XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: AUTONOMOUS SYSTEMS EXPLAINABLE THROUGH DATA PROVENANCE Autor: TASSIO FERENZINI MARTINS SIRQUEIRA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
CARLOS JOSE PEREIRA DE LUCENA - ADVISOR
Nº do Conteudo: 48782
Catalogação: 25/06/2020 Liberação: 25/06/2020 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=48782&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=48782&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.48782
Resumo:
Título: AUTONOMOUS SYSTEMS EXPLAINABLE THROUGH DATA PROVENANCE Autor: TASSIO FERENZINI MARTINS SIRQUEIRA
Nº do Conteudo: 48782
Catalogação: 25/06/2020 Liberação: 25/06/2020 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=48782&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=48782&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.48782
Resumo:
Determining the data provenance, that is, the process that led to those
data, is vital in many areas, especially when it is essential that the results
or actions be reliable. With the increasing number of applications based
on artificial intelligence, the need has been created to make them capable
of explaining their behavior and be responsive to their decisions. This is
a challenge especially if the applications are distributed, and composed
of multiple autonomous agents, forming a Multiagent System (MAS).
A key way of making such systems explicable is to track the agent s
behavior, that is, to record the source of their actions and reasoning,
as in an omniscient debugging. Although the idea of provenance has
already been explored in some contexts, it has not been extensively explored
in the context of MAS, leaving many questions to be understood and
addressed. Our objective in this work is to justify the importance of the
data provenance to MAS, discussing which questions can be answered
regarding the behavior of MAS using the provenance and illustrating,
through application scenarios, to demonstrate the benefits that provenance
provides to reply to these questions. This study involves the creation
of a software framework, called FProvW3C, which supports the collects
and stores the provenance of the data produced by the MAS, which
was integrated with the platform BDI4JADE (41), forming what we call
Prov-BDI4JADE. Through this platform, using examples of autonomous
systems, we have rigorously demonstrated that the use of data provenance
in MAS is a solid solution to make the agent’s reasoning and action process
transparent.
Descrição | Arquivo |
COMPLETE |