XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: REFINERY SCHEDULING OPTIMIZATION USING GENETIC ALGORITHMS AND COOPERATIVE COEVOLUTION Autor: LEONARDO MENDES SIMAO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
MARCO AURELIO CAVALCANTI PACHECO - ADVISOR
CARLOS ROBERTO HALL BARBOSA - CO-ADVISOR
Nº do Conteudo: 5969
Catalogação: 28/02/2005 Liberação: 28/02/2005 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=5969&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=5969&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.5969
Resumo:
Título: REFINERY SCHEDULING OPTIMIZATION USING GENETIC ALGORITHMS AND COOPERATIVE COEVOLUTION Autor: LEONARDO MENDES SIMAO
CARLOS ROBERTO HALL BARBOSA - CO-ADVISOR
Nº do Conteudo: 5969
Catalogação: 28/02/2005 Liberação: 28/02/2005 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=5969&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=5969&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.5969
Resumo:
This work investigates the use of Genetic Algorithms and
Cooperative Coevolution in refinery scheduling
optimization. Oil refineries are one of the most important
examples of multiproduct continuous plants, that is, a
continuous processing system that generates a number of
products simultaneously. A refinery processes various
crude oil types and produces a wide range of products,
including LPG (liquefied petroleum gas), gasoline,
kerosene and diesel. It is a complex optimization problem,
mainly due to the number of different tasks involved and
different objective criteria. In addition, some of the
tasks have precedence constraints that require other tasks
to be scheduled first. For example, in order to schedule a
task that transfers one of the yields of a certain crude
distillation unit, both the task that feeds the crude oil
into the unit and the task that sets the unit`s current
operation mode must already be scheduled. Therefore,
applying traditional evolutionary models, like the order-
based ones, can create many infeasible solutions that will
have to be corrected or rejected later on, thereby
jeopardizing the algorithm performance and feasibility.
The main goal was the development an evolutionary model
satisfying well-defined objectives, which would optimize
production scheduling and address the various constraints
entailed in the problem, thus generating only feasible
solutions. This work consisted on three main steps: a
survey on crude oil refining and refinery scheduling; the
development of a cooperative coevolutionary model to
optimize the refinery scheduling and the development of a
software tool for case studies. The study about refining
and scheduling involved gathering information about the
existent processes in a refinery, starting from the
arrival of crude oil, its distillation and transformation
into several products and, finally, the delivery of these
products to their respective destination. The levels of
decision making in a refinery were surveyed too, in order
to identify the main goals for each one, and how the
scheduling level fits into the structure as whole. Then,
all the routine scheduling tasks and their roles in a
refinery were carefully studied. The decision of when and
how to assign those tasks is the final output of the
scheduling task, so it must be the main output of the
algorithm too. The development of the evolutionary model
consisted of a survey on some of the most common
evolutionary approaches to scheduling. The adopted
coevolutionary model breaks the problem down into two
parts, thus using two species with different
responsibilities: One is responsible for deciding when a
task should be scheduled, while the other is responsible
for assigning a resource for this task. The first species
representation was based on a model used for the Dial-a-
Ride (Moon et al, 2002) kind of problems, and uses a graph
to help the fitness evaluation function find the right
order in which to schedule the tasks. This representation
was devised in such a way that the precedence constraints
were satisfied and no infeasible solutions were generated.
The representation of the second species, which assigns
resources for the tasks, let genetic operators change the
selection order when picking a resource for a task.
Finally, a software tool was developed to be used for
implement this model and for performing a case study. This
case study should comprise all the needed characteristics,
in order to test the quality of the representation as well
as evaluate the results. A simple refinery was designed,
containing all equipment types, tasks and constraints
found in a real-world refinery. The constraints mentioned
are the precedence constraints, handled by the graph used
by the first species, plus other operational constraints
found in refinery scheduling. It was possible, then, to
see the decoding of chromosomes into feasible solutions,
always satisfying all the constraints. Several tests were performed, and they showed that the model developed is, in fact, capable of generating and maintaining feasible solutions, without
repairing, penalizing or discarding them. The results were compared to the ones
obtained through exhaustive search. Three test scenarios were designed with different sizes, demands and constraints. In all of them, the results obtained were far better than the ones
obtained through exhaustive search.
Descrição | Arquivo |
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS | |
CHAPTER 1 | |
CHAPTER 2 | |
CHAPTER 3 | |
CHAPTER 4 | |
CHAPTER 5 | |
CHAPTER 6 | |
REFERENCES |