XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: COMPLETE BOUNDED MINIMAL SURFACES IN R3 Autor: YUNELSY NAPOLES ALVAREZ
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
RICARDO SA EARP - ADVISOR
Nº do Conteudo: 55776
Catalogação: 09/11/2021 Liberação: 09/11/2021 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55776&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55776&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.55776
Resumo:
Título: COMPLETE BOUNDED MINIMAL SURFACES IN R3 Autor: YUNELSY NAPOLES ALVAREZ
Nº do Conteudo: 55776
Catalogação: 09/11/2021 Liberação: 09/11/2021 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55776&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55776&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.55776
Resumo:
During some years we have seen great progress in solving old problems
in minimal surfaces theory. Among these problems are the Calabi-Yau s
conjectures, dating from the 60s of last century. The first one stated that there
were no complete minimal surfaces contained in a ball of R3, and the second one
that all complete minimal surface should have an unbounded projection in each
axes. In this work we pretend to review two examples that proof the falsity of
the second conjecture. The first one was given by L. P. Jorge e F. Xavier (1980)
and the second one by H. Rosenberg e E. Toubiana (1987). The first conjecture
is also false. The first counterexample was given by N. Nadirashvili (1996) and
it is also a counterexample to the conjecture of Hadamard, which stated that
there were no complete bounded surfaces with negative Gaussian curvature.
Development of Nadirashvilli s article is the main objective of this dissertation.
The technique used in these three works is the use of the Enneper-Weierstrass
Representation, combined with appropriate applications of Runge s theorem.
Descrição | Arquivo |
COMPLETE |