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Abstract

Rocha, Carlos Vinicios Martins; Lopes, Hélio Côrtes Vieira (Advisor);
Grosman, Jonatas dos Santos (Co-Advisor). A Data Annotation Ap-
proach Using Large Language Models. Rio de Janeiro, 2024. 84p.
Dissertação de Mestrado – Departamento de Informática, Pontifícia Uni-
versidade Católica do Rio de Janeiro.

Documents are essential for the economic and academic system; however,
exploring them can be complex and time-consuming. An approach to surpass
this problem is the use of Visual Question and Answering (VQA) models to
extract information from documents through natural language prompts. In
VQA, as well as for the development of various models, it is necessary to have
annotated data for training and validation. However, creating these datasets is
challenging due to the high cost involved in the process. To face this challenge,
we propose a four-step process that combines Computer Vision Models and
Large Language Models (LLMs) for VQA data annotation in financial reports.
The proposed method starts with recognizing the textual structure of doc-
uments through Document Layout Analysis and Table Structure Extraction
models. Then, it uses two distinct LLMs for the generation and evaluation of
question and answer pairs, automating the construction and selection of the
best pairs to compose the final dataset. To evaluate the proposed method, we
generate a dataset for train and evaluate VQA specialized models.

Keywords
Data Annotation; LLM; VQA; Documents.



Resumo

Rocha, Carlos Vinicios Martins; Lopes, Hélio Côrtes Vieira; Grosman,
Jonatas dos Santos. Uma Abordagem para Anotação de Dados
Utilizando Grandes Modelos de Linguagem. Rio de Janeiro, 2024.
84p. Dissertação de Mestrado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

Os documentos são essenciais para o sistema econômico e acadêmico;
no entanto, explorá-los pode ser uma tarefa complexa e demorada. Uma
abordagem para contornar esse problema é o uso de modelos de Visual
Question and Answering (VQA) para extração de informações de documentos
por meio de prompts em linguagem natural. No VQA, assim como para
o desenvolvimento dos mais variados modelos, é necessário possuir dados
anotados para a sua etapa de treinamento e validação. No entanto, criar esses
conjuntos de dados é desafiador devido ao alto custo envolvido no processo.
Com base nisso, propomos um processo de quatro etapas que combina Modelos
de Visão Computacional e Large Language Models (LLMs) para a anotação
de dados de VQA em relatórios financeiros. O método proposto inicia pelo
reconhecimento da estrutura textual dos documentos por meio de modelos de
Análise de Layout de Documentos e Extração de Estrutura de Tabelas. Em
seguida, utiliza duas LLMs distintas para a etapa de geração e avaliação dos
pares de perguntas e respostas geradas, automatizando a construção e seleção
dos melhores pares para compor a base final. Para avaliar o método proposto,
geramos um dataset para treinar e avaliar modelos especialistas em VQA.

Palavras-chave
Anotação de Dados; LLM; VQA; Documentos.
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1
Introduction

Data annotation is a critical task in developing supervised machine learn-
ing models, especially in Natural Language Processing (NLP) and Computer
Vision (CV). The quality of these models relies on large volumes of labeled
data to learn and perform complex tasks, such as document comprehension
and interpretation.

Document Visual Question Answering (DocVQA) exemplifies a task
where state-of-the-art deep learning models combine NLP and CV techniques.
The primary goal of DocVQA is to enable models to interpret document images
by leveraging both textual and visual features, allowing users to interact with
document information through natural language queries.

Training DocVQA models requires thousands of annotated and care-
fully reviewed document pages. This annotation and review process is time-
consuming and costly, primarily due to the significant human resources needed.
To meet this demand, the literature often employs non-expert annotators
through crowdsourcing platforms like Amazon Mechanical Turk (MATHEW
et al., 2021; MATHEW et al., 2022). However, using such platforms presents
significant challenges and limitations, including inconsistent annotation qual-
ity and the additional effort needed for review and validation, which increases
both cost and time (KITTUR; CHI; SUH, 2008).

DocVQA models have applications across various domains. In scientific
research, they assist in identifying relationships between entities within large
text corpora. In the insurance industry, these models help understand complex
policies and detect fraud. In finance, they extract metrics from financial reports
and provide insights for investors based on text-based market data.

A valuable data source for DocVQA is financial reports, such as those
provided by Brazilian stock market, named Brasil Bolsa Balcão (B3).1 These
reports are essential for publicly traded companies, ensuring the transparency
and credibility required to attract investors. Accurate financial performance
assessments and informed decision-making depend on these documents. In
the B3, 2,706 listed companies are required by the Securities and Exchange
Commission of Brazil, or Comissão de Valores Mobiliários (CVM),2 to publish
annual balance sheets, quarterly reports, and other periodic information. As
a result, a vast amount of publicly available financial reports support market

1https://www.b3.com.br/
2https://www.gov.br/cvm/en

https://www.b3.com.br/
https://www.gov.br/cvm/en
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analysis. This scenario is not unique to Brazil; similar regulations exist in many
other regions, such as in the United States, where the Securities and Exchange
Commission (SEC)3 oversees financial reporting, and in the European Union,
where the European Securities and Markets Authority (ESMA).4

Although these financial reports are public, they lack structured anno-
tated data. To create a usable dataset, it is necessary to first address the data
annotation challenge. One approach to leverage the abundant unlabeled data
is to use Large Language Models (LLMs) as annotators to generate labels
in a zero-shot or few-shot manner. While promising, this method introduces
noise into the generated labels, especially when dealing with complex tasks
and domain-specific datasets (AGRAWAL et al., 2022).

Wang et al. (2021) demonstrated that data annotation with GPT-3 can
reduce costs by more than 90% for Natural Language Generation (NLG) and
Natural Language Understanding (NLU) tasks. In the financial domain, the
work of Aguda et al. (2024) demonstrated that more robust language models
like GPT-4 and PaLM 2 outperform crowdworkers in annotating relationships
between entities and individuals in financial documents. From a multi-modal
perspective, Nguyen et al. (2023) combined a Table Structure Recognition
(TSR) model and a language model to generate responses in a Table QA task.
For the automatic validation of answers generated by foundational models to
open questions, Bai et al. (2024) proposed peer-evaluation method, combining
LLMs to assess the quality of the responses.

1.1
Research Goal

Given their remarkable capability on many text-annotation tasks with
a reduced cost, LLMs could be addressed by automatically generating an
annotated dataset of questions and answers for the DocVQA task.

To take advantage of the generalist capability of LLMs and reduce the
time it takes to build an annotated dataset for training expert models in
DocVQA, our main research question is:

MRQ: How can we use Large Language Models in data annotation
for Document Visual Question Answering task?

Moreover, the approach proposed to solve the MRQ must consider the
different ways of displaying data in documents, such as tables. Furthermore, the
proposed approach must take into account the need for a textual representation

3https://www.sec.gov/
4https://www.esma.europa.eu/

https://www.sec.gov/
https://www.esma.europa.eu/
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originating from these representations. Finally, the questions and answers
generated by the approach must be reliable and of high quality to ensure
that the specialist models learn from them. To achieve this, we address the
following research questions:

RQ1: How can we combine computer vision models and Large Lan-
guage Models to generate questions and answers from documents?
RQ2: How can we evaluate the quality of the generated questions
and answers?

To answer RQ1 and RQ2, we propose a three-stage process. In the
first stage, we transcribe the document page by recognizing the characters
and the main points of the layout and converting the tables into markup
language. In the second stage, we organize and structure all transcriptions
and segmentations from the previous stage into a text, which is input into an
LLM to generate QA pairs. In the third and final stage, the same structured
text is provided to another LLM to assess the quality of the generated pairs,
determining whether each pair should be included in the final dataset.

As a result of the transcription stage, we selected the RoDLA model,
which achieved an overall mAP of 0.716 on the DLA benchmark dataset. For
table structure extraction, we selected the TATR model, which attained a
TEDS-Struct score of 0.94 on the benchmark dataset. In the generation stage,
we observed significant differences in the variability of QA pairs proposed by
each LLM. The best-performing models were Mixtral-8x22b and GPT-4o mini,
which demonstrated good question variation, adherence to output formatting,
and effective utilization of generated QA pairs. Finally, for question quality
evaluation, the models delivered strong performance, with Claude 3.5 Sonnet
achieving an F1 score of 0.93 when compared to human validation. However,
improvements are still needed in this stage to enhance the filtering of false
negatives.

1.2
Contributions

– We present a new approach for generating and evaluating question-
answer pairs in documents containing both text and tables.

– We contribute by evaluating different models for Document Layout
Analysis and Table Structure Recognition, specifically for extracting
information from financial reports of the Brazilian stock exchange.
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1.3
Overview

This work is organized as follows: Chapter 2 reviews the related literature
that served as a reference for this work. Chapter 3 explains all the concepts
and techniques necessary to understand the developed approach. Chapter 4
describes the approach proposed in this work, detailing each stage, from
textual data extraction to the evaluation of each pair of questions and
answers. Chapter 5 presents the results obtained with the developed approach,
discussing the results obtained for each stage. Lastly, Chapter 6 provides
a comprehensive overview of the research, evaluates its outcomes, identifies
potential shortcomings, and proposes directions for future research.



2
Related Work

In this section, we review the main works related to the generation of
questions and answers in documents and the use of large language models
(LLMs) for data annotation. We explore approaches that propose the manual
creation of datasets, as in (MATHEW et al., 2021), as well as solutions that
employ automation to reduce the cost and time of annotation, as in (DING et
al., 2023). We also discuss the use of LLMs for automatic annotation generation
and evaluation tasks, highlighting studies that evaluate their efficiency and
comparing commercial and open source approaches. This review contextualizes
the development of our work, which seeks to improve the automatic generation
of questions and the evaluation of answers in complex documents, such as
financial reports.

2.1
DocVQA Dataset Construction

As with any supervised machine learning task, DocVQA relies on a
labeled dataset to train models effectively. High-quality labeled data is essential
for teaching models to understand and interpret the diverse textual, structural,
and graphical elements found in document images.

Mathew et al. (2021) introduced a dataset consisting of document images
from various industries, including elements such as tables, forms, figures, and
a range of textual, graphical, and structural components. The dataset was
curated from handpicked document pages sourced from the UCSF Industry
Document Library and contains 50,000 questions across 12,767 images.

The dataset was annotated through crowdsourcing, using a three-stage
process. In the first stage, annotators were tasked with generating up to 10
question-answer pairs based solely on the information in a given document
page. The second stage involved validating these pairs, where annotators
answered questions generated in the first stage. In the final stage, the authors
reviewed the pairs to catch errors missed in earlier steps.

Our approach shares similarities with Mathew et al. (2021) in the
annotation process, particularly in the first stage. However, we reduced the
number of questions generated per page and modified the validation approach
in the second stage, ultimately eliminating the final human review.

Given the extensive human and financial resources required to build a
dataset like Mathew et al. (2021), alternative cost-saving strategies have been
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explored. Ding et al. (2023) proposed an automated question-answer generation
process to minimize human annotation efforts and diversify question patterns.

Their automated process focused on the structural elements of docu-
ments, such as table counts or semantic information in specific regions. They
defined 66 patterns for generating questions for tasks like counting objects,
checking their existence, and understanding structural and relational informa-
tion.

We build on the idea of automated question generation from Ding et
al. (2023), but make the process more dynamic. Instead of relying on fixed
patterns for controlled scenarios, we leverage the few-shot learning capabilities
of LLMs.

2.2
Large Language Model Annotation

Several studies have examined LLMs’ potential in data annotation for
natural language processing tasks, aiming to identify time-efficient and cost-
effective approaches (WANG et al., 2021; AGUDA et al., 2024; ZHANG et al.,
2023).

Wang et al. (2021) conducted experiments evaluating GPT-3’s perfor-
mance compared to humans in natural language generation (NLG) and un-
derstanding (NLU) tasks, including question generation based on a given text
and target answer. They found that their approach reduced labeling costs by
up to ten times while achieving human-like performance.

Similarly, Aguda et al. (2024) explored LLM effectiveness in extracting
financial relationships, comparing models like GPT-4, PaLM2, and MPT
Instruct with human and expert annotations. They evaluated aspects such
as time, cost, and reliability, showing that automated annotations were more
efficient, though still falling short of expert-level quality, suggesting that human
oversight remains necessary for accuracy.

Our work aligns with Wang et al. (2021) in applying LLMs to an
NLG task. However, unlike Aguda et al. (2024), which focuses on financial
relationship extraction, we concentrate on financial reports, utilizing LLMs for
QA annotation.

Financial reports often include complex tables, making it necessary
to extract and represent the information in a textual format for effective
LLM annotation. Nguyen et al. (2023) proposed a pipeline for answering
questions from business table images, extracting the table structure into
HTML, converting it to a dataframe, and using it as input for a QA module.
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Despite their capabilities, LLMs can produce hallucinations, so assessing
the validity and quality of generated questions is essential. Bai et al. (2024) in-
troduced a benchmarking framework where language models both generate and
evaluate questions to reduce test leakage and improve automated assessment
in open questions. They tested this on several foundation models, including
LLaMA and GPT-4, across various domains. Additionally, they proposed a
decentralized peer-evaluation method to reduce biases. The results indicated
that larger fine-tuned models, such as LLaMA-65B and GPT-4, performed bet-
ter on complex questions, and decentralized evaluation offered a more balanced
process.

We adopt the idea from Bai et al. (2024), using an LLM to automatically
evaluate the annotations of others, serving as a filter for invalid responses. This
step is critical for automating the entire process and catching simple errors
without the need for human intervention.



3
Background

This chapter presents an overview of the core concepts to understand this
work better. It begins by explaining the Visual Question and Answering (VQA)
task. Next, it presents the core concepts of Optical Character Recognition
(OCR), Document Layout Analysis (DLA) and Table Structure Recognition
(TSR) tasks. Lastly, it explains the concepts and processes related to the LLMs
and the generic framework used to invoke different models.

3.1
Visual Question and Answering (VQA)

The VQA process can be broken down into two main tasks: the first
is to extract and understand the visual information from an image, and the
second is to comprehend and process the textual question posed by the user.
These tasks are typically achieved using a combination of Convolutional Neural
Network (CNN) for image analysis and Recurrent Neural Network (RNN) or
Transformers for text processing (WU et al., 2017).

For the first task, VQA solutions employ two components, such as object
detectors and scene classifiers. Object detectors help identify and locate objects
within an image, while scene classifiers provide contextual information about
the overall setting. For the second task, a language model interprets the
question, which guides the system to focus on relevant parts of the image
and synthesize an appropriate answer.

Figure 3.1 depicts the VQA workflow. The elephant represents the input
image. The question is a textual input that queries specific information about
the image. The VQA system processes both images and questions to produce
an answer. The system combines features extracted from the image and the
question to generate an accurate response.

VQA systems find applications in various fields, such as assistive tech-
nologies for visually impaired individuals, educational tools, image search en-
gines, and interactive AI systems in video games and virtual environments. In
addition to these applications, VQA has also been extended to the context of
Document Analysis and Recognition (DAR), where systems are developed to
automatically extract information presented on documents and addressed to
human comprehension (MARINAI, 2008).

This is particularly useful in scenarios like document retrieval and
automated document processing, as seen in the DocVQA challenge (MATHEW
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Figure 3.1: Visual Question and Answer Workflow.

et al., 2021). These systems leverage similar methodologies to traditional
VQA but are adapted to handle the specific challenges of understanding and
answering questions based on text-rich documents.

3.2
Optical Character Recognition (OCR)

OCR is an essential procedure in the VQA process that converts docu-
ments such as scanned paper, PDF files, or images into editable and searchable
data. Essentially, OCR systems extract features, such as characters’ shapes
and sequences, from a document and translate them into a machine-readable
text format. Such systems typically employ a two-step solution: text detection
followed by text transcription to effectively recognize and transcribe text in
images. These steps often operate independently, using different models and
strategies.

Text detection focuses on identifying the text within an image, which
is represented as a three-dimensional tensor C × H × W , where C denotes
the number of color channels, H the height, and W the width of the image.
The challenge in text detection arises from the diverse shapes, orientations,
and potential text distortions. Researchers commonly approach text detection
either as an object detection task — where the model learns to generate
bounding box coordinates around text — or as an instance segmentation task,
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where a mask is generated to differentiate text pixels from non-text pixels
(SUBRAMANI et al., 2020).

Once the text is detected, the next step is text transcription, which
involves converting the detected text within an image into a sequence of
characters. This process begins with a cropped image of the text, usually at the
character or word level, with dimensions C × H ′ × W ′. The text transcription
model then outputs a sequence of tokens from a predefined vocabulary V ,
which can be character- or word-based. Character-level transcription allows for
flexibility in recognizing any word within the language, as the vocabulary size
is limited to the set of possible characters. Conversely, word-level transcription
can reduce minor errors but is restricted to the predefined vocabulary, limiting
the ability to transcribe out-of-vocabulary words (SUBRAMANI et al., 2020).

Figure 3.2: Optical Character Recognition Task Workflow.

As an example, Figure 3.2 illustrates the OCR task workflow. First, the
document is processed through an object detection model, which generates
bounding boxes around text regions. Subsequently, a transcription model is
applied to convert the text within each bounding box into a readable format.

3.3
Document Layout Analysis (DLA)

DLA is an important task in various document understanding applica-
tions. It converts semi-structured information into structured data while ex-
tracting essential information from documents. This task is challenging due to
the diverse layouts and formats found in documents. Often based on conven-
tional rule-based approaches or machine learning techniques, existing methods
struggle to generalize effectively because they rely on hand-crafted features
that may not be robust to layout variations (CAO; MA; LI, 2021). This way,
the objective of the DLA task is to identify and categorize different document
components, such as text blocks, images, tables, and headings, to understand
its structure and layout (ZHONG; TANG; YEPES, 2019).
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The DLA task can be broken into two sub-tasks: the document segmen-
tation into a sequence of elements and the classification and labeling of each
element using different features and algorithms (CAO; MA; LI, 2021). These
features can include visual characteristics like font size, spacing, and any other
graphical cues, as well as textual features like keywords and phrases.

Figure 3.3: Document Layout Analysis Task Workflow.

Figure 3.3 illustrates the DLA workflow. Starting with a document image
as input, which includes various elements like text blocks, images, and tables.
The segmentation process identifies these elements, and the classification
process labels them appropriately. The resulting structured document includes
labeled components and segment bounding boxes, which facilitate further
processing and analysis.

3.4
Table Structure Recognition

The TSR task involves representing a table in a machine-readable format,
where its layout is encoded according to a predefined standard. This represen-
tation can be in either a physical or logical format. The logical format includes
information about each cell’s row and column span, while the physical format
also includes the bounding box coordinates of the cells. TSR is a challenging
problem due to the complex structures and high variability in table layouts
(RAJA; MONDAL; JAWAHAR, 2020).

TSR can be understood in two main aspects: first, it involves detecting
table regions and their boundaries within a document, and second, it focuses
on recognizing the table’s internal structure, such as rows, columns, and cells,
as well as their hierarchical relationships (CHI; LIU; XU, 2019).

These processes are typically executed through a combination of image
processing and machine learning techniques. TSR models are applicable in a
variety of contexts, including the digitization of printed documents, automation
of data entry tasks, enhancement of data accessibility, and improvement of
document retrieval and management.
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Figure 3.4: Table Structure Recognition Task Workflow.

Figure 3.4 illustrates a common TSR workflow. The workflow starts with
a document image containing tables. The table detection process identifies
the table’s regions, and the structure detection process determines the rows
and columns within each table. The cell construction process uses the rows
and columns bounding boxes to determine the cell locations. Finally, post-
processing is applied to generate the HTML representation of the table based
on the cell locations.

Despite being presented in Figure 3.4, not all TSR models present post-
processing for converting the table to HTML. Also, TSR models output can
be a wide different of markup format, such as XML or LaTeX (GÖBEL et
al., 2013; LI et al., 2019). The output format varies depending on the model
implementation or according to task needs, given that one format can easily
converted to the other.

3.5
Large Language Models

LLMs represent a significant advancement in NLP, as evidenced by their
deep neural network architectures with a large number of parameters. These
models are trained on massive datasets of unlabeled text, primarily utilizing
self-supervised or semi-supervised learning techniques to predict the next
word in a sequence based on the context provided (ABDULLAH; MADAIN;
JARARWEH, 2022).

The Transformer model inspires the architecture of LLMs (VASWANI
et al., 2017), which introduced the concept of an attention mechanism. This
mechanism enables the model to assign different weights to various segments
of the input text, thereby enhancing its ability to focus on the most relevant
information during both the encoding and decoding processes. Unlike tradi-
tional linear sequence processing methods, the attention mechanism allows the
model to evaluate the significance of different positions in the input, enabling a
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more nuanced representation of each position through a weighted aggregation
of other input positions.

In addition to the attention mechanism, Transformer introduced the
concept of a context window. This concept defines the maximum range of
information that the model can directly process. A larger context window
enables the model to consider a broader context, facilitating in-context learning
(DONG et al., 2022) and more informed predictions. Conversely, a smaller
context window limits the model’s ability to capture long-range dependencies,
potentially hindering performance on tasks requiring extensive contextual
understanding (LI et al., 2024).

The number of parameters in an LLM is an important aspect of its
design, directly correlating with the model’s complexity and ability to process
data. Models with a higher parameter count, such as those with 70 billion
parameters, are capable of learning intricate relationships between words
and phrases in the training data. However, this increased complexity also
comes with greater computational demands for both training and deployment
(DESAI, 2024).

Despite their capabilities, LLMs are not without limitations. One key
challenge is that these models reflect the data they were trained on. This can
lead to issues such as the temporal generalization problem, where the model
struggles to handle facts that change over time, and the factual grounding
problem, where it fails to capture specific facts accurately. Additionally, LLMs
are prone to generating inaccurate information, commonly referred to as
hallucinations or fabulations (ZIEGLER; BERRYMAN, 2023). To mitigate
these issues, users can fine-tune the model with additional training examples
or use few-shot learning techniques to guide the model toward generating more
accurate and contextually appropriate outputs.

3.5.1
Prompt

A prompt is a natural language query provided by the user to guide a
LLM in generating a specific response or performing a task. The LLM responds
by predicting the most appropriate sequence of tokens—groups of letters or
words—that align with the instructions in the prompt, utilizing the knowledge
it has learned from its training data.

A prompt can include several key components, such as an instruction,
which defines the specific task or command that the model is expected to
perform; context, which provides additional information or background to help
the model generate a more accurate response; input data, which represents
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the question or data for which the user is seeking an answer; and an output
indicator, which specifies the desired format or type of the model’s response
(SARAVIA, 2022).

3.5.2
Prompt Engineering

Prompt engineering involves designing text inputs that an LLM model
can accurately interpret and respond to. This process provides an effective
way for users to interact with LLMs (BROWN et al., 2020). In addition
to enhancing user interaction, prompt engineering is employed to improve
the security and functionality of LLMs. It helps to mitigate hallucinations,
integrate domain-specific knowledge, and incorporate external tools into the
models.

Various techniques are employed in prompt engineering, including Zero-
shot learning, Few-shot learning, and Chain-of-Thought prompting. Zero-shot
learning refers to a model’s capability to perform a task without prior specific
training on that task (RADFORD et al., 2021). This approach is advantageous
because it enables models to handle new tasks or scenarios without requiring
extensive retraining, enhancing their adaptability and efficiency across a wide
array of tasks. In the context of LLM prompts, Zero-shot prompting involves
using a prompt that lacks examples or demonstrations. Essentially, the prompt
directly instructs the model to carry out a task without providing additional
guidance.

Although large language models exhibit impressive zero-shot capabilities,
they often struggle with more complex tasks when relying solely on zero-
shot prompts. To address this, the few-shot prompting technique can enhance
contextual learning. By including examples within the prompt, the model
is guided towards improved performance, with these examples serving as a
conditioning mechanism for generating desired outputs (BROWN et al., 2020).

However, the few-shot prompting face difficulties with complex tasks such
as arithmetic or commonsense reasoning, even when provided with a large
amount examples. In this way, the Chain of Thought (CoT) technique involves
adding multiple example solutions to the LLM’s prompt, allowing the model to
break down complex problems into intermediate steps. By providing a logical
sequence of reasoning, CoT helps guide the model in producing more accurate
and coherent responses (WEI et al., 2022).
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3.6
OpenAI Models

OpenAI is a company dedicated to AI research and deployment, focusing
on developing generative models through deep learning. This technology
leverages large datasets to train AI systems for specific tasks. OpenAI’s text
models are language processing tools capable of text generation, classification,
and summarization. Their research on generative models also encompasses
image and audio processing (OPENAI, 2024a).

The company offers several generative models through the OpenAI API.
Among those models, we have the Generative Pre-Trained Transformer (GPT)
family, which has different capabilities and prices. Within the GPT family,
there are two most relevant models — GPT-3.5 Turbo and GPT-4 Turbo. The
GPT-3.5 Turbo model can understand and generate natural language or code
for simple tasks. The GPT-4 Turbo is a large multimodal model that processes
text or image inputs and generates text outputs. It can tackle complex
problems with higher accuracy than its predecessors, owing to its expanded
general knowledge and enhanced reasoning abilities (OPENAI, 2024b).

In May 2024, OpenAI launched the GPT-4o, their most advanced multi-
modal model. The model has the same GPT-4 reasoning abilities but is faster
and has the best vision and multi-language performance across the other mod-
els from the company. In July 2024, OpenAI launched the faster and cheaper
version of GPT-4o, the GPT-4o mini, being cheaper and more efficient than
GPT-3.5 Turbo (OPENAI, 2024b).

Table 3.1: Characteristics of some GPT models available on OpenAI API,
priced in dollars per million tokens. Data obtained in August 2024.

Model Context Window Knowledge
Cut Off

Input
Prices

Output
Prices

GPT-3.5 Turbo 16,385 tokens Sep 2021 00.50 01.50
GPT-4 Turbo 128,000 tokens Dec 2023 10.00 30.00
GPT-4o 128,000 tokens Oct 2023 05.00 15.00
GPT-4o mini 128,000 tokens Oct 2023 00.15 00.60

In addition to the difference in price and performance, the models present
differences in the number of tokens processed at input and the knowledge cut-
off for training data. Table 3.1 summarizes some characteristics of the models
available, such as the number of tokens in context windows, the training data
range, and prices (U$) per million of tokens as input and output.
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3.7
Anthropic Models

Anthropic is an AI safety and research company focused on developing
artificial intelligence systems aligned with human values that can be controlled
safely. The company emphasizes creating AI that benefits society while mini-
mizing risks associated with advanced AI technologies (ANTHROPIC, 2024a).

The company offers the Claude family models, named after Claude
Shannon, a foundational figure in information theory. The Claude models
are designed to be general-purpose assistants with strong natural language
understanding and generation capabilities. In the most recent version (version
3), they presented three models with different capabilities and prices.

The first is Claude 3 Haiku, the fastest and cheapest model for simple
tasks that need in-instant responsiveness. The second one is Claude 3 Sonnet,
a model with a balance of intelligence and speed, ideal for moderately complex
tasks. The last one is Claude 3 Opus, the most expensive and powerful model
ideal for highly complex tasks (ANTHROPIC, 2024b).

In June 2024, the Anthropic released Claude 3.5 Sonnet, a new optimized
version of the Claude 3 Opus, bringing better reasoning capabilities, latency, vi-
sion performance, and natural language understanding (ANTHROPIC, 2024c).

Table 3.2: Characteristics of the Claude 3 models series available on Anthropic
API, priced in dollars per million tokens. Data obtained in August 2024.

Model Context
Window

Knowledge
Cut Off

Input
Prices

Output
Prices

Claude 3 Haiku 200,000 tokens Aug 2023 00.25 01.25
Claude 3 Sonnet 200,000 tokens Aug 2023 03.00 15.00
Claude 3 Opus 200,000 tokens Aug 2023 15.00 75.00
Claude 3.5 Sonnet 200,000 tokens Apr 2024 03.00 15.00

As mentioned previously, the models have different capabilities and
prices. Table 3.2 summarizes these characteristics, showing the size of the
context window, knowledge cut-off of training data, and the input and output
price per million of tokens.

3.8
DeepMind Models

DeepMind is a leading AI research company known for pioneering ar-
tificial intelligence and machine learning work. Acquired by Google in 2015,
DeepMind focuses on developing advanced AI systems that can learn and solve
complex problems, often with applications in healthcare, energy efficiency, and
gaming (DEEPMIND, 2024).
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Nowadays, DeepMind is a fusion of old DeepMind and Google Brain’s,
a research team within Google focused on artificial intelligence and deep
learning. Established in 2011, it combines machine learning research with
large-scale computing resources to advance the field of AI. Google Brain has
contributed to key innovations in natural language processing, computer vision,
and reinforcement learning, powering many of Google’s AI-driven products and
services (DEEPMIND, 2024).

The company has different deep learning models for distinct areas, such as
computer vision, game agents, speech models, and generative models. Within
the generative models, specifically language models, in December 2023, the
company released the Gemini multimodal models family — the most capable
and general model they ever built. This model family comes in three different
sizes — Nano, Pro, and Ultra — designed for tasks with different degrees of
complexity (TEAM et al., 2024a).

In February 2024, DeepMind launched the new version of the Gemini
family, Gemini 1.5. The new version was built on Gemini 1.0 with signifi-
cantly enhanced performance. It features a new Mixture-of-Experts (MoE)
(SHAZEER et al., 2017) architecture, making it more efficient in training and
operation. The model supports a vast context window of up to 1 million tokens,
allowing it to process extensive data, such as long documents or videos, with
improved accuracy. Gemini 1.5 Pro, the first version released, excels in com-
plex reasoning, multimodal understanding, and in-context learning, setting a
new benchmark in AI capabilities (TEAM et al., 2024b).

Table 3.3: Characteristics of the Gemini models family available on Vertex
API, priced in dollars per million tokens, obtained in August 2024.

Model Context
Window

Knowledge
Cut Off

Input
Prices

Output
Prices

Gemini 1.5 Flash 1,000,000 tokens Nov 2023 0.075 00.30
Gemini 1.5 Pro 1,000,000 tokens Nov 2023 3.509 10.50

Despite the various size options offered in the initial version, only two
versions of Gemini 1.5 –– Gemini 1.5 Pro and Gemini 1.5 Flash –– are accessible
through an API. These models are utilized via the Vertex AI API, which is
a platform that facilitates the availability and management of AI models in
Google’s cloud. Table 3.3 provides a summary of the main characteristics of
these two models, including the context window size and the input and output
prices USD per million tokens.
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3.9
Meta AI Models

Meta AI is the artificial intelligence research and development arm
of Meta. It focuses on advancing AI technologies across various domains,
including natural language processing, computer vision, and robotics. Meta
AI aims to build AI systems that can understand and interact with the world
like humans (AI@META, 2024a).

The Large Language Model Meta AI (LLaMA) is a series of open-source
foundation language models developed by the company. The first version of
the series was released with a range from 7 billion to 65 billion parameters,
offering strong performance across various natural language processing tasks
while requiring significantly fewer computational resources compared to larger
models (TOUVRON et al., 2023).

This model collection has undergone several improvements and evolutions
since its launch. In April 2024, the company released version 3 of the model
collection, bringing optimizations to the architecture and better task execution
performance, with 8 and 70 billion parameters (AI@META, 2024b). In July
2024, version 3.1 of the collection was released, with a larger context window
and further improvements to the reasoning capacity. Among the models
released in this version, we had the open source model with the largest number
of parameters, LLaMA 3.1 405 billion parameters (DUBEY et al., 2024).

Model Context Window Knowledge
Cut Off

LLaMA 3 8B 8,000 tokens Mar 2023
LLaMA 3 70B 8,000 tokens Dec 2023
LLaMA 3.1 8B 128,000 tokens Dec 2023
LLaMA 3.1 70B 128,000 tokens Dec 2023
LLaMA 3.1 405B 128,000 tokens Dec 2023

Table 3.4: Characteristics of the LLaMA models collections.

Table 3.4 summarizes the relevant information about the recent collection
versions, such as the model knowledge cut-off and the context window size. As
these are open-source models, we do not have a specific service for consumption,
therefore we do not have pricing information.

3.10
Mistral AI Models

Mistral AI is a cutting-edge artificial intelligence company focused on
developing advanced language models. It aims to push the boundaries of
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AI by creating models that are highly efficient, powerful, and capable of
understanding and generating human-like text across various applications (AI,
2024b).

The company has several language models, ranging from open source to
commercial, with different sizes, capabilities, and objectives. Among the main
open source models, include Mistral 7B, a highly efficient 7-billion parameter
model designed for strong performance in text generation and understanding
(JIANG et al., 2023), and Mistral-8x22B, a mixture-of-experts model with
8 experts, each containing 22 billion parameters. The latter dynamically
activates relevant experts for each task, offering powerful capabilities with
optimized computational efficiency (AI, 2024a).

Model Context Window Knowledge
Cut Off

Mistral 7B 8,000 tokens Aug 2021
Mistral-8x22B 64,000 tokens -

Table 3.5: Characteristics of the Mistral main open source models.

The Table 3.5, condenses the relevant information about the two models.
As these are open-source models, the information available is only related to
the context window size and the knowledge cut-off. Despite providing open
weights models, free for local deployment, Mistral AI offers a cloud API to
consume the models, billing per million of input and output tokens.

3.11
LangChain

LangChain is a framework for developing applications powered by lan-
guage models. This framework supports the development of applications with a
context-awareness approach by linking a language model to different sources of
context, such as prompt instructions, few-shot examples, or additional content,
the application can ground its responses appropriately (LangChain, 2024).

The main feature of LangChain is its capability to easily trigger an LLM
with a given input. For example, Code 1 shows how to import the model API
wrapper, configure the parameters, and invoke the model to get a response.

Code 1: Example of Using LangChain to Invoke the Gemini Model API
1 from langchain_google_genai import ChatGoogleGenerativeAI
2

3 llm_model_name = "gemini -1.5 - flash -001"
4 l lm = ChatGoogleGenerativeAI (
5 model=llm_model_name ,
6 temperature =0,
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7 max_tokens=None ,
8 t imeout=None ,
9 max_retr ies=2

10 )
11

12 message = [ ( " human " , "Tell me a history about the origin of documents ." ) ]
13 re sponse = llm . invoke ( message )
14

15 p r i n t ( re sponse . content )

Although the provided example is basic, real-world applications often
involve interactions with the LLM, where each step’s intermediate results
require logical processing before proceeding to the next step. This sequence of
linked interactions is referred to as chains. Chains typically involve integrations
with multiple components, such as model providers, data storage systems, and
APIs. These modules can be combined to create more complex applications or
used individually for simpler tasks.

LangChain is useful for developing applications like personal assistants,
chatbots, and document-based question-answering systems. It can also sum-
marize extensive documents, extract structured information from unstructured
text, and query tabular data.

In this chapter, we introduce the key concepts necessary for a thorough
understanding of the work. We begin by explaining the task to which our
annotation process will be applied for the generation of the annotated dataset.
Next, we cover concepts related to document image processing, such as OCR,
DLA, and TSR, which enable the creation of machine-readable representations
of each image. Finally, we present the tools and concepts relevant to the
understanding and use of LLMs, highlighting the models from the major
manufacturers utilized in this work. In the next chapter, we will present the
proposed method, which builds upon all the concepts discussed so far.



4
Proposed Process

This chapter describes this work’s core, a Data Annotation Approach Us-
ing Large Language Models. The process is composed of three stages: (i) Tran-
scription, (ii) Question-Answer Generation, and (iii) Question-Answer Judg-
ment. The transcription stage generates a textual representation of document
files and feeds an LLM to generate QA tuples in the second stage. Finally, the
same transcription and the generated QA tuples feed another LLM to select
the valid tuples to compose the dataset. Figure 4.1 depicts this process, and
each of its steps is described in the next paragraphs.

Figure 4.1: Proposed process Overview.

The proposed process starts with the Transcription Stage, where we
perform an image extraction by receiving a document file as input and
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extracting the desired pages. These pages are used as a set of images for the
next steps. After image extraction, we apply an OCR tool to detect the textual
content of the document image and transcribe it.

The DLA step uses an object detection model to detect the structure
of a document page. In general, object detection models can identify which
objects from a known set are present in the image and provide information
about their position. In our case, the objects are document segments, such as
tables, images, section headers, etc. Therefore, the DLA model is responsible
for returning the bounding boxes of the segments present in the image. We
can isolate and extract the table images with these bounding boxes to feed the
next step.

In the TSR step, a second object detection model is applied to identify
and segment table structures. The model identifies its rows and columns
bounding boxes for each table, constructing the concept of cells from the
intersection of bounding boxes of both elements. Next, a second algorithm
is used to convert these bounding boxes into the corresponding HTML code.

Concluding the Transcription Stage, we obtain the transcription of the
document image provided as input. This transcription feeds the LLM in the
Question-Answer Generation stage as a reference for proposing questions and
constructing answers.

Finally, the objective of the Question-Answer Judgment stage is to ensure
that the generated questions and answers are coherent and correct, filtering out
possible hallucinations from the generating model and increasing the quality
of the final dataset.

The methodology is organized as follows: first, we report the steps
taken for data acquisition. Next, we present the process of selecting the OCR
tool, DLA, and TSR models. We then discuss the selection of LLM and the
construction of prompts for the Question-Answer Generation Stage. Finally, we
explain the selection of LLM and the construction of prompts for the Question-
Answer Judgment Stage.

4.1
Data Acquisition

Databases are fundamental for the development and validation of ma-
chine learning models. To validate the proposed process in this research, we
collected public documents to compose our database.

Given the diversity of available public documents, we chose to focus
on documents from the financial domain. In this domain, the CVM requires
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companies to publish documents related to financial statements, social impact
factors, and the opinions of the fiscal council.

These documents are published at two distinct intervals — quarterly
and annually — resulting in at least five different documents per year. Given
the number of listed companies and the volume of available documents, we
limited the scope of this work to the annual financial statements of the 100
publicly traded companies with the highest trading volume on the Brazilian
stock exchange.

Thus, we collected 937 financial statements from these 100 companies,
covering 2015 to 2023. Due to the large volume of pages, which do not contain
any annotations or metadata regarding transcription or layout, only a random
subset of document pages was used to conduct the experiments presented in
the following sections.

4.2
Transcription

In this stage we will describe all the steps needed to extract the textual
representation of the document that will serve as input for the following stages.
We will start with OCR step, followed by DLA and finally TSR.

4.2.1
Optical Character Recognition (OCR)

In this step, we processed the documents collected in Section 4.1 using an
OCR tool, which transcribed the text from each document page and provided
bounding boxes with the coordinates of each detected word.

This step is crucial because the extracted text is used as input for the
next steps of this methodology, specifically in Sections 4.2.3, 4.3 and 4.4.
Therefore, detection failures or transcription errors could compromise the
entire annotation process.

Due to its importance and the lack of annotated data to train and eval-
uate open-source OCR tools, we selected the commercial OCR tool Microsoft
OCR V4.1 This choice was based on the work of Santos, Silva e Reis (2023),
who compared various OCR tools using a diverse set of images containing text
in Brazilian Portuguese. Their tests showed that the Microsoft model outper-
formed all other evaluated models, delivering solid results even with different
backgrounds and text rotation levels.

1https://azure.microsoft.com/en-us/products/ai-services/ai-document-intelligence
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4.2.2
Document Layout Analysis (DLA)

In this step, we applied a DLA model on the extracted images of
each document page to segment paragraphs, images, and tables. The output
consisted of bounding boxes for the identified regions and their respective
classes.

After segmentation, we stored the identified regions in a data structure
that retained both the bounding boxes and the detected class. This struc-
ture also stored each region’s positional information and the textual content
detected by the OCR tool within the segmented areas.

To determine whether a text lies within a specific region, we used the
intersection between the bounding boxes of the text and the segmented region.
Let BT represent the bounding box of the text and BR the bounding box
of the segmented region. The intersection between BT and BR is denoted
as I(BT , BR). To assess whether the text is contained within the segmented
region, we calculated the intersection over union (IoU) coefficient, defined as:

IoU(BT , BR) = I(BT , BR)
A(BT ) + A(BR) − I(BT , BR)

in which A(BT ) and A(BR) represent the areas of the bounding boxes BT and
BR, respectively. If IoU(BT , BR) ≥ 0.9, we considered the text part of the
corresponding segmented region. In such cases, the text was linked to that
segment and not assigned elsewhere.

This segmentation and data structure construction process could be
performed by any DLA model. Given the variety of available DLA models,
we selected models from the literature and conducted experiments to choose
the best one, which we describe in more detail in Section 5.1.

4.2.3
Table Structure Recognition (TSR)

The TSR step is responsible for generating a viable textual representation
to be used as input prompts for the LLM, as outlined in Sections 4.3 and 4.4.
This recognition is applied to regions identified and classified as tables by the
layout analysis stage (Section 4.2.2).

The recognition process uses a detection model to identify the table’s cell
structure, including horizontally and vertically merged cells, and returns their
respective bounding boxes. The detection results are then transformed into
HTML code, which is populated with textual tokens using the IoU method,
similar to the approach described in the DLA stage (Section 4.2.2).
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This table structure recognition process can be performed by any TSR
model. Given the variety of TSR models available, we selected models from
the literature and conducted experiments to determine the best option. These
experiments are further detailed in Section 5.2.

4.3
Question-Answer Generation

In this stage, the selected LLM receives as input, the generation instruc-
tions, document transcription with positional markers and tasked with gener-
ating three question-answer tuples using only the information available in the
transcription.

Figure 4.2: Overview of the steps taken to generate the questions and answers.
Figure 4.2 outlines the steps required to generate each QA tuple. The

first step uses a system prompt, providing detailed instructions on how to
execute the task. These instructions include the coherence standards the model
should follow, rules for using relative pronouns, the number of desired tuples,
the focus area, and the key elements to include in the output. The prompt also
provides positive and negative examples to guide the generation process.

The second prompt contains the transcribed document, resulting from
the Transcription stage, described in Sections 4.2.1, 4.2.2 and 4.2.3. Positional
markers are inserted into the transcription to standardize the output and
reduce the randomness inherent to LLM models.

In this way, the expected output of this stage is a textual format divided
into three parts:

QUESTION | ANSWER | TEXT REGION

The first and second parts correspond to the QA tuple generated by the
model. The third part is the positional marker, following the established format
based on the text region used for question and answer generation. The prompt
used for QA tuples generation is detailed in Appendix section 8.1.
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4.4
Question-Answer Judgment

In this stage, the chosen LLM was fed the document transcription, and
the three QA tuples were generated during the Question-Answer Generation
Stage to evaluate the coherence of the questions and the correctness of the
answers.

Figure 4.3: Overview of the steps taken to judge the questions and answers.

Figure 4.3 outlines the steps required to judge each QA tuple. The first
part contains the necessary instructions for the task. It begins with an overview
of the task, setting the standards the model should follow. Next, the specific
criteria for evaluating the questions and answers are presented. Unlike the
generation stage, the document transcription is provided without positional
markers.

The following parts are used for the direct evaluation of the QA tuples.
The process is divided into two calls to the LLM. The first call evaluates the
coherence of the question, considered coherent if the questions comply with
the correct use of the grammatical rules of the Portuguese language and have
only one answer. The second call evaluates the answer to see if it answers the
question.

Since each QA tuple is evaluated individually, the process described is
carried out in 3 iterations per document page. The expected output for each
iteration is binary, confirming or denying the coherence of the question and
the validity of the provided answer. The prompt used for QA tuples judgment
is detailed in Appendix Section 8.2.



5
Experiments

In this chapter, we describe the experiments conducted, following the flow
of the proposed process. We begin with the experimentation of the transcrip-
tion stage, where we evaluated available Document Layout Analysis (DLA)
models from the literature using a dataset created during this study. Next, we
assessed open-source Table Structure Recognition (TSR) models, testing them
on four different datasets to measure their generalization capabilities.

After the transcription stage, we proceeded to evaluate various LLMs for
the question and answer generation stage. Finally, we assessed more robust
LLMs for the QA tuple judgment phase.

5.1
Document Layout Analysis (DLA)

This section describes the experiments conducted to determine the DLA
model used in this work. Additionally, we outline the process of creating the
dataset and the metric employed for model evaluation. Finally, we present the
results for each evaluated model and define the best model we found for the
proposed process.

5.1.1
Dataset

To evaluate the DLA models, we constructed an annotated dataset based
on the DocLayNet dataset (PFITZMANN et al., 2022a), which we selected due
to its similarity to the domain of the documents used in our work. Additionally,
DocLayNet offers a wide range of document layouts with varying levels of
complexity.

For the validation dataset, we randomly selected 990 pages from the
financial statements of different companies. We prioritized the central pages of
these statements, which typically contain text, tables, and images.

Each selected page was annotated individually by two annotators, follow-
ing the same criteria used in the construction of DocLayNet (PFITZMANN
et al., 2022b). Both annotators reviewed each other’s annotations to improve
consistency.

Table 5.1 presents the number of elements for each annotated class.
The most common class is Text, as these documents are highly narrative,
containing many paragraphs of explanations. The second most frequent class
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Table 5.1: Annotated instances per class in constructed evaluation dataset for
DLA step.

Class Instances
Text 4993
Page-header 3478
Section-header 2008
Page-footer 1539
List-item 1121
Table 986
Picture 439
Caption 239
Footnote 29
Title 5
Formula 0

is Page-header, since every page includes information such as the company’s
name, publication date, and report version. The third, fourth, and fifth most
frequent classes are Section-header, Page-footer, and List-item, which reflect
the structured way companies present information by segmenting content into
sections and using lists. The Page-footer class typically includes logos or page
numbers.

The less frequent classes are Tables, Pictures, and Captions. Despite the
low occurrence of Tables, this class is crucial for our work. The Picture class
is more complex, as it involves detecting all visual elements such as charts,
infographics, and illustrations. Captions are closely related to Pictures, as they
provide titles or descriptions for images in the documents.

Finally, the Footnote and Title classes are nearly absent, justified by the
common structure of financial documents, using few footnotes and presenting
titles only on the first pages. The Formula class had no occurrences, as this
category is more common in technical or scientific materials.

5.1.2
Metrics

To evaluate the models, we used the Mean Average Precision (mAP), a
standard metric for assessing object detection and segmentation models. For
each class, the Average Precision (AP) was calculated, representing the area
under the precision-recall curve. The mAP is the average of the APs across all
classes, offering a comprehensive view of the model’s performance, crucial in
benchmarks like COCO and PASCAL VOC (EVERINGHAM et al., 2010).
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5.1.3
Models Selection

The model selection was based on two main criteria. First, we searched
for DLA models trained on the DocLayNet dataset. Second, we required the
model to be open-source, allowing access to its weights for evaluation and
modification.

Four models were selected for evaluation, each with unique features for
document layout segmentation. The first was SwinDocSegmenter, a model
based on the Swin Transformer, using deformable attention and contrastive
denoising strategies for precise segmentation (BANERJEE et al., 2023). The
second model, RoDLA, combines the DINO architecture (ZHANG et al., 2022)
with attention channels, designed for robust layout analysis across various
document types (CHEN et al., 2024). The remaining models, Malaysia-AI
(Malaysia-AI, 2024) and Maik Thiele (Maik Thiele, 2024), are adaptations of
YoloV8 for layout segmentation, focusing on agility (JOCHER; CHAURASIA;
QIU, 2023).

Table 5.2: mAP performance for each class and model on constructed dataset.
The best performance is formatted in boldface.

Class RoDLA Malaysia-AI SwinDocSegmenter Maik Thiele
Caption 0.302 0.015 0.067 0.127
List Item 0.860 0.741 0.676 0.642
Picture 0.749 0.413 0.569 0.524
Text 0.979 0.910 0.776 0.901
Footnote 0.735 0.486 0.345 0.254
Page Footer 0.911 0.446 0.621 0.435
Section-header 0.776 0.490 0.391 0.346
Title 0.007 0.015 0.003 0.003
Formula - - - -
Page Header 0.870 0.476 0.485 0.447
Table 0.975 0.955 0.899 0.906
All 0.716 0.495 0.483 0.459

All models were evaluated using the constructed dataset, measuring
both mAP and execution time. Table 5.2 shows the mAP performance for
each class. RoDLA achieved the highest overall performance, likely due to
its design for handling diverse document types and perturbations. While
optimized for speed, Malaysia-AI performed well in most classes, particularly in
detecting tables and text. Despite using the same architecture as Maik Thiele,
Malaysia-AI’s superior performance resulted from different data augmentation
techniques adopted during the model training. SwinDocSegmenter, although
computationally demanding, showed lower performance than Malaysia-AI,
which can run efficiently on CPU.
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Table 5.3: Size and average time cost for each model to segment 990 images
on the constructed dataset.

Models Parameters Avg Time Cost
RoDLA 338.9M 1.27 ± 0.01

SwinDocSegmenter 213.3M 0.87 ± 0.01
Malaysia-AI 68.1M 0.35 ± 0.03
Maik Thiele 68.1M 0.33 ± 0.03

Table 5.3 details the execution time required to process 990 images on a
Tesla T4 GPU with 15 GB VRAM. RoDLA, despite its superior segmentation
performance, had the slowest throughput, likely due to its larger model size
and feature extraction process. Malaysia-AI and Maik Thiele demonstrated the
fastest throughput, benefiting from the low latency of the YoloV8 architecture
(JOCHER; CHAURASIA; QIU, 2023).

In conclusion, RoDLA is the best choice for DLA task, given the
importance of accurate layout segmentation in this research. Despite its higher
execution time, RoDLA’s superior ability to identify various document regions
ensures more precise segmentation, making it the ideal model for this task.

5.2
Table Structure Recognition (TSR)

In this section, we present the experiments conducted to select the TSR
model used in the proposed process. Additionally, we outline the datasets and
metrics used for evaluation. Finally, we present the results and the selected
model.

5.2.1
Datasets

Building a specific dataset for model evaluation would be unfeasible due
to the high time cost associated with data annotation and refinement. This cost
arises from the need to complete three distinct tasks: 1) marking the bounding
boxes of columns and rows; 2) transcribing the table text; and 3) creating the
HTML structure.

Thus, four distinct datasets were selected for TSR task evaluation. The
first, PubTabNet, contains about 500,000 table images along with their HTML
equivalents for the structural recognition of tables (ZHONG; SHAFIEIBA-
VANI; YEPES, 2020). FinTabNet, which specializes in financial documents,
offers annotated data for table extraction and conversion to HTML, focusing
on the unique challenges of this document type (ZHENG et al., 2021). Finally,
we modified the ICDAR 2013 Table Competition dataset, used as the bench-
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mark, was modified for this work by converting its ground truths from XML
to HTML to match the format of the other selected datasets (GÖBEL et al.,
2013).

5.2.2
Metric

We used a variant of the Tree-Edit-Distance-based Similarity (TEDS)
proposed by Zhong, ShafieiBavani e Yepes (2020) to measure the table extrac-
tion model performance. The original TEDS calculates the distance between
the ground truth table tree and the predicted one. In this process, the metrics
consider the alignment between the markup and textual content of the table.

The similarity between the two tables is evaluated using tree-edit dis-
tance, as proposed by Pawlik and Augsten (PAWLIK; AUGSTEN, 2016). In-
sertion and deletion operations have a cost of 1. The substitution cost is 1 if
at least one node is not a table data node. For table data nodes, the cost is 1
if their column or row spans differ; otherwise, it is the normalized Levenshtein
similarity (LEVENSHTEIN et al., 1966) between their contents. The TEDS
computed between two trees is

TEDS(Ta, Tb) = 1 − EditDist(Ta, Tb)
max(|Ta|, |Tb|)

where EditDist denotes tree-edit distance, and |T| is the number of nodes
in T. The table recognition performance is assessed by calculating the mean
tree-edit distance similarity score between the recognition result and ground
truth for each sample (ZHONG; SHAFIEIBAVANI; YEPES, 2020).

To ignore errors that come from text transcription, Qiao et al. (2021)
proposed the TEDS-Struct, a modification in the use of the TEDS metric,
which evaluates only the final HTML structure of the table, ignoring the
accuracy of the textual content. Therefore, for this work we adopt TEDS-
Struct to evaluate TSR models performance.

5.2.3
Model Selection

To select the TSR models evaluated in this work, we searched for open-
source models that could perform table-to-HTML conversion from table im-
ages. Four models were selected for evaluation: 1) Table Transformer (TATR);
2) MLT-TabNet; 3) Table Master and 4) Local and Global Pyramid Mask
Alignment (LGPMA).

The TATR, a transformer-based model developed for table detection and
structural recognition. It comes in two versions: All and Fin. The All version
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is trained on over 1 million tables, featuring diverse styles and formats, while
the Fin version is specifically trained on financial documents using a modified
version of the FinTabNet dataset (SMOCK; PESALA; ABRAHAM, 2022).

MLT-TabNet combines computer vision techniques with a Transformer-
based encoder-decoder architecture for cell detection, text transcription, and
table structure extraction (LY; TAKASU, 2023). TableMaster adopts an end-
to-end approach for table extraction and HTML conversion, integrating image
processing with natural language processing (YE et al., 2021). Lastly, LGPMA
stands out for its ability to segment complex tables in diverse documents using
a spatial attention-based approach (QIAO et al., 2021).

The models were evaluated using the four datasets mentioned earlier,
allowing us to assess their generalization capabilities. This approach provided
a comprehensive analysis of each model’s ability to handle various document
types and table structures.

Table 5.4: TEDS-Struct performance by model on each dataset. The best
performance is formatted in boldface.

Model FinTabNet PubTabNet ICDAR 2013
TATR All 0.92 0.93 0.94
TATR Fin 0.92 0.88 0.91
MLT-TabNet 0.97 0.90 0.91
TableMaster 0.80 0.97 0.90
LGPMA 0.41 0.96 0.91

Table 5.4 shows the results for each tested model. While no model out-
performs all others across all datasets, TATR All and MLT-TabNet demon-
strated the best generalization abilities. Among these two top-performing mod-
els, TATR All showed the best performance on the ICDAR 2013, our bench-
mark dataset.

The results indicate that models trained on the FinTabNet dataset have
a greater capacity for generalization. This is likely due to the dataset’s com-
plexity and variety of examples, featuring different degrees of customization.
This contrasts with PubTabNet, which only includes tables from scientific pub-
lications.

The second factor evaluated was the execution time. Table 5.5 shows the
time required to process 258 tables from the benchmark dataset on a Titan
V GPU with 12 GB VRAM. TATR outperformed the other models in speed,
extracting the structure faster because it does not transcribe the text within
each table cell. However, it uses the output of the OCR performed previously
to fill in the text of each cell quickly.
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Table 5.5: Average time cost for each model to extract the structure of 258
tables.

Model Avg Time Cost
TATR All 0.12 ± 0.03 s
TATR Fin 0.12 ± 0.01 s
LGPMA 0.26 ± 0.02 s
MLT-TabNet 4.70 ± 0.03 s
TableMaster 8.30 ± 0.04 s

Models that handle both structural recognition and text transcription,
such as MLT-TabNet and TableMaster, were the slowest. Their slower speed
is due to the number of tasks they execute, including detection, transcription,
and HTML conversion.

Given its extraction performance and high execution time, TATR All is
the best model for this work. It demonstrated strong generalization abilities,
performing well across all datasets tested. Moreover, it was the fastest model
with low latency. Besides the temporal tests executed on GPU, TATR is the
only model capable of maintaining similar execution time on CPU, further
demonstrating its superior performance.

5.3
Question-Answer Generation

This section outlines the criteria for selecting the LLMs used in the
Question-Answer Generation stage. We also describe the datasets utilized
during the experiments and present the results for each model.

5.3.1
Model Selection

We selected models based on cost-benefit for the Question-Answer Gen-
eration stage, considering the token usage required to complete the task. This
stage generates the highest number of output tokens, making it the primary
source of costs. On average, the document transcriptions and task instructions
need on average 3, 471(±1080) input tokens, while the question, answer, and
positional marker generate on average 170(±36) output tokens.

Figure 5.1 illustrates the quality and cost in USD per million tokens for
the main available models. The prices reflect a blended rate, assuming a 3:1
ratio of input to output tokens. Quality is presented as an average result across
the MMLU (HENDRYCKS et al., 2020), GPQA (REIN et al., 2023), MATH
(HENDRYCKS et al., 2021), HumanEval (CHEN et al., 2021), and MGSM
(SHI et al., 2022) datasets.
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Figure 5.1: Quality vs Price for the main LLM models available via a pay-per-
use API. The price of each model was collected in August 2024. Adapted from
Analysis (2024).

The models are categorized into four quadrants. The first quadrant
includes models with high quality and high cost per token, suitable for complex
tasks requiring advanced capabilities. The second quadrant features models
with high quality and low cost per token, ideal for simpler tasks and offering
a competitive cost-benefit ratio. The third quadrant comprises models with
reasonable quality and low cost, generally suitable for basic tasks such as
conversation.

Therefore, based on the average amount of tokens necessary for the task
and price versus quality exhibited in Figure 5.1, we chose the models from
the second and third quadrants: GPT-4o mini, LLaMA 3 70B, Mixtral 8x22B,
Gemini 1.5 Flash, and Claude 3 Haiku. However, we excluded LLaMA 3.1 405B
for this stage, because is the better and expensive open-source model that will
be used in the second stage.

5.3.2
Datasets

To conduct the experiments on question generation using LLM, we cre-
ated two datasets: validation and test, each with distinct sizes and objectives.

The validation set, built to be used in the development of prompt and
parameters tuning, consists of 20 pages randomly selected from the collected
documents, described in Section 4.1. The selected pages are not continuous,
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and the information on a page does not necessarily start or end on the same
page.

Table 5.6: Validation and Test dataset page layout samples distribution.

Class Validation Test
Text 0 10
Table 7 94
Mixed (Text + Table) 13 196

Table 5.6 shows the distribution of layouts in the validation set and
test set. Most of the validation dataset consists of pages with varying sizes
and arrangements of text and tables. These pages contain a variety of tables
interspersed with paragraphs that either complement or elaborate on the in-
formation presented. In some cases, the textual content covers topics unrelated
to the table. Pages that contain only tables have different structures, either
showing multiple tables summarizing information from various sections or a
single complex table occupying the entire page, which presents a higher level
of complexity for reading and interpretation.

The test set follows a similar structure to the validation set and was
built to evaluate the proposed process’s generalization capacity. It comprises
300 pages, including mixed pages with text and tables, pages with only tables,
and pages with only text. The distribution is consistent with the validation
set, with the primary difference being the presence of pages containing only
continuous text.

5.3.3
Experimental Setup

In the experiments conducted to assess the generation quality for each
model, we used Langchain to standardize the API calls and output metadata
across all models. For consistency, we set the temperature to zero for all models,
ensuring more deterministic outcomes. All other parameters were kept at their
default settings for each respective model.

5.3.4
Question Variation

The first experiment assessed the distribution of questions based on their
initial 3-grams. The goal was to evaluate the models’ ability to generate diverse
questions.

Figure 5.2 shows the distribution of questions generated for the validation
set. Each level represents the most frequent words, following the natural order
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Figure 5.2: Distribution of questions by their starting 3-grams in the validation
dataset.

of human reading. Thus, the first level corresponds to the first word of the
question, the second level to the second word, and so on. For instance, in the
word distribution generated by Mixtral 8x22B, the most frequent questions
begin with “Qual foi” (“What was”) and “Qual é o” (“What is the”). In the
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second level, empty regions indicate words that are not frequent enough to be
represented in the chart.

Most models managed to use at least three different interrogative pro-
nouns, whereas the Gemini 1.5 Flash model showed less variety, relying heavily
on a more conservative approach to question phrasing.

Figure 5.3: Distribution of questions by their starting 3-grams in the test
dataset.
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In the larger test set, the models exhibited similar behavior. Figure 5.3
shows the question distribution for this dataset. Most models employed at least
five variations of interrogative pronouns. The conservative behavior of Gemini
1.5 Flash persisted, and unlike in the validation set, Claude 3 Haiku showed
limited variation.

Most models favored using “Qual” (“What”) as the interrogative pro-
noun, likely due to its adaptability in various contexts. This pattern aligns
with human-generated questions, as demonstrated by Mathew et al. (2021).
“Quanto” (“how much” or “how many”) was the second most frequently
used pronoun, linked to the prevalence of tables in the selected pages. Lastly,
“Quando” (“when”) and “Quem” (“Who”), though not explored equally by
all models, were employed by GPT-4o mini and Mixtral-8x22B.

Based on the variation in both datasets, GPT-4o mini and Mixtral-
8x22B showed the most promise for question generation. Considering the cost-
performance trade-off, Mixtral-8x22B is the optimal choice, being open-source
and offering strong performance at a lower cost.

Table 5.7: Number of questions generated for each grounded regions.

Validation Dataset Test DatasetModel Text Table Text Table
LLaMA 3 70B 12 48 182 688
Mixtral 8x22B 04 56 122 760
Gemini 1.5 Flash 12 48 125 757
GPT-4o mini 06 54 109 773
Claude 3 Haiku 10 50 089 793

Beyond the initial 3-grams of questions, we evaluated the distribution
of the generated questions comparing table and text regions. Table 5.7 shows
the number of questions generated for each grounded region by model in both
datasets. We can note that all models focus on table regions, respecting the
instruction described in the generation prompt.

5.3.5
Positional Marker Returning

All models were instructed to return to the location of the text where the
answer to the posed question could be found. The prompt provided examples
of the required formatting, which varied depending on the target region of the
question, as detailed in appendix section 8.1. This formatting is crucial for
facilitating human validation.

We evaluated the models based on their ability to follow the formatting
instructions given in the prompt. This evaluation focused on the text in the



Chapter 5. Experiments 52

returned region, disregarding any numerical characters within that area. Below
is a list of valid combinations for the return region:

– For text regions:

– Tn
– Tn1, ..., Tn
– Tn1 - Tn2
– Tn1 and Tn2
– Tn1 to Tn2

– For table regions:

– TABLE n, ROW x1
– TABLE n, ROW x1 and x2
– TABLE n, ROW x1 to x2
– TABLE n, ROW x1 - x2

Table 5.8: Valid regions per QA tuple in validation and test datasets.

Validation TestModel Valid Invalid Valid Invalid
Mixtral-8x22b 60 00 894 06
GPT-4o mini 57 03 899 01
Gemini 1.5 Flash 57 03 894 06
LLaMA 3 70B 46 14 884 16
Claude 3 Haiku 14 46 818 82

Table 5.8 shows the number of valid regions for each model in both
datasets, considering the total number of QA tuples generated. In the valida-
tion set, Mixtral-8x22b performed the best, adhering closely to the instructions
and formatting provided. Following it, GPT-4o mini and Gemini 1.5 Flash
demonstrated similar performance, with only a few formatting errors. At the
bottom, LLaMA 3 70B and Claude 3 Haiku exhibited the most formatting
mistakes, with Claude 3 Haiku standing out as having the highest error rate,
indicating significant issues in meeting the required output format.

In the test set, unlike the validation set, GPT-4o mini performed the
best, followed by Mixtral-8x22b and Gemini 1.5 Flash, both showing similar
performance with few formatting errors. Once again, LLaMA 3 70B and Claude
3 Haiku were the models with the highest rate of formatting errors.

Although there were slight variations in the number of invalid outputs,
the general performance of the models remained consistent. The top three
models — Mixtral-8x22b, GPT-4o mini, and Gemini 1.5 Flash — continued
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to show minimal formatting errors. Meanwhile, LLaMA 3 70B and Claude 3
Haiku maintained their lower performance concerning formatting. For exam-
ples of these formatting errors, read the Appendix section 8.3.

5.3.6
Human Evaluation

To evaluate the quality of the questions and answers generated by the
models, we conducted a human evaluation with 28 voluntary annotators who
were not domain experts.

These annotators were instructed to assess each QA tuple using a web
tool developed specifically for this research. They evaluated the coherence
of the questions, ensuring they were understandable, adhered to Portuguese
language norms, and were free of ambiguity. In addition, if the question was
judged as coherent, they validated whether the answers were correct based on
the information provided in the documents. The validation process was binary:
the annotators responded “yes” or “no” for both criteria. Thus, a question was
considered valid if it was coherent and the answer was correct.

The evaluation was conducted in batches of 40 pages (every page con-
tained 3 tuples of QA), with annotators reviewing each page individually.
Within each batch, 10 pages were evaluated by two additional annotators to
measure inter-annotator agreement. Due to the number of annotators and the
total number of available files, some annotators were responsible for more than
one batch. To maintain consistency and allow the comparison among annota-
tors, each batch was distributed, ensuring an overlap: each batch was evaluated
by at least two distinct annotators.

The average percent inter-annotator agreement is 0.84 (±0.29) for ques-
tion coherence and 0.84 (±0.28) for response accuracy. Appendix 8.4 provides
detailed percent inter-annotator agreement data for coherence and accuracy.
Based on this high level of agreement and the number of annotators, we re-
tained all annotations and used them to validate the models.

Prior to this evaluation task, a longer one was performed but with
one annotator only. This single annotator evaluated a set of 30 pages. This
prior task allowed us to plan the following evaluation task, defining the
strategy employed. As a result, much of the annotation performed by this
single annotator was out of the batches. However, the percent inter-annotator
agreement on average between that single annotator and others was 0.84
(±0.27).

Thus, after validation, we divided the QA tuples into two groups: the
golden dataset, consisting of tuples evaluated by three annotators, and the
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Figure 5.4: Golden and Silver QA datasets construction flow.

silver dataset, containing tuples evaluated by only one annotator, as shown in
Figure 5.4. The golden dataset is more reliable, as the tuples were evaluated
by three annotators, and the question coherence and answer correctness are
given by majority votes.

Table 5.9: Question coherence, answer accuracy, and QA tuples valid propor-
tion for each LLM in the silver and golden datasets.

Question
Coherence

Answers
Accuracy QA Tuples Valid

Model Silver Golden Silver Golden Silver Golden
LLaMA 3 70B 0.87 0.89 0.96 0.97 0.83 0.87
Mixtral-8x22B 0.91 0.89 0.97 0.95 0.88 0.85
Gemini 1.5 Flash 0.88 0.93 0.96 0.91 0.84 0.84
GPT-4o mini 0.87 0.83 0.96 0.97 0.84 0.81
Claude 3 Haiku 0.88 0.85 0.98 0.94 0.86 0.79

Using these datasets, we evaluated the model’s performance in terms
of the proportion of coherent questions and correct answers to the total of
evaluated QA tuples. Table 5.9 presents the performance of models on both
datasets. The results show that LLaMA 3 70B has 0.87 of the tuples generated
in the Silver Dataset that are coherent. Of these coherent questions, 0.96 have
correct answers. Thus, for every model, the final collection of tuples in both
datasets was composed of those tuples for which the question was coherent
and the answer accurate.

Based on the results, the models present a low coherence variation in
the silver dataset, in which Mixtral-8x22B presents the best performance.
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However, the same behavior does not occur in the golden dataset, where for the
GPT-4o mini and the Claude 3 Haiku, the coherence was well below Gemini
1.5 Flash, the best model. Another model that deserves to be highlighted is
LLaMA 3 70B, which presented a good coherence proportion in both datasets
with a low variation between them. In relation to answer accuracy on the
silver dataset, the models presented high performance and low variation. The
performance stayed high on the golden dataset, but the Gemini 1.5 Flash made
more mistakes in the silver dataset, dropping its performance.

Based on the proportion, the Mixtral-8x22B and LLaMA 3 70B proved to
be the best models for the Silver and Golden datasets, respectively. However,
the LLaMA 3 70B performance drops when the model generated more QA
tuples. The opposite is true for Mixtral-8x22B, in which generating more
QA tuples the model’s performance remained stable. The GPT-4o mini and
Gemini 1.5 Flash showed similar behavior to Mixtral-8x22B, maintaining their
respective performance with more QA tuples generated. Finally, the Claude
3 Haiku is the model with the highest variation between the two datasets,
indicating a randomness in its generation process based on the quantity and
variation of pages used to generate questions.

Table 5.10: Number of questions generated for each region type by LLM.

Text TableModel Silver Golden Silver Golden
LLaMA 3 70B 170 12 616 72
Mixtral-8x22b 112 10 686 74
Gemini 1.5 Flash 118 06 674 78
GPT-4o mini 093 16 705 68
Claude 3 Haiku 077 12 721 72

Table 5.11: Number of incoherent questions generated for each region type by
LLM.

Text TableModel Silver Golden Silver Golden
LLaMA 3 70B 23 1 80 08
Mixtral-8x22b 12 0 61 09
Gemini 1.5 Flash 17 0 78 06
GPT-4o mini 06 2 96 12
Claude 3 Haiku 04 0 96 13

Table 5.10 presents the number of QA tuples generated for each region
type by LLM. Each model generated a specific number of QA tuples for the
different region types. The table region received the most focus, as instructed in
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Table 5.12: Number of incorrect answers given for each region type by LLM.

Text TableModel Silver Golden Silver Golden
LLaMA 3 70B 05 0 21 2
Mixtral-8x22b 03 0 19 4
Gemini 1.5 Flash 10 0 17 7
GPT-4o mini 06 1 22 1
Claude 3 Haiku 05 0 06 4

the generation prompt, due to both its complexity and the significant challenge
it poses for the proposed annotation process.

To better understand the values of proportion of valid QA tuples ob-
tained, we check the main mistakes made by each model. Table 5.11 shows the
number of incoherent questions generated according to the region in which it
is grounded. The main problem lies in interpreting the tables to generate a
coherent and unambiguous question. Table 5.12 shows the number of incorrect
answers given to coherent questions. Just like the coherence of the question,
the regions of the table concentrate most of the wrong questions. This problem
is not only related to the table interpretability of each model; errors in recog-
nizing the structure have a direct impact on the model’s capability, as it is the
only representation of the table visualized by LLMs. So, part of the problem
might be inherited from the Table Structure Recognition.

5.3.7
Ablation Test

To understand the impact of each instruction provided in the prompt,
we conducted an ablation test during the question generation stage. The
first test aimed to evaluate the effect of removing explanations on the use
of interrogative pronouns and the resulting variation in their usage. For this
test, we removed the explanations from the prompt and generated QA tuples
using the validation dataset. To better understand the explanations regarding
the use of interrogative pronouns, refer to the Appendix Section 8.1.
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Figure 5.5: Distribution of questions by their starting 4-grams in ablation test
using validation dataset.

Figure 5.5 displays the results of this experiment. We observed that,
without the explanations, the models overwhelmingly favored the use of “Qual”
(What). This indicates that the instruction is crucial for ensuring a diverse set
of interrogative pronouns in the generated questions.

The second test focused on assessing the impact of explanations regarding
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Figure 5.6: Impact of coherence explanation in ablation test, using the valida-
tion dataset.

coherence in Portuguese. This test was performed by removing all coherence-
related instructions, described in the Appendix Section 8.1, from the prompt
and comparing the percentage of coherent questions generated, both with and
without these explanations.

Figure 5.6 illustrates each model’s number of approved QA tuples.
The results indicate that providing coherence-related instructions generally
improves model performance, increasing the proportion of coherent questions.
However, an exception was found with the Claude 3 Haiku model, which
showed an increase in coherence even when no explanation was provided.

5.3.8
Generation Costs

As all models are consumed by a pay-per-use API, we evaluate the total
cost of generation process. To calculate the value, we use the entire test dataset.
Table 5.13 shows the amount of input and output tokens spent. Moreover, the
table contains the value spent in USD to generate the questions.

The most economical model is the GPT-4o mini, which, due to its coding
strategy, represented the input data with a smaller number of tokens. However,
the model generated a large number of tokens in its output, but not enough to
make it more expensive. Next up is Gemini 1.5 Flash, which has a good input
and output encoder. However, the input encoder is not as good as the GPT-4o
mini, requiring more tokens to represent the input, increasing the final cost.

The most expensive models are the LLaMA 3 70B and the Mixtral-8x22B.
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Table 5.13: Number of input and output tokens and total spent to generate 3
questions for 300 pages for each LLM. Final cost calculated based on model
prices in August 2024.

Model Input Tokens Output Tokens Final Cost
GPT-4o mini 905,317 53,189 0.16
Gemini 1.5 Flash 911,450 45,205 0.27
Claude 3 Haiku 1,087,023 53,189 0.34
LLaMA 3 70B 979,342 40,912 0.63
Mixtral 8x22B 1,206,217 51,125 1.64

The LLaMA has a good input and output encoder, but the cost of consuming
the API used makes the process more expensive. On the other hand, Mixtral-
8x22B consumes more input and output tokens and is the model with the
highest cost per token among the generation models.

5.4
Question-Answer Judgment

This section presents the criteria used to select the LLMs for the
Question-Answer Judgment stage. We also describe the datasets employed for
the development and evaluation of this stage and report the results for each
model.

5.4.1
Model Selection

For the QA judgment stage, we selected models primarily based on
quality. This stage is critical to our process, as it serves as a filter to
automatically discard invalid questions. To ensure accurate assessment of the
generated QA tuples, we needed models with strong performance in general
tasks and the ability to effectively comprehend document transcriptions. This
ensures reliable evaluations and proper usage of the generated tuples.

At this stage, the main cost comes from input tokens rather than output
tokens, as the instruction prompt is resent for each QA tuple evaluation.
On average, the input size was 2261.33 ± 819.75 tokens, while the output
averaged 2.67 ± 1.72 tokens. We selected models from the first quadrant based
on the models shown in Figure 5.1, which illustrates the relationship between
model quality and cost. In addition to these three models – GPT-4o, Claude
3.5 Sonnet and Gemini 1.5 Pro – we included LLaMA 3.1 405B, one of the
most advanced open-source models currently available, for comparison between
commercial and open-source models.
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5.4.2
Datasets

To evaluate this stage, we used two datasets. The first was the validation
set created for prompt development in the QA generation stage, described in
Subsection 5.3.2. This dataset helped refine the prompt used in this stage and
was submitted to human evaluation by a non-domain expert annotator.

The second dataset was the golden dataset, created after a human
evaluation during the QA generation stage, as detailed in Subsection 5.3.6.
We used this dataset to assess the generalization of judgment capabilities of
the proposed approach by comparing the performance of an LLM and a human
annotator.

5.4.3
Experimental Setup

To evaluate each model, we standardized the API calls and output
metadata using Langchain. For consistency, we set the temperature to zero
for all models to ensure deterministic outcomes. All other parameters were left
at their default settings for each respective model.

5.4.4
Evaluating the LLM Judge

The LLM judgment of QA tuples followed the same criteria as the human
evaluation. Each model assessed the coherence of the questions, ensuring they
were understandable, adhered to the norms of the Portuguese language, and
were free of ambiguity. Additionally, the models validated whether the answers
were accurate based on the document transcriptions. The judgment process was
binary, with the LLM responding “yes” or “no” to both criteria. A question
was marked as valid if it was coherent and the answer was accurate.

After running all models on the validation dataset, we compared the F1
scores of each LLM model and their performance against human judgments
for final dataset utilization. Figure 5.7 shows the results for each model on the
validation dataset. All models performed well, with F1 scores above 0.8. The
best performance came from LLaMA 3.1 405B, which achieved an F1 score of
0.97, followed by Gemini 1.5 Pro with 0.95. The lowest performer was GPT-4o,
scoring 0.89.

Figure 5.8 shows the confusion matrix comparing human votes to each
LLM. The lower F1 scores for GPT-4o and Claude 3.5 were caused by a large
number of false negatives, though these models did not generate false positives.
In contrast, Gemini 1.5 Pro and LLaMA 3.1 405B, despite their better F1
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Figure 5.7: F1 score between LLMs and humans for the validity of a QA tuple
on the validation dataset.

Figure 5.8: Confusion matrix between LLM and human for the validity of a
QA tuple on the validation dataset. The human annotation is considered the
true label.

scores, did produce false positives—problematic since this stage aims to prevent
invalid questions from contaminating the final dataset.

On the golden dataset, the performance of LLaMA 3.1 405B and Gemini
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Figure 5.9: F1 score between LLMs and humans for the validity of a QA tuple
on the golden dataset.

1.5 Pro dropped slightly, with both achieving an F1 score of 0.92, as shown
in Figure 5.9. However, Claude 3.5 Sonnet and GPT-4o showed stable perfor-
mance, each increasing by 0.01, making Claude 3.5 Sonnet the best performer.

Figure 5.10: Confusion matrix between LLM and human for the validity of a
QA tuple on the golden dataset. The human annotation is considered the true
label.
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The confusion matrix for the golden dataset, shown in Figure 5.10, reveals
some divergences from the validation set. False negatives decreased for models
like GPT-4o and Claude 3.5 Sonnet, while false positives increased across all
models. This increase is related to the larger proportion of negative samples in
the golden set, making it more diverse and challenging to detect invalid tuples.

Figure 5.11: F1 score between LLMs and humans for the validity of a QA
tuple on the golden dataset. Where Ensemble 1: Gemini 1.5 Pro + GPT-
4o + LLaMA 3.1 405B; Ensemble 2: Gemini 1.5 Pro + GPT-4o + Claude 3.5
Sonnet; Ensemble 3: Gemini 1.5 Pro + LLaMA 3.1 405B + Claude 3.5 Sonnet;
Ensemble 4: GPT-4o + LLaMA 3.1 405B + Claude 3.5 Sonnet.

To improve judgment performance, we combined the models into an
ensemble. In this approach, a QA tuple was considered valid only if all models
confirmed both the coherence of the question and the accuracy of the answer.
Figure 5.11 shows the F1 obtained by each ensemble, where we can see that
the combination of models did not improve the metric, showing a similar
performance for all combinations.

The confusion matrix for this ensemble, shown in Figure 5.12, indicates
a slight reduction in false negatives. However, the same judgment errors were
common across models, suggesting a need for further investigation into the
source of the problem.

5.4.5
Judgment Costs

Since all models were accessed via pay-per-use APIs, we also evaluated
the total cost of the judgment process using the golden dataset. Table 5.14
shows the number of tokens consumed and the cost in USD per QA tuple.
LLaMA 3.1 405B was the most cost-effective model, its final cost was much
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Figure 5.12: Confusion matrix between Ensemble and human for the validity
of a QA tuple on the golden dataset. The human annotation is considered the
true label.

lower than other commercial models. Gemini 1.5 Pro and Claude 3.5 Sonnet
had similar costs, $9.24 and $9.51, respectively, though they differed greatly
in the number of tokens required for input and output.

Table 5.14: Number of input and output tokens and final cost (USD) for each
LLM to judge 420 QA tuples on the golden dataset. Final cost calculated based
on model prices in August 2024.

Model Input Tokens Output Tokens Final Cost
LLaMA 3.1 405B 2,946,672 3,867 08.85
Gemini 1.5 Pro 2,637,177 1,350 09.24
Claude 3.5 Sonnet 3,136,644 6,612 09.51
GPT-4o 2,676,624 1,725 13.41

The most expensive model was GPT-4o which, despite not consuming
many input and output tokens, presents a high cost for each of them, making
it the most expensive to use. Although not shown in the table, the ensemble
was even more costly, with the combined model cost totaling $ 27.6 in the best
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case.

Figure 5.13: Final Cost (USD) x F1 score for each LLM and combinations to
judge 420 QA tuples on the golden dataset.

Figure 5.13 compares the cost-performance proportion for each model
and the ensemble. This graph shows that combining models leads to high
costs for relatively low performance. Additionally, GPT-4o stands out for
its high cost, given its comparatively low performance. Finally, we found
that LLaMA 3.1 405B offers the best cost-effectiveness, delivering excellent
judgment performance at a highly competitive price.



6
Conclusion

This chapter presents our final considerations about our work presented
in this dissertation. In Section 1 at the Introduction, we posed the main
research question (How can we use Large Language Models in data annotation
for Document Visual Question Answering task?) we aimed to answer. As an
attempt to respond, we developed a process for data annotation using LLM
for the DocVQA task, as presented in Chapter 4.

To answer the first part of RQ1 (How can we combine computer vision
models and Large Language Models to generate questions and answers from
documents?), we developed a process composed of three steps, where we used
different CV models to extract the textual representation of documents. In the
first step, we applied an OCR to recognize the words on the page, obtaining
your coordinates and text. In the second step, we applied a DLA model to
analyze the document layout, making it possible to map the information
structures contained in the document. In the third step, we used a TSR model
in the tables regions detected in the previous step to generate the markup
representation of them. All three steps are described in Section 4.2.

For the second part of RQ1, we evaluated the performance of five cost-
effective LLMs in generating questions and answers based on the transcription
of the documents and following the generation rules defined in the work. The
rules were defined in such a way as to ensure that the questions were well-
formed and made human evaluation possible.

To answer the RQ2 (How can we evaluate the quality of the generated
questions and answers?), we carried out two separate steps. The first step is a
human evaluation of QA pairs generated by each LLM to assess the capability
of following the instructions established for generation and to measure the ratio
between the number of valid and invalid pairs. To automate the validation of
the question pairs generated, we evaluated the performance of four robust
LLMs in judging the validity of these pairs, using the result of the human
evaluation as a benchmark.

Finally, our findings show that LLMs are able to generate QA pairs with
a good ratio between the validity and invalidity of each pair. Our best results
are obtained by Mixtral-8x22B and GPT-4o mini, the models that showed
the most significant variability in the questions generated, with a low rate of
invalid QA pairs and almost perfectly following the instructions given. In terms
of cost-effectiveness, the GPT-4o mini stands out even more, with the lowest
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price for generating QA pairs.
The best model for the automatic judgment of QA pairs is Claude 3.5

Sonnet, with an F1 score of 0.93 compared to human evaluations. Although the
score was obtained, the stage needs more improvements to reduce the number
of false negatives generated.

As an attempt at improvement, we tested the use of ensemble models,
which had a lower F1 score than the individual models, 0.83 F1 score in the
best case, and almost three times more expensive than the best model. Despite
reducing the number of false positives slightly, the final cost of combining
models does not compensate for the low delivery of results.

In the following section, we state some future works and enhancements.

6.1
Future Works

As discussed earlier, the process occasionally fails in the validity judg-
ment of QA pairs. To address this, we plan to introduce a review score for
each generated pair in future work. This score would guide whether a question
requires human review, aiming to reduce false positives and negatives. Beyond
enhancing the robustness of the dataset, this score would help avoid resource
loss caused by incorrect generation or judgment.

Since our work focused solely on determining question validity, we intend
to expand this analysis by conducting a qualitative assessment of the questions.
This future study will help us evaluate which questions are most relevant and
well-formed for the target domain.

Given that the annotation process relies entirely on document transcrip-
tion, we also aim to analyze the impact of transcription errors on the question-
generation process. This analysis will help us understand how models handle
these failures and propose strategies to mitigate their impact.

Another future direction involves adding a step in the transcription stage
to handle figures within documents. We will focus on graphic regions, for which
we will create textual representations that LLMs can interpret. This step is
necessary since not all models are multimodal.

We plan to explore sample balancing strategies to address variability
issues in the QA pairs generated by some models. These strategies will be
incorporated into the prompt design to encourage the generation of a wider
variety of questions.

Currently, our tests are limited to generating QA pairs from a single page
at a time. In the future, we plan to experiment with processing multiple pages
simultaneously, considering the token limits of each LLM model.
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We also aim to optimize the cost of generation and evaluation by creating
workflows that direct specific types of pages to the most suitable model. By
identifying each model’s strengths — such as handling tables or complex
document structures — we can minimize invalid annotations. As part of this
improvement, we will explore the use of Knowledge Graphs (CHEN; JIA;
XIANG, 2020) to create more efficient document representations, thereby
reducing the amount of information passed to the LLMs.

Our ultimate goal is to create a fully annotated dataset using the
proposed process and establish baselines with leading VQA models. This step
will allow us to identify our process’s strengths and weaknesses and guide
future enhancements.

After defining baselines, we will select an optimization model. This
optimization will involve adjustments to the architecture and workflow to
improve the efficiency of response generation based on input documents.

Finally, we intend to propose a tool to annotate the data from the TSR
task, since we have not found any tool that helps to annotate the three steps
needed to correctly represent the image of the table as HTML. With this tool
we can create an annotated dataset using the worked domain, to better validate
the selected models.
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8
Appendix

8.1
Question-Answer Generation Prompt

In this section of the appendix, the prompt constructed for QA generation
is detailed. Beyond the prompt, we describe each positional marker utilized in our
approach.

Code 2: System prompt of QA generation stage

1 Você é um sistema especialista no domínio { dominio } capaz de

analisar e compreender textos com tabelas . Você deve gerar

perguntas coerentes , baseando -se nos seguintes níveis de

coerência :

2

3 1. Coerência sintática : Remete à estruturação linguística , como

seleção das palavras conforme o contexto , ordenamento lógico

das frases e coesão textual . Auxilia no uso adequado dos

conectivos e evita a construção de pensamentos ambíguos (

incertos ).

4 2. Coerência semântica : Está relacionada com a composição lógica

das ideias , ou seja , elaboração de argumentos ordenados ,

harmônicos e sem nenhuma contradição . Como a semântica é a

parte da linguística que estuda o significado das palavras ,

a incoerência desfaz as relações de sentido entre as

palavras que compõem as partes do texto.

5 3. Coerência temática : Todas as frases precisam ser relevantes

para o tema discutido . O autor deve privilegiar apenas os

argumentos que possibilitam o desenvolvimento de ideias

pertinentes e que permitem a compreensão do público leitor .

6 4. Coerência pragmática : Refere -se aos textos orais ou escritos

que levam em conta a linguagem falada e seus efeitos na

comunicação entre os interlocutores . Quando fazemos uma

pergunta para outra pessoa , por exemplo , é esperado uma

resposta , que pode ser de cunho afirmativo ou negativo . Caso

essa regra seja quebrada , acontece o que é definido pela

linguística como incoerência pragmática .

7 5. Coerência estilística : Diz respeito ao estilo linguístico

aplicado no texto , que deve ser mantido do início ao fim. A

mistura entre as variedades , como o uso da linguagem

coloquial e formal ao mesmo tempo , não interfere na

interpretabilidade do conteúdo , mas deve ser evitada porque

pode levar facilmente a incoerência textual .

8 6. Coerência genérica : É ligada a escolha do gênero textual , que

deve dialogar com os acontecimentos discursivos . Por

exemplo , se o objetivo de uma pessoa é vender um produto ,

certamente ela vai adotar uma linguagem persuasiva em seu
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texto , pois essa é a caraterística desse tipo de gênero . Já

se a intenção for contar uma história , uma das opções é

escrevê -la em formato de conto.

9

10 Além disso , você deve seguir as seguintes regras para utilização dos

pronomes e advérbios interrogativos nas perguntas :

11

12 1. "Que ?": Refere -se principalmente a coisas , podendo perguntar :

"que coisa ?" ou "que espécie de coisa ou pessoa ?".

13 2. "Qual ?": Refere -se a coisas ou a pessoas . Pode transmitir uma

ideia de seleção , ou seja , de identificação de um ou vários

elementos dentro de um grupo.

14 3. " Quanto ?": Refere -se a coisas ou a pessoas . Transmite uma

ideia de quantificação ou busca por um valor.

15 4. "Quem ?": Refere -se principalmente a pessoas ou coisas

personificadas .

16 5. " Quando ?": Refere -se a alguma " circunstância " indicando tempo

.

17 6. "Onde ?": Refere -se a alguma " circunstância " indicando lugar.

18 7. "Como ?": Refere -se a alguma " circunstância " indicando o modo.

19

20 Você vai receber um texto de referência e deve executar os seguintes

passos :

21 1. FAÇA { qtd_questions } PARES DE PERGUNTAS E RESPOSTAS

diferentes , utilizando o texto de referência . Foque nas

regiões de tabelas , que serão informadas em código HTML e

estarão dentro de um Code Block.

22 2. Garanta que a pergunta feita tenha todos os elementos

necessários para que apresente uma única resposta e de forma

direta . Não faça perguntas que apresentem duas ou mais

respostas possíveis dentro da estrutura do texto.

23 3. NÃO FAÇA PERGUNTAS que precise de ALGUMA OPERAÇÃO MATEMÁTICA

para ser resolvida ou que precise de mais de uma linha da

tabela para ser respondida . Não faça perguntas que fiquem

sem respostas , todas perguntas feitas devem ter respostas .

24 4. As respostas devem ser uma cópia direta do próprio texto

informado .

25 5. Todo par de pergunta e resposta deve apresentar a REGIÃO DO

TEXTO que se encontra a resposta . Para as respostas

localizadas em parágrafos , forneça o indicador de texto que

se encontra no começo do parágrafo utilizado . Para as

respostas localizadas em tabelas , informe o NÚMERO DA TABELA

e o NÚMERO DA LINHA utilizado . Você encontra o NÚMERO DA

LINHA da tabela na PRIMEIRA CÉLULA DE CADA LINHA , utilize

essa informação para compor a região do texto.

26 6. Para as respostas com valores numéricos , apenas o respectivo

valor deve ser informado na resposta , preservando símbolos

monetários , indicadores de grandeza ou símbolos matemático .

NÃO ADICIONE ESSES SÍMBOLOS BASEADO NO CONTEXTO , APENAS SE

EXISTIREM PREVIAMENTE NO TEXTO.

27
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28 NÃO FAÇA PERGUNTAS que a RESPOSTA seja uma REGIÃO DO TEXTO , exemplo :

29 1. Pergunta : Onde é apresentada a composição por idade de

vencimento de contas a receber ? Resposta : TABELA2

30 2. Pergunta : Onde é apresentada o valor de lucros das empresas ?

Resposta : TABELA1

31 3. Pergunta : Em que local é apresentado o resumo do faturamento ?

Resposta : T10

32

33 VOCÊ DEVE FORMATAR a saída da seguinte forma:

34 { question_examples }

Code 2 describes the system prompt used for generation stage. The prompt
starts with a contextualization of the domain and the task to be realized. Next, we
have a description of the different coherence levels existent on Brazilian Portuguese.
Then, a description of how to use adverbs and interrogative pronouns is provided
to the model. The last two parts of the prompt is dedicated specifically for
direct instructions from the generation process, such as the number of questions
generated, focus region, output format and negative examples to avoid mistakes
on generation.

In addition to the system prompt, the stage utilizes a user prompt containing
the document transcription with the positional markers. Figure 8.1 illustrates the
process of adding these positional markers. The first region shows a document
fragment that undergoes transcription. The second region reflects the application
of transcription processes outlined in the proposed approach. Finally, the last region
presents the transcribed document with positional markers added at the beginning
of each paragraph.

These markers vary according to the output of the DLA stage (Section 4.2.2).
For regions classified as text, we added "T{paragraph number}" at the beginning of
each paragraph. For regions classified as tables, we added "TABLE {table number}"
before the HTML structure. Additionally, table transcriptions were modified to
include row numbers, as shown in Figure 8.2.
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Figure 8.1: Process of adding the positional markers to the transcription of the
text to generate the question-answer pairs
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Figure 8.2: Process of adding the line numbers to table structure in question
and answer generation step

8.2
Question-Answer Judgment Prompt

In this section of the appendix, the prompt constructed for QA judgment
is detailed. As this is a three-stage method, we will have three text blocks,
representing each prompt used for the process.

Code 3: System prompt of QA judgment stage
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1 Você é um sistema de avaliação de perguntas e respostas muito

critérioso . Você avalia detalhadamente as perguntas e respostas ,

garantindo que ambos respeitam a gramática normativa da língua

portuguesa .

2 Você só confirma que uma pergunta é coerente quando tem absoluta

certeza da sua resposta . Você só confirma que a resposta está

completamente correta quando tem absoluta certeza da sua

resposta , sempre

3 levando em consideração o texto de referência informado .

4

5 Sua avaliação deve seguir os critérios abaixo :

6 a. PASSOS PARA AVALIAR SE A PERGUNTA É COERENTE :

7 1. A pergunta permite a compreensão textual do leitor ,

apresentando uma combinação de palavras com conteúdo

claro , lógico e direto ;

8 2. A pergunta segue as regras da gramática normativa da

lingua portuguesa ;

9 3. A pergunta não apresenta ambiguidade possibilitando a

indentificação clara da sua resposta ;

10 4. A pergunta está diretamente relacionada ao texto de

referência ;

11 5. A pergunta pode ser respondida diretamente pelo texto de

referência ;

12 6. Quando a sua formulação possibilita apenas uma única

resposta , ESPECIALMENTE EM TABELAS .

13

14 b. PASSOS PARA AVALIAR SE UMA RESPOSTA ESTÁ COMPLETAMENTE

CORRETA :

15 1. Não considerar as ausências ou presenças das unidades de

medidas

16 2. Não considerar as ausências ou presenças das unidades

monetárias

17 3. Não considerar as ausências ou presenças dos simbolos

matemáticos de uma resposta

18 4. Não considerar as ausências ou presenças de parenteses ou

colchetes

19 5. Perguntas que apresentam o advérbio interrogativo " Quando

", devem apresentar uma resposta indicando valor ou

termo temporal ;

20 6. Perguntas que apresentam o advérbio interrogativo "Quem",

devem apresentar uma resposta indicando uma pessoa ou

coisas personificadas ;

21 7. Perguntas que apresentam o advérbio interrogativo "Onde",

devem apresentar uma resposta indicando uma cidade ,

estado , país ou endereço ;

22 8. A resposta deve ser coerente e baseada no texto de

referência ;

23 9. Se a PERGUNTA NÃO É COERENTE a RESPOSTA NÃO É CORRETA .

24

25 Esse é o seu texto de referência :

26 { texto_referencia }
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27

28 Você só deve RESPONDER SIM ou NÃO.

The first stage is the model preparation, which we gived it all the instructions
it needs to carry out the judgement correctly, as presenting in Listing 3. In this
prompt, we define the rules for evaluating questions and answers, as well as defining
certain behaviors that the model must follow, such as only considering an answer
correct if the question is coherent.

Code 4: User prompts of QA judgment stage

1 question_prompt : A pergunta : "{ pergunta }"; é semânticamente coerente

em português ?

2

3 answer_prompt : Com base no texto de referência , a resposta : "{

resposta_gen_model }"; é semânticamente coerente e responde a

pergunta : "{ pergunta }"?

Subsequently, there are two other prompts which give the question to be
evaluated and its answer, respectively. They are separated into two because the
model performs one evaluation at a time. Listing 4 describes these two prompts,
where the first is completed with the question to be evaluated and the second
requires both the question and the answer.

8.3
Positional Marker Returning Errors

This section outlines the main errors in positional markers for each model
used in the Question and Answer Generation Stage. Table 8.1 summarizes these
errors. For the Mixtral-8x22B model, the primary issues stem from not returning
the full positional marker and incorrectly combining output formats for both text
and table regions. A similar problem with mixing formats occurs with LLama3 70B
and GPT-4o mini.

The Gemini 1.5 Flash model’s key issue is the inclusion of column infor-
mation, which was not requested in the prompt instructions. Additionally, it oc-
casionally returns empty strings. Claude 3 Haiku, however, produced the highest
number of errors, including incomplete information, unnecessary column details,
and inconsistent formatting between text and table regions.

8.4
Inter-annotator Agreement

This Appendix Section outlines percent inter-annotator agreement between
each annotator. All the three evaluated conditions are showed in this section, the
Question Coherence Figure 8.3, Answer Accuracy Figure 8.4 and Utilization 8.5.
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Model Errors

Mixtral-8x22b
TABELA

T (TABELA , LINHA )
EMPTY STRING

GPT-4o mini T, LINHA

Gemini 1.5 Flash
TABELA - LINE-NUMBER

TABELA - LINHA - COLUNA
EMPTY STRING

LLama3 70B T, LINHA
T, TABELA , LINHA

Claude 3 Haiku

TABELA
TABELA , LINHA , COLUNA

PARÁGRAFO
TABELA , ÚLTIMA LINHA

Table 8.1: Main errors made by each model in positional marker format on
generation stage
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Figure 8.3: Inter-annotator agreement for question coherence of QA pairs in
golden dataset
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Figure 8.4: Inter-annotator agreement for answer accuracy of QA pairs in
golden dataset
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Figure 8.5: Inter-annotator agreement for utilization of QA pairs in golden
dataset
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