$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC | MARC |



Título: PROCESSOS DE RAMIFICAÇÃO PARA O ESTUDO DE EPIDEMIAS
Autor: JOAO PEDRO XAVIER FREITAS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  ROBERTA DE QUEIROZ LIMA - ORIENTADOR
RUBENS SAMPAIO FILHO - COORIENTADOR

Nº do Conteudo: 64469
Catalogação:  26/10/2023 Liberação: 26/10/2023 Idioma(s):  INGLÊS - ESTADOS UNIDOS
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=64469&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=64469&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.64469

Resumo:
Este trabalho modela a evolução temporal de uma epidemia com uma abordagem estocástica. O número de novas infecções por infectado é modelado como uma variável aleatória discreta, chamada aqui de contágio. Logo, a evolução temporal da doença é um processo estocástico. Mais especificamente, a propagação é dada pelo modelo de Bienaymé-Galton-Watson, um tipo de processo de ramificação de parâmetro discreto. Neste processo, para um determinado instante, o número de membros infectados, ou seja, a geração de membros infectados é uma variável aleatória. Na primeira parte da dissertação, dado que o modelo probabilístico do contágio é conhecido, quatro metodologias utilizadas para obter as funções de massa das gerações do processo estocástico são comparadas. As metodologias são: funções geradoras de probabilidade com e sem identidades polinomiais, cadeia de Markov e simulações de Monte Carlo. A primeira e terceira metodologias fornecem expressões analíticas relacionando a variável aleatória de contágio com a variável aleatória do tamanho de uma geração. Essas expressões analíticas são utilizadas na segunda parte desta dissertação, na qual o problema clássico de inferência paramétrica bayesiana é estudado. Com a ajuda do teorema de Bayes, parâmetros da variável aleatória de contágio são inferidos a partir de realizações do processo de ramificação. As expressões analíticas obtidas na primeira parte do trabalho são usadas para construir funções de verossimilhança apropriadas. Para resolver o problema inverso, duas maneiras diferentes de se usar dados provindos do processo de Bienaymé-Galton-Watson são desenvolvidas e comparadas: quando dados são realizações de uma única geração do processo de ramificação ou quando os dados são uma única realização do processo de ramificação observada ao longo de uma quantidade de gerações. O critério abordado neste trabalho para encerrar o processo de atualização na inferência paramétrica usa a distância de L2-Wasserstein, que é uma métrica baseada no transporte ótimo de massa. Todas as rotinas numéricas e simbólicas desenvolvidas neste trabalho são escritas em MATLAB.

Descrição Arquivo
NA ÍNTEGRA  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui