$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC | MARC |



Título: UMA ABORDAGEM PARA ANOTAÇÃO DE DADOS UTILIZANDO GRANDES MODELOS DE LINGUAGEM
Autor: CARLOS VINICIOS MARTINS ROCHA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  HELIO CORTES VIEIRA LOPES - ORIENTADOR
JONATAS DOS SANTOS GROSMAN - COORIENTADOR

Nº do Conteudo: 68379
Catalogação:  17/10/2024 Liberação: 17/10/2024 Idioma(s):  INGLÊS - ESTADOS UNIDOS
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=68379&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=68379&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.68379

Resumo:
Os documentos são essenciais para o sistema econômico e acadêmico; no entanto, explorá-los pode ser uma tarefa complexa e demorada. Uma abordagem para contornar esse problema é o uso de modelos de Visual Question and Answering (VQA) para extração de informações de documentos por meio de prompts em linguagem natural. No VQA, assim como para o desenvolvimento dos mais variados modelos, é necessário possuir dados anotados para a sua etapa de treinamento e validação. No entanto, criar esses conjuntos de dados é desafiador devido ao alto custo envolvido no processo. Com base nisso, propomos um processo de quatro etapas que combina Modelos de Visão Computacional e Large Language Models (LLMs) para a anotação de dados de VQA em relatórios financeiros. O método proposto inicia pelo reconhecimento da estrutura textual dos documentos por meio de modelos de Análise de Layout de Documentos e Extração de Estrutura de Tabelas. Em seguida, utiliza duas LLMs distintas para a etapa de geração e avaliação dos pares de perguntas e respostas geradas, automatizando a construção e seleção dos melhores pares para compor a base final. Para avaliar o método proposto, geramos um dataset para treinar e avaliar modelos especialistas em VQA.

Descrição Arquivo
NA ÍNTEGRA  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui