$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: EXPOENTES DE LYAPUNOV DE COCICLOS LINEARES ALEATÓRIOS: REGULARIDADE E PROPRIEDADES ESTATÍSTICAS
Autor: MARCELO DURAES CAPELEIRO PINTO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  SILVIUS KLEIN - ORIENTADOR
Nº do Conteudo: 70678
Catalogação:  29/05/2025 Liberação: 29/05/2025 Idioma(s):  INGLÊS - ESTADOS UNIDOS
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=70678&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=70678&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.70678

Resumo:
Este trabalho estuda a regularidade e as propriedades estatísticas dos expoentes de Lyapunov de cociclos lineares aleatórios localmente constantes. Investigamos tanto o caso em que o suporte da medida subjacente consiste apenas em matrizes invertíveis, quanto o caso em que também contém matrizes não invertíveis. Esses dois cenários exibem comportamentos notavelmente diferentes. No caso invertível, estudamos a regularidade do expoente de Lyapunov como função da medida subjacente em relação a duas topologias diferentes. Estabelecemos sua continuidade de Hölder no caso genérico em relação à dis tância de Wasserstein e sua analiticidade em relação à norma de variação total. No caso não invertível, sob hipóteses apropriadas, obtemos uma caracterização da hiperbolicidade uniforme por meio de multicones e a usamos para estabelecer uma dicotomia entre a analiticidade e a descontinuidade do expoente de Lyapunov. Também provamos estimativas de grandes desvios e um teorema central do limite para todos esses modelos. Embora existam muitos problemas interessantes ainda em aberto, nossos resultados tentam fornecer uma imagem quase completa no contexto de cociclos aleatórios bidimensionais localmente constantes com medidas com suporte finito.

Descrição Arquivo
NA ÍNTEGRA  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui