$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC | MARC |



Título: LEIS LIMITE PARA SISTEMAS DINAMICOS COM ALGUMA HIPERBOLICIDADE
Autor: ANSELMO DE SOUZA PONTES JUNIOR
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  SILVIUS KLEIN - ORIENTADOR
Nº do Conteudo: 67507
Catalogação:  08/08/2024 Liberação: 08/08/2024 Idioma(s):  INGLÊS - ESTADOS UNIDOS
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=67507&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=67507&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.67507

Resumo:
O estudo das propriedades estatísticas dos sistemas dinâmicos temsido uma área de pesquisa ativa nas últimas décadas. Seu principal objetivoé investigar quando determinados sistemas caóticos determinísticos exibemcomportamento estocástico quando examinados pelas lentes de uma medidainvariante relevante. Algumas das principais ferramentas empregadas naobtenção desses resultados são as propriedades espectrais do operador detransferência. No entanto, determinados sistemas do tipo produto torcido,incluindo cociclos lineares aleatórios e cociclos mistos aleatórios-quaseperiódicos, não se encaixam nessa abordagem. Trabalhos muito recentesobtiveram leis limite para esses sistemas estudando o operador de Markov.O objetivo desta dissertação é explicar como esses operadores podem serusados para derivar leis limite, como Estimativas de Grandes Desvios e oTeorema do Limite Central, para certos sistemas dinâmicos do tipo produtotorcido.

Descrição Arquivo
NA ÍNTEGRA  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui