65.38% 0 9

As indicated in Table 5.6, this experiment yielded similar statistics for
both the number of successful episodes and the types of failure modes compared
to prior experiments. This suggests that the robustness of the solution is not
solely dependent on the controller component but is tied to the estimator’s
performance. Nonetheless, the trajectory by which the AUV reaches its final
pose serves as a distinct differentiating factor between this and previous
experiments.

Figure 5.7(a) illustrates the 2D traveled path presented by the AUV for
the 17 successful episodes.
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(a) XY projection. (b) Z coordinate variation over the time.

Figure 5.7: Traveled paths performed during Scenario 06 experiments consid-
ering only succeeded cases.

As shown in Figure 5.7(a), the trajectory performance did not measure
up to that of the previous scenario. The primary drawback is evident in the
difficulty encountered when the episode started off from the right side of
the cage, an issue previously discussed in Section 5.2 for Scenario 02. On a
brighter note, the controller executed smoother trajectories for other episodes,
specifically episodes 20, 21, 22, 25, and 26. Enhancements could likely be
achieved in this scenario by incorporating additional fiducial markers.

In terms of the behavior presented related to the position variation along
the Z axis, Figure 5.7(b) illustrates the obtained values.

In the context of the Z-axis control outputs, the behavior closely mimics
that observed in Scenario 02. Generally speaking, the RL agent demonstrates
a more refined control policy for Z-axis variations. It not only reaches the
setpoint swiftly but also maintains it consistently across most episodes.

5.7
Scenarios Comparison

The objective of this section is to evaluate the scenarios by comparing
and discussing metrics specifically for the successful cases. Table 5.7 compiles
the successful episodes common to Scenarios 01, 02, 05, and 06.
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Table 5.7: Common successful episodes presented for Scenarios 01, 02, 05, and
06.

Episode ID

1
2
4
5
6
7
10
11

In an effort to concentrate on scenarios that yielded meaningful data,
Scenarios 03 and 04 are excluded from this assessment, given their failure to
converge in 25 out of 26 instances.

5.7.1
Success Rate

The first metric up for evaluation is the success rate, which provides
a holistic view of performance across the experiment, rather than focusing on
specific episodes. Table 5.8 aggregates the success rates for the target scenarios
under consideration.

Table 5.8: Success rates presented for Scenarios 01, 02, 05, and 06.

Scenario 01 Scenario 02 Scenario 05 Scenario 06

42.31% 53.85% 65.38% 65.38%

Based on the information in Table 5.8, it’s evident that the Combined
estimator method holds a distinct advantage, registering the highest success
rates irrespective of the controller type used. This suggests that relying solely
on a fiducial-based estimator—without any supplemental mechanisms for long-
range cage detection—is suboptimal. Furthermore, the RL controller offers a
slight boost in AUV performance when fiducial-based estimators are used. This
improvement is likely attributed to the RL agent’s rapid response capabilities,
which help the AUV maintain a lock on the fiducial markers. A slower controller
response might risk veering the AUV off course, potentially causing it to lose
sight of the cage and hence of the fiducial markers.
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5.7.2
Accumulative Error

As detailed in Chapter 3, accumulative error serves as a relevant metric to
evaluate the performance of estimators and controllers over time. Specifically,
this metric quantifies the sum of discrepancies between the desired setpoints
and the actual states (e.g., position, orientation) of the AUV as it navigates
through different scenarios [12]. If the accumulative error grows non-linearly
over time, it might indicate system instability or a poor control strategy that
fails to correct errors effectively. Therefore, in the context of this work, smaller
values mean a better control policy. Table 5.9 gathers the accumulative error
values for each episode assessed in this Section.

Table 5.9: Accumulative error values presented for the successful episodes for
Scenarios 01, 02, 05, and 06.

Episode ID Scenario 01 Scenario 02 Scenario 05 Scenario 06

1 167.82 74.50 163.94 42.00
2 120.46 250.46 116.38 150.45
4 116.81 205.13 115.33 112.29
5 90.30 237.62 143.30 138.99
6 228.60 208.32 230.07 113.19
7 142.34 239.31 133.15 116.48
10 451.69 533.55 471.92 288.01
11 338.31 359.91 408.74 215.54

From the results presented in Table 5.9, the following aspects can noticed:

– Scenario 01 (PID + Fiducial-based Estimation): The PID con-
troller aims to minimize heading error, and it performs well in scenarios
where the AUV’s initial position allows for easy fiducial marker detection.
Since heading alignment is more straightforward and quicker to achieve
than precise position control, this setup offers advantages in specific cir-
cumstances.

– Scenario 06 (RL + Combined Estimation): The RL agent seems to
excel in position error correction, partly because the Combined estimator
offers a richer data set for decision-making. This strategy is particularly
effective for a broader range of starting positions and orientations relative
to the cage, giving it a more versatile edge.

– Estimator Contributions: The Combined estimator tends to provide
more accurate and versatile estimates, offering the RL agent a more ro-
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bust data source for decision-making. In contrast, the fiducial-based es-
timator excels in scenarios where the AUV’s initial position is conducive
to marker detection, which tends to be when the AUV is head-on with
the cage.

– PID vs. RL: Both controllers have their strong suits depending on the
scenario. PID shows comparable performance to the RL agent in cases
where the fiducial estimator can fully capitalize on the AUV’s initial
orientation, i.e., episodes 2, 4, and 5.

– Versatility and Adaptability: While the PID controller shows com-
petitive performance in specific conditions, the RL agent seems to be
more adaptable across a range of scenarios, especially when paired with
a versatile estimator like the Combined one.

5.7.3
Convergence Time

In this study, the convergence time is considered as a metric, which
requires the AUV to not only reach the target position but also stabilize within
a spatial margin of 0.5 meters around the docking point. It’s worth noting
that we have consciously excluded heading tolerance from this metric. The
objective behind this decision is to assess how different controllers prioritize
the controlled variables, such as position and orientation, in their strategies.
Table 5.10 represents the convergence time values, in seconds, for each episode
assessed in this Section.

Table 5.10: Convergence time values presented for the successful episodes for
Scenarios 01, 02, 05, and 06.

Episode ID Scenario 01 Scenario 02 Scenario 05 Scenario 06

1 37.78 13.54 37.83 14.16
2 55.18 50.45 56.30 54.81
4 87.19 35.15 90.97 35.22
5 88.79 69.32 88.65 54.22
6 66.38 22.14 66.69 22.52
7 80.33 23.99 79.37 27.75
10 99.11 38.53 90.91 127.95
11 137.57 44.15 133.18 44.57

The data in Table 5.10 provides a comprehensive view of the conver-
gence time across the successful episodes for Scenarios 01, 02, 05, and 06. It’s
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immediately apparent that Scenario 02 consistently achieves the fastest con-
vergence times in most episodes, indicating that the RL agent control strategy
is highly efficient in guiding the AUV to the target within the shortest period.
Scenario 06 also shows competitive timings but lags slightly behind Scenario
02. The noted variations can be attributed to the current lack of a decision-
making mechanism for switching between the CNN-based and fiducial-based
estimators, present in Scenario 02. While each estimator excels in its own
domain—fiducial-based being more precise but range-limited, and the Com-
bined estimator capable of working at greater distances.

Interestingly, Scenario 05 doesn’t significantly improve over Scenario 01
in terms of time-to-convergence, despite the addition of a more sophisticated
estimator. This suggests that the gains in estimator accuracy do not neces-
sarily translate into faster convergence, which could be a subject for future
investigation. Scenario 01, being the baseline, generally takes the longest time
to converge, reaffirming the benefits of advanced control and estimation strate-
gies implemented in the other scenarios.

It is also worth noting the peculiar case of Episode 10 in Scenario 06,
where the AUV took an unusually long time to converge, skewing the general
trend. This outlier indicates that even advanced control schemes like RL can
sometimes lead to non-optimal behaviors, warranting further research to fine-
tune the controller’s policy.

5.7.4
Heading Error

As detailed in Chapter 3, the heading error serves as a relevant evaluation
metric for assessing the performance and reliability of the proposed methods
to perform the auto-docking task. The heading error is the angular difference
between the AUV’s current orientation and the desired target orientation. In
this work, heading error is quantified in degrees, a unit that lends itself to
more intuitive understanding and interpretation. This may facilitate a clearer
comprehension of the system’s performance, especially for readers who may
not be deeply versed in control theory. Table 5.10 represents the heading error
values, in degrees, for each episode assessed in this Section.
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Table 5.11: Heading error values presented for the successful episodes for
Scenarios 01, 02, 05, and 06.

Episode ID Scenario 01 Scenario 02 Scenario 05 Scenario 06

1 0.29 8.83 0.31 -108.64
2 0.43 -66.43 0.11 10.01
4 0.04 -157.89 0.42 -164.55
5 0.27 -57.27 0.31 -48.00
6 -0.23 -105.79 -0.23 -135.85
7 0.10 40.22 -0.08 -65.57
10 0.42 -140.34 -0.14 1.06
11 -0.03 -124.63 0.43 13.27

The data presented in Table 5.11 offers insights into the heading control
performance across different scenarios. At first glance, Scenario 01 consistently
outperforms the others, presenting minimal heading errors across multiple
episodes. Scenario 05 follows closely, whereas Scenarios 02 and 06 present
significantly higher heading errors, sometimes veering into triple-digit angles
away from the target.

The anomalous behavior in Scenario 06, which employs the RL agent
for control, can be attributed to the inadequacy of the reward function in
emphasizing heading alignment. Essentially, the RL agent’s reward function
seems more optimized for other metrics and does not sufficiently penalize
heading errors. This suggests that future iterations of the RL agent should
include a more robust reward function that strategically weighs the importance
of heading error. Doing so could bring about a more balanced and precise
navigational strategy, improving the AUV’s overall orientation alignment with
the target.

From another perspective, by incorporating additional information about
the heading into the TD3 critic could enhance the RL agent’s performance in
maintaining proper orientation. The TD3 algorithm already uses two critic
networks to estimate the Q-values, which are essential in policy optimization.
By feeding the heading error as an additional input feature to these critics,
the model could gain a more nuanced understanding of the environment and
adjust its action policies accordingly [71].
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5.8
RL vs PID

In this Section, the focus shifts to evaluating the pure performance of
the proposed control algorithms, PID and RL, by using ground truth pose
data for the AUV. This approach allows us to isolate the performance of
the controllers from the limitations or inaccuracies of the estimators used in
previous experiments. By removing the estimator variable from the equation,
we can directly assess how well each control methodology adapts to the auto-
docking task and discern the advantages that RL potentially brings to the
table over traditional PID control.

5.8.1
Trajectory

Certainly, the first aspect under discussion pertains to the smoothness
exhibited by the trajectories as proposed by each respective controller. Figures
5.8 and 5.9 visually illustrate the 2D paths traversed by the controllers under
consideration. The contour and fluidity of these paths serve as significant
indicators for the performance quality of the control algorithms. Specifically,
a smooth trajectory is often suggestive of a well-tuned control system, which
is paramount for tasks that require high precision, such as auto-docking in
underwater robotics.
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Figure 5.8: Trajectory presented by RL-based controller with the cage pose
estimation ground truth as input.

The PID-controlled trajectory tends to be more direct, optimizing for
efficiency both in terms of computational load and power consumption. This
kind of straight-to-target behavior is generally prized in robotics applications,
where resource optimization, be it battery life or computational cycles, is
crucial [52].

On the other hand, the RL-based approach has the advantage of not
requiring prior knowledge of the system dynamics. This feature becomes in-
creasingly valuable in more complex tasks that involve dynamic environments,
such as path planning with obstacle avoidance or Simultaneous Localization
and Mapping (SLAM). While RL methods may have a higher upfront com-
putational cost for training, they could offer superior performance and adapt-
ability in scenarios where the system dynamics are either poorly understood
or subject to change.

Thus, while PID may offer a more straightforward and resource-efficient
solution for the auto-docking task, RL-based methods might provide more
robust and versatile solutions for tasks that have additional complexities or
uncertainties.
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Figure 5.9: Trajectory presented by PID-based controller with the cage pose
estimation ground truth as input.

From the result presented in Figure 5.9, an intriguing observation is
made regarding the more "natural maneuvers" exhibited by the RL agent.
The inherent flexibility of reinforcement learning allows the agent to adapt to
complex and dynamic environments. This adaptability can result in nuanced
behaviors, particularly valuable in unstructured underwater scenarios, which
present their own unique challenges.

However, this adaptability also manifests as suboptimal performance
in simpler, obstacle-free environments, as observed in the experiments. The
generalized hyperparameters provided by the Stable Baselines library may not
be finely tuned for the specific requirements of the auto-docking task at hand.

This brings to light a classic trade-off in machine learning: the ease of
implementation versus the specificity of control over the algorithm’s parame-
ters. Utilizing out-of-the-box solutions like Stable Baselines often necessitates
sacrificing some degree of control for the sake of rapid prototyping and imple-
mentation ease.
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5.8.2
Accumulative Error

The discrepancy in the accumulative error between the PID-based and
the other controller, however, raises questions about the efficiency of the PID
controller in balancing between orientation and positional error. This could
be due to the tuning of the PID gains, where perhaps they aren’t optimized
for this specific application. In a more complex environment like underwater
robotics, simple PID might not cut it when dealing with multidimensional
error spaces involving both position and orientation. Figure 5.10 depicts the
curves associated to each method.

Figure 5.10: Convergence time obtained by the two solutions. RL performance
is represented by the blue curve and the PID’s by the orange one.

The fact that the PID-based controller has higher accumulative errors
could suggest that it is less robust to certain disturbances or model inaccura-
cies. It might also indicate that the controller isn’t as effective at managing the
coupling between orientation and position, which is often a crucial aspect that
touches the auto-docking task. Additionally, the strategy adopted by the RL
agent discussed before and denoted as a “natural maneuver” can be related to
this trade-off. To keep the orientation close to the aimed one.

5.8.3
Convergence Time

As detailed previously, the convergence time is a relevant metric to
evaluate the controllers’ performance. Figure 5.11 illustrates the convergence
time values obtained for each method.
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Figure 5.11: Convergence time obtained by the two solutions. RL performance
is represented by the blue curve and the PID’s by the orange one.

Naturally, the PID-based controller’s inherent design to minimize error
in a straightforward manner often results in quicker convergence times. This
is generally an expected outcome, given that the PID control loop aims to
directly minimize the positional and orientation errors to bring the AUV to its
target state.

However, it’s intriguing to note the specific episodes where the RL agent
outperformed the PID controller in terms of convergence time, such as episodes
16 and 2. This suggests that the RL agent has the potential to adapt its strategy
for more efficient task completion under certain conditions. In these episodes,
the RL agent seems to have found a policy that allowed it to go straight toward
the goal, thereby reducing the overall time required to complete the task.

This provides valuable insights for further development. For instance, it
might be beneficial to investigate the specific states and actions taken during
these episodes to understand what led the RL agent to adopt a more direct
path.

5.8.4
Heading Error

The heading error is also evaluated considering the absence of the
estimators. Table 5.12 gathers the result presented by the two methods.
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Table 5.12: Heading errors presented by RL and PID based controllers, in
degree.

Episode ID RL PID

1 142.01 2.44
2 -70.80 11.04
3 -55.22 2.57
4 113.52 36.76
5 -16.51 -17.75
6 -157.93 -22.66
7 78.14 3.19
8 -48.99 18.00
9 -121.35 12.68
10 -126.31 20.73
11 -18.46 -25.71
12 -9.49 -7.88
13 -94.46 14.81
14 48.42 2.52
15 76.78 -13.10
16 1.75 -16.43
17 7.20 11.27
18 -127.31 -3.38
19 33.05 -54.73
20 56.37 -49.40
21 -67.38 -16.78
22 154.03 -1.72
23 96.81 0.73
24 12.17 11.94
25 -30.54 -30.45
26 -108.11 1.27

The heading error behavior, as shown in Table 5.12, reveals that the
PID method is generally more effective at minimizing heading error across
most episodes, as evidenced by the lower absolute values. It is particularly
noteworthy that the PID method has more episodes with error magnitudes
closer to zero, suggesting a more precise orientation control.

However, it is not universally better; there are instances where the
RL method outperforms the PID-based control. This may indicate that the
RL controller can be more robust or better tuned for specific scenarios or
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edge cases. This divergence in performance could be a function of how well
each algorithm adapts to varying conditions or unknown disturbances in the
underwater environment.

When compared to prior behavior, if the RL method previously demon-
strated higher heading errors similar to those currently displayed, this would
indicate a consistent limitation of the RL approach in its current configuration.
If, however, this is a deviation from earlier results, it may signify that changes
to the system or the RL algorithm have adversely impacted its performance.
Similarly, if the PID-based approach has maintained its low-error profile, this
demonstrates the robustness and reliability of PID control for this application.

In sum, while the PID control generally exhibits superior performance in
heading error reduction, the RL controller’s occasional outperformance hints
at the potential for further optimization or suitability under certain conditions.
Therefore, both methods have merits and drawbacks, which can be considered
for system-level trade-offs in your underwater robotic applications.



6
Conclusion

This research proposed fundamental experiments to understand better
the auto-docking task performed by AUVs, with a spotlight on cage pose es-
timation and controlling methodologies. While the primary objective was to
cultivate an efficient and robust system to enable AUVs to dock with underwa-
ter structures or targets with precision, the exploration was far-reaching. The
research was conducted through various scenarios, each building on the other
to evaluate the proposed system’s efficacy. In the initial scenarios that used a
fiducial-based approach for pose estimation paired with a traditional PID con-
troller for visual servoing, the system demonstrated favorable outcomes with
successful dockings up to a distance of 3 meters. However, the system faced
limitations, especially when the fiducial markers were obscured.

To push the envelope further, later scenarios introduced a CNN-based
estimator for pose estimation. The implementation of this novel addition elim-
inated the need for dataset labeling, streamlining the experimental workflow.
Furthermore, the adoption of transfer learning techniques opens doors for
leveraging other machine learning algorithms in addressing challenges specific
to underwater environments. However, it was observed that a pure machine
learning-based pose estimator was not successful, a finding that merits deeper
investigation. Combining fiducial and CNN pose estimation did substantially
elevate the system’s capabilities.

Overall, the insights obtained from this research are help in comprehend-
ing the complexities of auto-docking systems for AUVs. It emphasizes that
integrating precise pose estimation techniques is a critical factor for achieving
reliable and high-precision auto-docking. Future exploration challenges should
delve into refining pose estimation models, formulating resilient control strate-
gies, and contending with environmental variances and sensor noises.

In conclusion, this research serves as a reference for future authors. By
addressing specific challenges in navigation tasks, particularly in the nuanced
areas of auto-docking and pose estimation, the study not only offers a solution
framework but also uncovers lessons integral to the iterative process of research
and development. These obtained insights form a knowledge base that can be
useful for upcoming projects.
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6.1
Future Work

While the RL controller has shown its potential, there is a clear avenue
for further work in refining its algorithms, training methodologies, and feature
engineering. More sophisticated RL techniques could be incorporated to im-
prove performance and reliability. Specifically, while the RL algorithm in this
work was trained with the ground-truth pose, training it with the estimated
pose by CNN or fiducials could allow it to adapt to their specific strengths and
weaknesses.

Additionally, considering an agent to perform the entire auto-docking
task is one potential future challenge. As the RL agent proposed in this work
presented a satisfactory performance, an end-to-end approach evaluation can
be considered.

An end-to-end RL agent could offer a holistic, adaptable solution to man-
age the complex dynamics and uncertainties inherent in underwater environ-
ments. The aspiration to utilize an RL agent to handle the entire auto-docking
task is an ambitious yet plausible future direction. This could dramatically
simplify the system architecture by eliminating the need for hand-crafted al-
gorithms or rules for specific sub-tasks. It would also potentially offer better
adaptability to environmental changes or unexpected situations.

As Figure 6.1 outlines, the envisioned end-to-end RL model for auto-
docking would likely involve a series of interconnected components, each
contributing to the overall effectiveness and reliability of the system. Such
a model might incorporate:

– State Estimation: To provide real-time awareness of the vehicle’s state
and the environment.

– Control: To generate the required control commands to most efficientlt
and safely move towards the docking station.

– Continuous Learning: To adapt the agent’s policies based on the
outcomes of its actions and external feedback.

– Obstacle Avoidance: Obstacle avoidance is a relevant task covered by
the auto-docking challenge. Due to its nature, the RL agent could be
trained with a reward function that comprises the awareness of avoiding
collision.

The promising results obtained so far with the simpler RL agent in this
work provide a compelling basis for this future extension. Achieving this end-
to-end capability would be a significant milestone in underwater robotics,
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offering a level of autonomy and adaptability currently unattainable with
traditional control methods.

Figure 6.1 illustrates the high-level workflow for this potential future
task.

Figure 6.1: High-level workflow for an end-to-end application considering an
Rl agent as the principal actor.

In addition to these focal points, other considerations for future work
could be to fortify the algorithms against the uncertainties and vicissitudes of
underwater conditions. Enhancing the simulator’s rendering engine could bet-
ter simulate real-world conditions, thereby facilitating more effective training
of RL agents. As observed, increasing the number of fiducial markers could
likely yield better system performance. Comparative evaluations involving di-
verse RL algorithms or hybrid models that marry the strengths of both RL
and PID controls could also yield valuable insights. Ultimately, the litmus test
for any algorithm’s effectiveness would be its performance during real-world
deployments since simulations, despite their sophistication, can only approxi-
mate the myriad complexities that define underwater environments.
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of aruco tags using a novel 3d placement strategy. Sensors,
20(17):4825, 2020.

[61] ZHAO, B.; LI, Z.; JIANG, J. ; ZHAO, X.. Relative localization for uavs
based on april-tags. In: 2020 CHINESE CONTROL AND DECISION
CONFERENCE (CCDC), p. 444–449. IEEE, 2020.



Bibliography References 130

[62] NASTESKI, V.. An overview of the supervised machine learning
methods. Horizons, b 4:51–62, 2017.

[63] OUALI, Y.; HUDELOT, C. ; TAMI, M.. An overview of deep semi-
supervised learning, 2020.

[64] GARDNER, M.; DORLING, S.. Artificial neural networks (the multi-
layer perceptron)—a review of applications in the atmospheric
sciences. Atmospheric Environment, 32(14):2627–2636, 1998.
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A
Computational Environment

During the software development phase, a ThinkPad P1 Gen 4 was
used as the main computer. This control unit presents the following technical
aspects:

– Intel Core i7 processor with clocking of 300 GHz.

– Random Access Memory of 64 GB size.

– NVIDIA Quadro graphics card RTX A200, with 3328 Compute Unified
Device Architecture (CUDA) cores and a dedicated memory of 6 GB.

The operating system to support the software development is
GNU/Linux. This open-source operating system has been widely adopted
in various computing environments, from personal computers to large enter-
prise systems. It is widely regarded as a stable, secure, and reliable operating
system that provides users with a flexible and customizable computing ex-
perience [43]. Overall, Linux’s open-source nature, high performance, large
community, hardware compatibility, and robust libraries and tools make it
a popular choice for robotics development. Moreover, The Linux Operating
System figures as a mandatory requirement to use the Robot Operating sys-
tem (ROS) as a robotics framework. For the proposed work, the distribution
Debian/Ubuntu 20.04 Focal Fossa was used. This distribution version is a
Long Term Support release, which means five years, until April 2025, of free
security and maintenance updates, guaranteed.

A.1
Robot Operating System

ROS is an open-source, meta-operating system that provides software
tools and support for robot applications. It is developed by a community
of contributors and maintained by the Open Source Robotics Foundation
(OSRF). As mentioned before, ROS and Linux work together to provide a
robust platform for building, deploying, and running complex robotic systems
[84].

In a nutshell, it provides a standard set of software libraries and tools
to develop robot applications. It is designed to support code reusability,
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sharing, and collaboration between roboticists, enabling them to develop
and deploy complex robotic systems more efficiently. ROS offers a standard
communication interface, allowing different parts of a robot system to interact
and exchange data, as well as libraries for motion planning, perception, control,
and more. Additionally, ROS provides a large community of developers and
users who contribute software packages and tools to the platform, making it a
thriving ecosystem for robotics research and development [84].

The ROS Melodic Morenia distribution was used in the scope of this
work, which counted with the ros-melodic-desktop-full installation package to
make the graphical tools available during the development phase. The ROS
installation and configuration was accomplished based on a Docker image, built
considering all the required dependencies and environment variables values to
run this work output application in any Linux-based distribution. Figure A.1
illustrates the Docker stack implemented for this work.

A.2
Docker

Docker is a platform that allows developers to create, deploy, and run
applications inside containers efficiently. It uses a containerization technology
that packages applications and dependencies together in a single unit, which
can be easily moved between development, testing, and production environ-
ments [85]. Docker containers provide a consistent and reproducible environ-
ment, allowing applications to run consistently and reliably across different
environments. Taking the software development applied to robotics into ac-
count, according to [41], Docker offers critical advantages, including:

– Isolation: Docker containers provide an isolated environment for each
component of the robotics system, reducing the risk of interference and
dependencies between them.

– Portability: Docker containers can be easily moved between environ-
ments, making it easier to test and deploy robotics systems on different
hardware platforms.

– Scalability: Docker containers can be easily scaled up or down based
on the demands of the robotics system, providing a flexible and scalable
solution.

– Reproducibility: Docker containers can be used to recreate the exact
environment and dependencies required to run the robotics system,
ensuring reproducibility and reducing the risk of issues arising from
differences in the environment.
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– Simplified Maintenance: Docker containers make it easier to manage
and maintain the components of a robotics system, reducing the time
and effort required to keep the system up-to-date.

The docker-ce (version 20.10.23) and nvidia-docker2 (version 2.8.0) pack-
ages were used in this work. The ROS Melodic Morenia target Linux distri-
bution (Debian Ubuntu 18.04 Bionic) for this project was installed in the
correspondent Docker image, as even the other tools required for the devel-
opment and testing phases, such as the simulation and reinforcement learning
tools. More details about the Docker development paradigm towards robotics
applications are depicted in [84].

A.2.1
Development Environments

Figure A.1 illustrates the interaction between the entities described,
which are considered the computational base stack for developing this work.
As Figure A.1 shows, two distributions were considered for the development
environment. One (Debian Ubuntu 18.04 Bionic) to accommodate the devel-
opment applications, such as ROS and Gazebo, and the another one (Debian
Ubuntu 20.04 Focal) to accommodate the development local tooling. Consid-
ering this scope, the advantages mentioned in the previous Section could be
applied, highlighting the main one related to the portability to deploy the
result of this work in any Linux distribution since both of the environments
share the same kernel main resources.

Figure A.1: Development Environment designed for this work.
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A.2.2
Experimental Environments

A docking architecture was implemented to run the training algorithms
of the machine learning and RL models, detailed in Chapter 3, and also
the simulation environment in the target servers. Figure A.2 illustrates the
architecture design to deploy the experiment processes into the remote servers.

Figure A.2: Software deployment diagram for the usage of remote servers.

As Figure A.2 depicts, the deployment sequence of the machine learning
applications on the remote servers consists of:

1. Development computer (which has its configuration detailed in Sec-
tion A): runs the development container, which has installed the main
tools used to develop the code, such as IDEs and debugging tools. The
development container is also responsible for managing remote access to
the servers. The development container design is detailed in Figure A.1.

2. Server 01: it was used to run the CNN applications. The CNN applica-
tions have their own containers since the dependencies and configurations
are specific for this type of application.

3. Server 02: it was used primarily to train the RL agent, with the same
assumptions for the CNN containers. The RL training step also took into
account Server 02, since it requires more resources once the simulation
application must be running in order to execute the learning episodes.
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4. Server 03: it was used to run the simulation and required processes.

A.3
Conventions

Throughout the development of the application associated with this
work, software conventions were applied to leverage the code readability,
consistency, and maintenance, aiming to keep the developed packages’ style
and definitions up to the “good” rules defined by the ROS community. Most
of those rules are described in the ROS Enhancement Proposal (REP) pages
[83].

A.3.1
File Tree

As the proposed work consists of a multidisciplinary application, a well-
structured file tree is required since it can make it easier to track changes
and monitor the progress of projects between the authors. Moreover, it makes
possible the package organization by the usage of git submodules1. Figure A.3
depicts the file tree system adopted for this work.

Figure A.3: File tree adopted for this work.

The package naming convention and the scope definition of each package
were based on the REP 144 [83].

As Figure A.3 shows, eleven main packages are divided according to each
discipline covered by this work:

1Git is a distributed version control system that is used to manage software projects and
track changes to source code over time. Linus Torvalds created it in 2005 as a free and open-
source alternative to proprietary version control systems. Git allows multiple developers to
collaborate on a project by enabling them to share and merge changes to the codebase.
It provides features such as branch management, merge tracking, and conflict resolution,
making it a popular choice for software development teams.
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– auv_rl: It corresponds to the meta-project level, where the git submod-
ules are managed and the main bring-up files, to run the application, are
located.

– auv_rl_bringup: A ROS package that concentrates all files responsible
for initiating all required resources for running the main application.

– auv_rl_gazebo: A ROS package aimed to hold the gazebo worlds and
3D object files that are used for the simulation. It also describes the
interaction between ROS and Gazebo, by setting the plugins behavior.

– auv_rl_docker : A non-ROS package that holds the files required to
install and run the docker development environment.

– auv_rl_desistek_saga: A set of ROS packages that aim to simulate
the chosen AUV model.

– auv_rl_td3 : A ROS package that implements the Twin Delayed Deep
Deterministic Policy Gradient (TD3) method, a RL technique considered
in this work, detailed in Section 2.5.4.

– auv_rl_ppo: A ROS package that implements the Proximal Policy
Optimization (PPO) method, a RL technique considered in this work.

– auv_rl_msgs: A ROS package that concentrates the topic, action, and
service custom messages used by the packages of this work.

– auv_rl_gym: A ROS package that concentrates the files required to
create the reinforcement learning environment structure to evaluate the
agent and appropriately computes the rewards, state, and actions.

– auv_rl_visual: A set of ROS packages to enable the visual auto-
docking software stack.

– auv_rl_sac: A ROS package that implements the Soft Actor-Critic
method, a RL technique considered in this work.

Additionally, two other third-party packages were considered in this
work: the apriltag_ros2 and openai_ros3, used for relative pose estima-
tion and a framework to run RL techniques considering Gazebo as primary
simulator.

Each package has its inner structure that follows the conventions of its
discipline or tool when applied. More details about each package can be found
throughout this work. After this work be released, all packages should be
public, with free access to the robotics community.

2https://github.com/AprilRobotics/apriltag_ros
3https://bitbucket.org/theconstructcore/openai_ros.git
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A.3.2
Coordinate frames

In robotics, a common coordinate system used for defining the position
and orientation of objects is the Cartesian coordinate system. However, this
type of reference works for local tasks. In order to create a “universal”
reference for robots and objects in an environment, global references are used.
According to [12], global systems such as Earth-Centered Earth Fixed (ECEF)
and geodetic systems describe the position of an object using a triplet of
coordinates. Local systems such as East-North-UP (ENU), North-East-Down
(NED), and Azimuth-Elevation-Range (AER) systems require two triplets of
coordinates: one triplet describes the location of the origin, and the other
triplet describes the location of the object concerning the origin.

The system adopted for this project is the ENU since it is advised for
short-range Cartesian representations of geographic locations. According to
[12], an ENU system uses the Cartesian coordinates (xEast, yNorth, zUp) to
represent position relative to a local origin. The local origin is described by the
geodetic coordinates (lat0, lon0, h0). Note that the origin does not necessarily
lie on the surface of the ellipsoid.

– The positive xEast−axis points east along the parallel of latitude contain-
ing lat0.

– The positive yNorth−axis points north along the meridian of longitude
containing lon0.

– The positive zUp−axis points upward along the ellipsoid normal.

Figure A.4 represents the ENU coordinate system, adopted for this
project. In the Figure, the reference frame for the ENU system is the ECEF.
It follows the REP 105 guideline, which describes how the global and local
frames should be represented.

Figure A.4: ENU coordinate system [83].
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