XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: CLUSTERIZAÇÃO BASEADA EM GRAFO EM ESPAÇO DE CARACTERÍSTICAS PROFUNDO PARA CORRESPONDÊNCIA DE FORMAS Autor: DANIEL LUCA ALVES DA SILVA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
WALDEMAR CELES FILHO - ORIENTADOR
PAULO IVSON NETTO SANTOS - COORIENTADOR
Nº do Conteudo: 67175
Catalogação: 02/07/2024 Liberação: 02/07/2024 Idioma(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=67175&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=67175&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.67175
Resumo:
Título: CLUSTERIZAÇÃO BASEADA EM GRAFO EM ESPAÇO DE CARACTERÍSTICAS PROFUNDO PARA CORRESPONDÊNCIA DE FORMAS Autor: DANIEL LUCA ALVES DA SILVA
PAULO IVSON NETTO SANTOS - COORIENTADOR
Nº do Conteudo: 67175
Catalogação: 02/07/2024 Liberação: 02/07/2024 Idioma(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=67175&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=67175&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.67175
Resumo:
Projetos de engenharia dependem de modelos CAD 3D complexos durante todo o seu ciclo de vida. Esses modelos 3D contêm milhões de geometrias que impõem desafios de armazenamento, transmissão e renderização.
Trabalhos anteriores empregaram com sucesso técnicas de correspondência de
formas baseadas em aprendizado profundo para reduzir a memória exigida por
esses modelos 3D. Este trabalho propõe um algoritmo baseado em grafos que
melhora o agrupamento não supervisionado em espaços profundos de características. Essa abordagem refina drasticamente a precisão da correspondência
de formas e resulta em requisitos de memória ainda mais baixos para os modelos 3D. Em um conjunto de dados rotulado, nosso método atinge uma redução
de 95 por cento do modelo, superando as técnicas não supervisionadas anteriores que
alcançaram 87 por cento e quase atingindo a redução de 97 por cento de uma abordagem totalmente supervisionada. Em um conjunto de dados não rotulado, nosso método
atinge uma redução média do modelo de 87 por cento contra uma redução média de
77 por cento das técnicas não supervisionadas anteriores.
Descrição | Arquivo |
NA ÍNTEGRA |