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Abstract

Freitas, João Pedro Xavier; Lima, Roberta de Queiroz (Advisor);
Sampaio Filho, Rubens (Co-Advisor). Branching processes for
epidemics’ study. Rio de Janeiro, 2023. 89p. Dissertação de Mes-
trado – Departamento de Engenharia Mecânica, Pontifícia Univer-
sidade Católica do Rio de Janeiro.

This work models an epidemic’s spreading over time with a stochastic
approach. The number of infections per infector is modeled as a discrete ran-
dom variable, named here as contagion. Therefore, the evolution of the disease
over time is a stochastic process. More specifically, this propagation is modeled
as the Bienaymé-Galton-Watson process, one kind of branching process with
discrete parameter. In this process, for a given time, the number of infected
members, i.e. a generation of infected members, is a random variable. In the
first part of this dissertation, given that the mass function of the contagion’s
random variable is known, four methodologies to find the mass function of the
generations of the stochastic process are compared. The methodologies are:
probability generating functions with and without polynomial identities, Mar-
kov chain and Monte Carlo simulations. The first and the third methodologies
provide analytical expressions relating the contagion random variable and the
generation’s size random variable. These analytical expressions are used in the
second part of this dissertation, where a classical inverse problem of bayesian
parametric inference is studied. With the help of Bayes’ rule, parameters of
the contagion random variable are inferred from realizations of the stochastic
process. The analytical expressions obtained in the first part of the work are
used to build appropriate likelihood functions. In order to solve the inverse
problem, two different ways of using data from the Bienaymé-Galton-Watson
process are developed and compared: when data are realizations of a single
generation of the branching process and when data is just one realization of
the branching process observed over a certain number of generations. The cri-
teria used in this work to stop the update process in the bayesian parametric
inference uses the L2-Wasserstein distance, which is a metric based on optimal
mass transference. All numerical and symbolical routines developed to this
work are written in MATLAB.

Keywords
Epidemics; Branching processes; Uncertainty quantification; Bayesian

inference.



Resumo

Freitas, João Pedro Xavier; Lima, Roberta de Queiroz; Sampaio
Filho, Rubens. Processos de ramificação para o estudo de
epidemias. Rio de Janeiro, 2023. 89p. Dissertação de Mestrado
– Departamento de Engenharia Mecânica, Pontifícia Universidade
Católica do Rio de Janeiro.

Este trabalho modela a evolução temporal de uma epidemia com uma
abordagem estocástica. O número de novas infecções por infectado é modelado
como uma variável aleatória discreta, chamada aqui de contágio. Logo, a
evolução temporal da doença é um processo estocástico. Mais especificamente,
a propagação é dada pelo modelo de Bienaymé-Galton-Watson, um tipo
de processo de ramificação de parâmetro discreto. Neste processo, para um
determinado instante, o número de membros infectados, ou seja, a geração de
membros infectados é uma variável aleatória. Na primeira parte da dissertação,
dado que o modelo probabilístico do contágio é conhecido, quatro metodologias
utilizadas para obter as funções de massa das gerações do processo estocástico
são comparadas. As metodologias são: funções geradoras de probabilidade com
e sem identidades polinomiais, cadeia de Markov e simulações de Monte Carlo.
A primeira e terceira metodologias fornecem expressões analíticas relacionando
a variável aleatória de contágio com a variável aleatória do tamanho de uma
geração. Essas expressões analíticas são utilizadas na segunda parte desta
dissertação, na qual o problema clássico de inferência paramétrica bayesiana é
estudado. Com a ajuda do teorema de Bayes, parâmetros da variável aleatória
de contágio são inferidos a partir de realizações do processo de ramificação. As
expressões analíticas obtidas na primeira parte do trabalho são usadas para
construir funções de verossimilhança apropriadas. Para resolver o problema
inverso, duas maneiras diferentes de se usar dados provindos do processo
de Bienaymé-Galton-Watson são desenvolvidas e comparadas: quando dados
são realizações de uma única geração do processo de ramificação ou quando
os dados são uma única realização do processo de ramificação observada ao
longo de uma quantidade de gerações. O critério abordado neste trabalho para
encerrar o processo de atualização na inferência paramétrica usa a distância
de L2-Wasserstein, que é uma métrica baseada no transporte ótimo de massa.
Todas as rotinas numéricas e simbólicas desenvolvidas neste trabalho são
escritas em MATLAB.

Palavras-chave
Epidemias; Processos de ramificação; Quantificação de incertezas;

Inferência bayesiana.
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1
Introduction

1.1
Reflection about modeling epidemics

Modeling the spread of a disease over time is a challenging task. The
transmissibility of the epidemic [1], i.e., how easy the disease will spread from
an infected person (infector) to susceptible ones (infectees) is affected by several
parameters, such as the individual behavior and the genomic structures of
the pathogen. These parameters are actually hardly traceable and therefore a
stochastic interpretation is more appropriate.

However, the feature of transmissibility is usually assessed by determin-
istic assignments and the most common ones are the parameter of the basic
reproduction number R0 and the secondary attack rate (SAR). The first one
represents the average number of individuals infected caused by a single infec-
tor at the start of an epidemic. The other is defined as a proportion among
the individuals infected and the infectees, also when the epidemic takes off.
Both parameters have reported estimates that are heterogeneous even for the
same virus. For instance, influenza virus may have R0 around 1 or above 10.
Its counterpart SAR lies between 1% and 38%.

Several different models in the literature are proposed for the dynamics
of an infectious disease [2]. The compartmental ones, such as the susceptible-
infectious (SI model) and the susceptible-infectious-recovered (SIR model) are
categorized as population-level. In these models, the population is divided
in groups (named compartments) and an initial value problem characterizes
the evolution of the number of individuals in each of the groups [3–5]. For
example, in the SIR model the basic reproduction number is fundamental to
assign parameters related to the group transitions.

The main problem of these deterministic models is the prediction accu-
racy and it is a fundamental point for governments to take actions. Accurate
predictions of the evolution of the number of infected individuals over time
can help, for example, in the organization of hospital supplies. This is one of
the reasons that nowadays the individual-level models are getting more atten-
tion. They focus on stochastic outbreaks. Transmissibility is then treated in a
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stochastic perspective and a more complete prediction is made.

1.2
Introducing branching processes

From the exposed before, it is more reasonable to assign a discrete
random variable to the number of infections per infector. In this work, this
random variable is named contagion, represented by C. The evolution of the
epidemic over time is therefore a discrete state stochastic process and in this
work the traditional (discrete state) branching process in discrete time is chosen
to model it [6, 7]. Each random variable Xt attached to the branching process
represents in this context a generation’s size of members infected.

This stochastic process, also named Bienaymé-Galton-Watson (BGW),
deals with the so-called demographic stochasticity [8], i.e., the population
randomness over time is a consequence of the individual’s uncertainty. Thus,
it is an individual-based model (IBM) that entails the stochastic features of
transmissiblity.

According to [9], the original motivation for this model was the attempt
to explain the reason why population of countries were growing exponentially,
whilst family names were disappearing. Nowadays, as exposed in [10], a variety
of fields works with branching processes: cell biology, population demography,
biochemical processes, genetics, epidemiology and actuarial sciences. Propaga-
tion phenomena such as those follow some underlying principles. They usually
have four main stages [11]: spark, growth, peak and decline.

There are other types of branching process. For instance, the ones
continuous in time [12, 13], the ones continuous in state, such as the Feller type,
spatial branching process [14], which combines the branching phenomenon with
a spatial motion and other superprocesses. Recent studies in the field also
focus on the evolution of genealogies and histories and in a more generalized
branching property [15].

1.3
Importance of probability mass functions

Once we are using the BGW process, probabilistic descriptions of the
size of subsequent generations of infected people are tackled. Therefore, it
is meaningful to quantify the uncertainty in the process. Figure 1.1 shows
an example of the evolution of mass functions along generations. Since some
popular set of statistics, like the mean and standard deviation, the mean and
coefficient of variation or the Shannon entropy, are not suitable as a proper
measure for uncertainty [16], the cumulative distribution function (cdf) is the
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best option. Since the BGW process is discrete in state, finding mass functions
(pmf) is another alternative.
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Figure 1.1: Evolution of generation’s size mass function in BGW for an example
studied and later on presented.
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The mass function allows to represent the degree of knowledge of the
possible underlying values of a random entity. The latter entails all the prob-
abilistic information and hence finding it is the better option to characterize
the problem of the random object regardless the context [17]. The pmfs in
this context allow us also to understand the stochastic evolution of the disease
over time, evaluate statistics, check the influence of the contagion’s random
variable and obtain the extinction probability of the disease. Moreover, they
provide useful mechanisms to work with bayesian approaches.

This last benefit is a key factor to study this particular problem into two
different perspectives, which is indeed our aim: the deductive and the plausible
one. In this work, for the former reasoning, the main question is how to find
the mass functions of further generations when the contagion’s probabilistic
model is given. For the latter, we would like to know what we can say about
the contagion’s probabilistic model when the epidemic is observed.

1.4
Reasoning point of view

The deductive logic is a type of reasoning used to derive effects or
outcomes from a knowing cause. This sort of rationale is found in pure
mathematics and it is the most desirable one, since it entails for example
two strong syllogisms presented in Eq. (1-1) from the implication A ⇒ B. A

and B are in here propositions and the implication A ⇒ B ≡ A = AB from
the Boolean logic. The function AB is a conjuction or logical product.if A is TRUE, then B is TRUE

if B is FALSE, then A is FALSE
. (1-1)

In Eq. (1-1), there are two certainties presented. On the other hand, this
situation is not what is usually faced for most scientists. The opposite scenario
is indeed the recurrent one: given effects or observations, how can they give a
certainty truth to a theory? This question is indeed an open-ended one and
it seems that there is no solution. Therefore, the logical nature of scientific
reasoning [18] belongs to the plausible reasoning [19], also named inductive
logic. Based on the same implication, Eq. (1-2) shows weaker syllogisms this
time. The weaker word in this context is used to consider the fact that an
extensional logic is in here included.if B is TRUE, then A is more plausible

if A is FALSE, then B is less plausible
. (1-2)

The former case in Eq. (1-2) indicates directly that the occurrence of the
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logical consequence B reflects a belief that statement A might be true, but
there is no way to ensure that. The latter one indicates basically the same
thing: A is just one logical cause for statement B. As a consequence, if A is
false, the degree of belief in the veracity of B tends to decrease.

The main point of it is that, in plausible or inductive logic, beliefs are
somehow measured. Another fundamental aspect is that for instance, based on
historical events, for many times that B was true, the proposition A was also
true. This way, it is reasonable that the plausibility in A gets even greater in
the first syllogism of Eq. (1-2). Hence, the priori knowledge has an effect on
the degree of beliefs. More than that, in light of new information, the degree
of beliefs can still be modified.

These considerations seem to be strictly qualitative to be even quantified
and remain purely as common sense, but they are not. They actually follow
some quantitative rules: the basic algebra of probability theory in Eq. (1-3)P (A) + P

(
Ā
)

= 1

P (A, B) = P (A | B)P (B)
, (1-3)

in which Ā is the negation of the proposition A. The propositions A and B

can be interpreted as events in the probability space defined by the triple
(Ω, F ,P), in which Ω is the sample space, F is a σ-algebra on Ω and P is a
probability measure on F . The sample space Ω in here is a single extension of all
logical truths, and ϕ of all contradictions. The set-operations of F are equally
defined in the Boolean logic: complementation as the negation, closed under
union as disjunction, and closed under intersection as conjunction. Therefore,
in a probabilistic perspective, the first case in Eq. (1-3) is the normalization
condition and the second is the conditional probability.

Both the probabilities P (A, B) and P (B, A) represent the same. Then,
from the manipulation of second case in Eq. (1-3),

P (A, B) = P (B, A)

P (A | B)P (B) = P (B | A)P (A)

P (A | B) = P (B | A)P (A)
P (B) . (1-4)

Eq. (1-4) is known as the Bayes’ theorem and it is a mathematical relation
with conditional probabilities. The term P (B | A) plays the central role in the
transition between the deductive and the plausible reasoning in this work.
When the observable entity is related to the event A, we are facing a sampling
distribution and it is a statement from the deductive logic. Otherwise, it is a
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likelihood function and the inference logic is faced.
The pmfs are indeed sampling distributions. Once they are found, it

is possible to build likelihood functions. The opposite could also be done.
However, it easier to work in a deductive perspective and that is the reason
this work starts at this point.

1.5
Objectives of the dissertation

As said before, this work starts focusing on the deductive reasoning and
the central point in here is to answer the question: given the probabilistic
model of the contagion’s random variable, how can we find the probability
mass function for further generations? Four different methodologies are herein
presented.

The first is a traditional solution based on probability generating func-
tions (pgfs). There is a novelty in this work at this point that is introducing
polynomial identities to the chain rule as a second methodology in order to
decrease the runtime spent when working with pgfs. The third is developing
the one-step transition matrices for the BGW process when the contagion is
modeled as a Binomial family. This is another contribution of this dissertation.
Finally, the fourth is a numerical solution based on Monte Carlo simulations.
All of them are discussed and compared in the framework of computational
costs (runtime and storage), possible applications and individual features.

Now that mass functions for further generations are available, the second
part of this work introduces the plausible approach and deals with the opposite
scenario: given that a realization of the epidemic modeled as a BGW process
happens, what is possible to say about the contagion’s random variable? More
specific, herein we assume that the contagion’s random variable family is known
and the aim is to infer its parameters. This is the classical inverse problem of
bayesian parametric inference.

There are several new contributions on this perspective. With the help
of Bayes’ rule, this work introduces ways of building likelihood functions to
perform parametric inference when the content of data are realizations of a
single generation of the branching process and when data is just one realization
of the branching process observed over a certain number of generations. The
analysis in here are also focused on the stochastic effect of data sequences.
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1.6
Structure of the work

This dissertation is divided according to the following schema: the first
chapter, this one, introduces the content of this work. It gives us a glimpse
on models for epidemic propagation over time and justifies why a stochastic
framework is fundamental to this subject. Moreover, it shows briefly the
branching process adopted in here and gives an explanation of the importance
of finding mass functions. Finally, it brings the two logical perspectives this
work covers and gives its objectives.

The second chapter is responsible to give the mathematical formulation
of the BGW process. It also gives to this branching process the proper
context in epidemics. This is the chapter related to the model chosen and
gives a fundamental information, which is the relation of the contagion
random variable with the random variable representing the size of any further
generation.

The third chapter focuses on the deductive reasoning. It provides the
theory for four methodologies to get mass functions for further generations
given the probabilistic model of the contagion: probability generating func-
tions, Markov chain and Monte Carlo simulations. There is also an attempt of
improvement in the pgf methodology introducing polynomial identities for the
chain rule. Two major comparisons, which are better explained in the chapter
are done. One focuses on a local perspective, which is a state by state view
and the other on a global framework, which is related to the overall support.
All of them rely on computational costs, possible applications and individual
features.

The fourth chapter brings the plausible reasoning and studies the
bayesian parametric inference problem. First, it shows how to build likelihood
functions according to the type of data we are dealing. It also enunciates the
Lp-Wasserstein distance, which is an interesting metric on probability spaces
used in this work as a convergence criteria. It ends with the analysis of the
effects of stochastic data sequences.

The fifth, and last, chapter of this dissertation are the conclusions, which
sums up all of the content explored in the previous chapters and brings the
main results and understanding of this research.



2
Epidemic propagation modeled as a BGW process

An epidemic takes off with a unique infector, who belongs to the so-called
0th generation of infected members. This person is indicated as individual
number 1 in the realization of the BGW process in Figure 2.1. As a consequence
of the contact with him/her, another person got sick. This one is individual
number 2, who is the only infected member of the 1st generation. This time,
individual number 2 spread the disease to two people. They are indicated as
individuals number 3 and 4 and form the 2nd generation. Therefore, the size of
this generation is two. Following the digraph in Figure 2.1, individual number 3
is responsible for the infections of individuals number 5 and 6, while individual
number 4 infected individuals number 7 and 8. Hence, the 3rd generation has
size four. The remain network displays the relation of infections up to the 5th
generation.

1

2

3 4

5 6 7 8

9 10 11 12 13 14 15

16 17 18 19 20 21

Figure 2.1: Realization of the BGW process up to the fifth generation of
infected members.

The directed graph in Figure 2.1 is also known as a ramification tree.
Each random variable from the family of random variables of this stochastic
process X = {Xt} models the size of the generation of infected members
attached to the temporal index t. This is a branching process discrete in time.
Hence, t ∈ N0, in which t = 0 represents when the epidemic takes off with the
deterministic statement of a single initial infector, i.e., X0 = 1, and N0 is the
set of all natural numbers including zero. Since it is dealt with population sizes
per generation, the state space S of this branching process is also discrete. At



Chapter 2. Epidemic propagation modeled as a BGW process 21

first, the generation’s size can take any non-negative value, then S = N0. Later
on, when introducing the Markov chain approach, some restrictions on S are
discussed.

The key factor that rules the branching process is the number of suc-
cessful infections per infector. This aspect is modeled in here also as a discrete
random variable that assumes non-negative values. It is named as the conta-
gion random variable C. For instance, in the example of Figure 2.1, for the
individual number 6 and number 7 from the 3rd generation, each realization
of the contagion resulted in respectively one and two members infected that
belongs to the 4th generation. It is important to highlight that in the BGW
process, the contagions are independent and identically distributed (i.i.d.) ran-
dom variables. This means in the current context that the transmissibility does
not rely on the population size of the generation nor on the evolution of the
disease over time and reflects the demographic stochasticity.

To sum up, the epidemic always begins only with a single infector from
the 0th generation. A subsequent size generation Xt+1 depends on a quantity of
realizations of the contagion random variable. This quantity is the population
size of the most previous generation Xt. Notice that there is no way to ensure
this value at first, unless a realization of Xt is done. Except for the first
generation, in which X1 = C, since the previous generation size is unitary from
the deterministic statement. Generally speaking, the size Xt+1 is determined
according to Schinazi [20] as

Xt+1 =
Xt∑

k=0
C, t ∈ N0. (2-1)

This stochastic process ends when the size of any generation Xk, k ∈ N
is zero. In this situation, for any further value t > k, Xt is also zero, which
means the extinction of the disease in the epidemiological context.



3
Mass functions for further generations

3.1
Methodologies to find mass functions for further generations

As explicit in Eq. (2-1), the generation’s size Xt+1 is a sum of a random
number related to Xt of i.i.d. contagion random variables C. This chapter
focuses on quantifying the uncertainty over the generations of branching
processes. Therefore, get the cdf of each random variable from the family
X = {Xt} , t ∈ N is fundamental. This time, the 0th generation is not included,
because there is not any uncertainty inherent in its size. Since this is a discrete
state stochastic process, one similar way to achieve this goal is to find instead
each pmf for the subsequent generations. In this case, the pmf P (X = x) is
indeed the probability of x, in which P is the probability measure from the
probability space defined by the triple (Ω, F ,P).

Next, different methodologies to find mass functions for further genera-
tions in a BGW process given that the probabilistic model of the contagion
C is known are presented. The following approaches do not provide a pmf ex-
pressed by a single formula, which is usually found. But they are still able to
map the probabilities to each state from the state space S. Another observation
is that only further generations, i.e., the ones related to t ≥ 1 are at this point
discussed, because X1 follows the same law of C.

3.1.1
First methodology: probability generating functions

The probabilities pk = P (X = k), k ∈ S, for a non-negative integers-
valued random variable X can be rewritten uniquely in a power series config-
uration of increasing values of k: p0 + p1s + p2s

2 + . . .. One way to generate
this sequence is with the help of its probability generating function (pgf). The
pgf of a random variable X is the function GX (s) defined by

GX (s) :=
∞∑

x=0
sx P (X = x) = p0 + p1s + p2s

2 + . . . (3-1)

The pgf can be related to an expectation value using the law of sub-
conscious statistician, which is enunciated in Theorem 2.29 of Grimmett and
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Welsh [21],
GX (s) =

∞∑
x=0

sx P (X = x) = E
(
sX
)

. (3-2)

Two common pgfs are the ones related to the Binomial (m, p) distribu-
tion and the Geometric−0 (p). The former distribution models in this context
a society with strict social distancing rules, in which an infector contacts with
m infectees at most and the probability of infection is p for each of them. The
latter distribution models a society with weak social distancing rules, in which
there is no limit of infectees and the probability of infection is 1 − p for each
of them. Their pgfs are given as

– X ∼ Binomial (m, p):

GX (s) =
∞∑

x=0

(
m

x

)
px (1 − p)m−x sx = [(1 − p) + p s] m . (3-3)

– X ∼ Geometric − 0 (p):

GX (s) =
∞∑

x=0
p (1 − p)x sx = p

1 − (1 − p) s
. (3-4)

A useful property coming from the pgfs is the possibility to build a pgf
for the sum of a random quantity of i.i.d. random variables, such as the case
in Eq. (2-1). As a consequence, it enables to rewrite the probabilities related
to Xt+1 in a sequential way. The key aspect is to describe the pgf GXt+1 (s) as
a function of GC (s), which is known, once the contagion’s probabilistic model
is completely previously defined. This relation is represented in Eq. (3-5).

GXt+1 (s) =
∞∑

x=0
sx P (Xt+1 = x) = E

(
sXt+1

)
=

∞∑
i=0

E
(
sXt+1 | Xt = i

)
P (Xt = i)

=
∞∑

i=0
E

s

C + C + . . . + C︸ ︷︷ ︸
Xt times

P (Xt = i) (3-5)

=
∞∑

i=0
GC (s)︸ ︷︷ ︸
argument

i P (Xt = i) , since i.i.d.

= GXt (GC (s)) , as result of the definition in Eq. (3-1)

= GC (GC (. . . (GC (s)))) , recurrence happens t times.

Once the pgf of Xt+1 is described in terms of the pgf of C, it is possible
to evaluate the probabilities P (Xt+1 = k) , k ∈ S. In order to do that, it is
necessary to take the k-th derivative of GXt+1 (s), divide it for the factorial of
k and then evaluate the analytical expression in s = 0. These operations are
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summed up in Eq. (3-6)

P (Xt+1 = k) = 1
k!

d(k) [GC (GC (. . . (GC (s))))]
ds(k)

∣∣∣∣∣
s=0

. (3-6)

This approach provides a piecewise function with analytical expressions
per generation and state. They map the contagion random variable, through its
pgf, with any generation’s size probability. There is no need in this method-
ology to find probabilities of previous generations to get values of the mass
function for further ones. This property is so-called time-independency. More-
over, the probabilities of states of the same generation are evaluated individu-
ally, which means this methodology is a local one. In terms of computational
aspects, an extensive use of symbolic computation is required to find the ana-
lytical function multicomposition of the pgfs and their derivatives.

To clarify the use of the pgfs to find probabilities related to further
generations, suppose the contagion random variable is modeled as C ∼
Binomial (3, 0.5). The aim is to find the values of the mass function for the 3rd
generation’s size random variable, for instance the first four ones k = 0, 1, 2, 3.
Initially, the pgf GX3 (s) must be rewritten in terms of GC (s). According to
Eqs. (3-3) and (3-5), the relation between them is

GX3 (s) =
{

0.5 + 0.5
[
0.5 + 0.5 (0.5 + 0.5 s) 3

] 3
} 3

.

The probabilities are then evaluated using Eq. (3-6),

P (X3 = 0) = 1
0!

{
0.5 + 0.5

[
0.5 + 0.5 (0.5 + 0.5 s) 3

] 3
} 3
∣∣∣∣∣
s=0

= 0.204

P (X3 = 1) = 1
1!

d(1)
{

0.5 + 0.5
[
0.5 + 0.5 (0.5 + 0.5 s) 3

] 3
} 3

ds(1)

∣∣∣∣∣∣∣∣∣
s=0

= 0.093

P (X3 = 2) = 1
2!

d(2)
{

0.5 + 0.5
[
0.5 + 0.5 (0.5 + 0.5 s) 3

] 3
} 3

ds(2)

∣∣∣∣∣∣∣∣∣
s=0

= 0.138

P (X3 = 3) = 1
3!

d(3)
{

0.5 + 0.5
[
0.5 + 0.5 (0.5 + 0.5 s) 3

] 3
} 3

ds(3)

∣∣∣∣∣∣∣∣∣
s=0

= 0.134

Notice that only few values of the support of X3 were covered. Despite
the fact that there is no previous knowledge of the mass function for this gen-
eration, the actual support is indeed known. It is [0, 1, . . . , 27]. This is a conse-
quence of the contagion random variable’s distribution C ∼ Binomial (3, 0.5).
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The values of the mass function for X3 just evaluated are presented in blue in
Fig. 3.1 and the remain ones in gray.

0 5 10 15 20 25
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0.25

Figure 3.1: Mass function for X3 when C ∼ Binomial (3, 0.5). The blue values
are the ones evaluated with the pgfs.

3.1.2
Second methodology: polynomial identities for the chain rule

The task of evaluating directly the derivative in Eq. (3-6) may not
be feasible. The greater the number of the generation is, the corresponding
function of the pgf gets more complex, since the number of recurrences in the
function multicomposition increases. Another crucial aspect is that the order
of the derivative also increases accordingly to the number of infectors desired.
Instead of taking this straight approach, the chain rule could be applied and
then the derivatives are done individually for each function which composes
the multicomposition pgf. For instance, suppose the 1st and 2nd derivatives of
the function composition Φ (b) = f (g (b)) are sought. From the chain rule,

d(1) [Φ (b)]
db(1) = d(1) [f (a)]

da(1)

∣∣∣∣∣
a=g(b)

d(1) [g (b)]
db(1)

d(2) [Φ (b)]
db(2) = d(1) [f (a)]

da(1)

∣∣∣∣∣
a=g(b)

d(2) [g (b)]
db(2) + d(2) [f (a)]

da(2)

∣∣∣∣∣
a=g(b)

[
d(1) [g (b)]

db(1)

]2

.

Notice that the chain rule gives an identity in which derivatives are done
individually for the functions f (a) and g (b). In order to explain how these
identities are generated, some definitions are introduced.

Φk := D(k)Φ (b) , fk := D(k)f (a)
∣∣∣
a=g(b)

, gk := D(k)g (b) .

The derivatives above are then rewritten in a polynomial structure,

d(1) [Φ (b)]
db(1)︸ ︷︷ ︸

Φ1

= d(1) [f (a)]
da(1)

∣∣∣∣∣
a=g(b)︸ ︷︷ ︸

f1

d(1) [g (b)]
db(1)︸ ︷︷ ︸

g1
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Φ1 = f1 g1

d(2) [Φ (b)]
db(2)︸ ︷︷ ︸

Φ2

= d(1) [f (a)]
da(1)

∣∣∣∣∣
a=g(b)︸ ︷︷ ︸

f1

d(2) [g (b)]
db(2)︸ ︷︷ ︸

g2

+ d(2) [f (a)]
da(2)

∣∣∣∣∣
a=g(b)︸ ︷︷ ︸

f2

d(1) [g (b)]
db(1)︸ ︷︷ ︸

g1


2

Φ2 = f1 g2 + f2 g2
1.

The k-th derivative of a composition, Φk, is then related to a k-th
polynomial Bk composed by the monomials f1, f2, . . . , fk, g1, g2, . . . , gk:

Φk = Bk (f1, g1, f2, g2, . . . , fk, gk) := Bk ({fk} , {gk}) . (3-7)

With the help of the Faà di Bruno’s formula [22], these polynomials are
obtained according to Eq. (3-8):

Bk ({fk} , {gk}) =
N (ζ ⊢ k)∑

z=1,
ri: i ∈ ζk

z

k!
r1!r2! . . . rk!fr

[
g1

1!

]r1 [g2

2!

]r2

. . .
[
gk

k!

]rk

, (3-8)

where N (ζ ⊢ k) means the number of partitions ζ ⊢ k of the positive integer k,
each ζk

z , z = 1, 2, . . . , N (ζ ⊢ k) is a partition from the integer k, ri is the
number of parts i happening in that partition and finally r = r1+r2+· · ·+rk is
the sum of all possible numbers of parts of a specific partition. These definitions
come from the number theory.

For example, the partitions of the integer 4, ζ ⊢ 4, are all the following
representations of 4 as a sum of positive integers, in which the order is irrelevant
and hence they are written once with non-increasing order of parts:

ζ4
1 = 4

ζ4
2 = 3 + 1

ζ4
3 = 2 + 2

ζ4
4 = 2 + 1 + 1

ζ4
5 = 1 + 1 + 1 + 1

The integer 4 has then N (ζ ⊢ 4) = 5. There is only one part 4 in ζ4
1 and as a

consequence r1 = r2 = r3 = 0, r4 = 1 and r = 1. The partition ζ4
2 is composed

of a single part 3 and 1 in a way that r1 = r3 = 1, the others are null and
r = 2. There are only two parts of the same integer 2 in ζ4

3 and r = r2 = 2.
ζ4

4 has two parts of the integer 1 and one of 2, then r1 = 2, r2 = 1 and r = 3.
Finally, ζ4

5 is composed only of four parts of the same integer, 1, which means
that r = r1 = 4.

Eq. (3-8) gives the following polynomial identities:
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Φ1 = f1 g1

Φ2 = f1 g2 + f2 g2
1

Φ3 = f1 g3 + f2 (3 g2 g1) + f3 g3
1

Φ4 = f1 g4 + f2
(
4 g3 g1 + 3 g2

2

)
+ f3

(
6 g2 g2

1

)
+ f4 g4

1.

The Faà di Bruno’s formula gives an explicit expression for a specific
polynomial. But this is not the only way to get the identities for the chain
rule. Another attempt is through a recursive fashion technique that replaces
monomials’ indexes from previous polynomials generated according to

Bk+1 (f1, g1, f2, g2, . . . , fk+1, gk+1) =
k∑

j=0

(
k

j

)
Bk−j (f2, g1, f3, g2, . . . ,

fk−j+1, gk−j) gj+1.

(3-9)

in which B0 = f1.
This time Φ4 is also generated, but in the recursive fashion of Eq. (3-9).

Φ4 =
3∑

j=0

(
3
j

)
B3−j (f2, g1, f3, g2, . . . , f3−j+1, g3−j) gj+1

=
(

3
0

)
B3 (f2, g1, f3, g2, f4, g3) g1 +

(
3
1

)
B2 (f2, g1, f3, g2) g2 +(

3
2

)
B1 (f2, g1) g3 +

(
3
3

)
B0 g4

= f2 g3︸ ︷︷ ︸
f1→f2

g1 + f3 (3 g2 g1)︸ ︷︷ ︸
f2→f3

g1 + f4 g3
1︸ ︷︷ ︸

f3→f4

g1 + 3 f2 g2︸ ︷︷ ︸
f1→f2

g2 + 3 f3 g2
1︸ ︷︷ ︸

f2→f3

g2+

3 f2 g1︸ ︷︷ ︸
f1→f2

g3 + f1 g4

=f1 g4 + f2
(
4 g3 g1 + 3 g2

2

)
+ f3

(
6 g2 g2

1

)
+ f4 g4

1.

It is important to highlight that the polynomial identities found are
associated to derivatives of a function composition Φ (b) = f (g (b)). This is
the case specifically for the 2nd generation, in which Φ (s) = GC (GC (s)). For
any other function multicomposition, identities for the chain rule can also be
generated as in [23], but there is indeed no need of them. Instead of find these
other relations, the polynomial identities for a function composition can be
applied recurrently. For instance, suppose the 1st derivative of the function
multicomposition Φ (c) = f (g (h (c))) is sought. Firstly, g (h (c)) is rewritten
as j (c). Then, from the polynomial identities

Φ1 = B ({f1} , {j1})

Φ1 = f1 j1.
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But j1 itself is the first derivative of a function composition g (h (c)). Applying
again the first polynomial identity,

Φ1 = f1 B ({g1} , {h1})

Φ1 = f1 g1 h1,

in which

f1 = d(1) [f (a)]
da(1)

∣∣∣∣∣
a=g(h(c))

, g1 = d(1) [g (b)]
db(1)

∣∣∣∣∣
b=h(c)

, h1 = d(1) [h (c)]
dc(1) .

Eq. (3-6) can be then rewritten in terms of the polynomial identities for
derivatives of composition functions when k > 0,

P (Xt+1 = k) = 1
k! Bk

{GC (s)k} ,

GC (GC (. . . (GC (s))))k︸ ︷︷ ︸
t-1 recurrences



∣∣∣∣∣∣∣
s=0

. (3-10)

For example, P (X3 = 2) is desired to be known when the contagion
random variable is modeled as C ∼ Binomial (3, 0.5). With the help of
polynomial identities,

P (X3 = 2) = 1
2! B2

{GC (s)2}︸ ︷︷ ︸
{f2}

, {GC (GC (s))2}︸ ︷︷ ︸
{j2}


∣∣∣∣∣∣∣∣
s=0

= 1
2!
(
f1 j2 + f2 j2

1

)∣∣∣
s=0

= 1
2!
(

f1|s=0 j2|s=0 + f2|s=0 j1|s=0
2
)

= 1
2!

f1|s=0 B

{GC (s)2}︸ ︷︷ ︸
{g2}

, {GC (s)2}︸ ︷︷ ︸
{h2}


∣∣∣∣∣∣∣∣
s=0

+ f2|s=0

B

{GC (s)1}︸ ︷︷ ︸
{g1}

, {GC (s)1}︸ ︷︷ ︸
{h1}


∣∣∣∣∣∣∣∣
s=0



= 1
2!

f1|s=0

(
g1 h2 + g2 h2

1

)∣∣∣
s=0︸ ︷︷ ︸

2!P(X2=2)

+ f2|s=0 (g1 h1)|s=0︸ ︷︷ ︸
1!P(X2=1)

2


= 1

2!

[
D(1)GC (s)

∣∣∣
s=GC(GC(0))

(
D(1)GC (s)

∣∣∣
s=GC(s)

D(2)GC (s)
∣∣∣
s=0

+ D(2)GC (s)
∣∣∣
s=GC(0)

D(1)GC (s)
∣∣∣
s=0

2
)

+ D(2)GC (s)
∣∣∣
s=GC(GC(0))(

D(1)GC (s)
∣∣∣
s=GC(0)

D(1)GC (s)
∣∣∣
s=0

)2
]

= 1
2!
(
0.520 × 0.475 + 0.884 × 0.1782

)
= 0.138.

Notice that in order to calculate P (X3 = 2), the probabilities P (X2 = 2)
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and P (X2 = 1) could have been used if their values are beforehand known.
Instead of working with this methodology with time-independence, it is chosen
to embrace this time-dependence to avoid extra operations. It means that if
P (Xt+1 = k) , t > 1 and k > 1 is desired to be calculated, the probabilities
P (Xt = k) , k > 1 will be calculated before. It seems at first hand not a
beneficial idea. However, when the aim is to find the whole mass function for
subsequent further generations to see how the process develops in a stochastic
sense, this option provides advantages in terms of runtime. On the other hand,
the analytical expression relating the probability of any state from a further
generation and the contagion random variable is partially suppressed. Anyway,
this is also a local strategy.

Eqs. (3-8) and (3-9) are responsible to obtain the generalized polynomial
identities for the chain rule of a function composition. Once these structures
are available, they are saved as a data file. This stage requires an extensive
use of symbolic computation. The other stage consists of loading the identities
and then performing Eq. (3-10) according to the contagion’s pgf.

3.1.3
Third methodology: Markov chain

A stochastic process is a Markov chain if the probability of achieving the
following state it+1 ∈ S coming from the current state it ∈ S is independent of
its past, i.e.,

P (Xt+1 = it+1 | X0 = i0, X1 = i1, . . . , Xt = it) =

P (Xt+1 = it+1 | Xt = it) .
(3-11)

In other words, given the family of random variables X = {Xt}t ∈N

defined on the state space S, it is only necessary to know the current probability
distribution, Xt, in order to find the subsequent one, Xt+1. For the case of a
discrete state Markov chain, such as the BGW process, the mass functions
are assessed by two fundamental entities: the mass function for a current
distribution λXt and the t-th one-step transition matrix T (t). The former is
a row vector, whose size is the cardinality of the state space |S|, and the
entries are the probabilities of Xt related to each state of S. The latter is a
matrix with size |S|×|S|, whose elements are known as t-th one-step transition
probabilities pi,j (t) = P (Xt+1 = j | Xt = i). This matrix is called a stochastic
matrix since each row follows the normalization condition ∑j∈S pi,j (t) = 1 and
it is responsible to link the mass function for the current distribution λXt to
the next one λXt+1 , as in Eq. (3-12)

λXt+1 = λXt T (t). (3-12)
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It is also possible to link the mass function for the subsequent distribution
with the first one of the stochastic process. In this context, the pmf λXt+1 is
the same of λC , because the size of the first generation is unitary.

λXt+1 = λC T (1) T (2) . . . T (t). (3-13)

The one-step transition matrices from the BGW process are not the same,
which means it is a non-homogeneous Markov chain. This is a consequence
of the branching process’ network evolution. In the epidemic context, the
greater the number of the generation is, the number of infectees increases.
For instance, the generation t + 1 has qXt+1 infectees and hence there is an
one-step transition probability P

(
Xt+1 = qXt+1 | Xt = j

)
> 0. On the other

hand, the number of susceptible members of the t-th generation is fewer than
qXt+1 , hence P

(
Xt = qXt+1 | Xt−1 = j

)
= 0, ∀ j ∈ S.

A meaningful aspect is that the BGW process can have an infinite state
space S if a final index tf to the family X = {Xt}t ∈N is not set or if the
contagion random variable does not have a finite support. In both situations,
it is impossible to write completely the one-step transition matrices. Therefore,
a final generation to analyze must be imposed previously and the contagion
random variable must have finite support. In this case, the support of each
random variable from X = {Xt}t ∈N is 1[0,1,...,qC

t], in which qC is the upper
limit of infectees of the contagion random variable. The elements of the t-th
one-step transition matrix are defined for the BGW process according to

pi,j (t) =



1, if

i = j = 0

i > qC
t, j = 0

0, if


i = 0, j ̸= 0

i > qC
t, j ̸= 0

0 < i ≤ qC
t, j > i × qC

P
(

Xt=i∑
k=1

C = j

)
, otherwise .

(3-14)

The last statement of Eq. (3-14) has a sum of a beforehand known
deterministic number of times of the contagion random variable. This is not
the same as expressed in Eq. (3-5), in which this number is a stochastic object.
For now, another relation is established between the pgf of the generation’s size
random variable attached to index t+1 and the contagion one. The connection
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is presented next in Eq. (3-15),

GXt+1 (s) =
∞∑

x=0
sx P (Xt+1 = x) = E

(
sXt+1

)

= E

s

C + C + . . . + C︸ ︷︷ ︸
i times

 = E
(
sCsC . . . sC

)
= E

(
sC
)
E
(
sC
)

. . .E
(
sC
)

, from independence (3-15)

= GC (s) GC (s) . . . GC (s) , by Eq. (3-2)

= GC
i (s) .

The last case of the t-th one-step transition probabilities is obtained
similarly as in Eq. (3-6). The main difference is that this time the relation
between GC (s) and GXt+1(s) is given by Eq. (3-15) and it is a conditional
probability on the state of the current generation’s size Xt = i.

P
(

Xt=i∑
k=1

C = j

)
= 1

j!
d(j)

[
GC

i (s)
]

ds(j)

∣∣∣∣∣∣
s=0

(3-16)

This methodology is a time-dependent one, because the operation in
Eq. (3-13) when dealing with the multiplications coming from the left side
results in the sequence of mass functions

{
λXt

}
t>1

. Each element of this
sequence is a row vector covering the whole state space S, so it is not a local
approach.

Next, another example is used to illustrate the Markov chain method-
ology applied into the BGW process. Firstly, the contagion is modeled as
C ∼ Binomial(2, 0.5), so the upper limit number of infectees per genera-
tion is qXt = 2t. The aim is to get the pmf of the third generation’s size, hence
the state space is S = [0, 1, . . . , 23]. As a consequence, the one-step transition
matrices T (1), T (2) have size 9×9 and the initial row vector λX1 has size 1×9. A
few 2nd one-step transition probabilities are calculated in the following. They
are related, as an example, to the row i = 2, which means here that this row
considers the size of the second generation to be beforehand known and to be
two. According to Eqs. (3-3) and (3-15), the relation between the pgf of the
contagion random variable and the one of the third generation’s size given that
the second has size two is

GX3|X2=2 (s) =
[
(0.5 + 0.5 s)2

]2
The first five 2nd one-step transition probabilities for this row are
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obtained applying Eq. (3-14).

p2,0 (2) = 1
0!
[
(0.5 + 0.5 s)2

]2∣∣∣∣
s=0

= 0.063

p2,1 (2) = 1
1!

d(1)
{[

(0.5 + 0.5 s)2
]2}

ds(1)

∣∣∣∣∣∣∣∣
s=0

= 0.250

p2,2 (2) = 1
2!

d(2)
{[

(0.5 + 0.5 s)2
]2}

ds(2)

∣∣∣∣∣∣∣∣
s=0

= 0.375

p2,3 (2) = 1
3!

d(3)
{[

(0.5 + 0.5 s)2
]2}

ds(3)

∣∣∣∣∣∣∣∣
s=0

= 0.250

p2,4 (2) = 1
4!

d(4)
{[

(0.5 + 0.5 s)2
]2}

ds(4)

∣∣∣∣∣∣∣∣
s=0

= 0.063.

The remain 2nd one-step transition probabilities for i = 2 are all zero,
since 0 < i ≤ qC

t, j > i×qC . In other words, it is not possible for X3 ≥ 5, once
X2 = 2 and each infector in this case is restricted to contact with two infectees.
The complete 1st and 2nd one-step transition matrices of this examples are

T (1) =



1 0 0 0 0 0 0 0 0
0.250 0.500 0.250 0 0 0 0 0 0
0.063 0.250 0.375 0.250 0.063 0 0 0 0

1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0



T (2) =



1 0 0 0 0 0 0 0 0
0.250 0.500 0.250 0 0 0 0 0 0
0.063 0.250 0.375 0.250 0.063 0 0 0 0
0.016 0.094 0.234 0.313 0.234 0.094 0.016 0 0
0.004 0.031 0.109 0.219 0.273 0.219 0.109 0.0313 0.004

1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0


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The values of the mass function for the 3rd generation’s size are given as

λX3 = λC T (1)︸ ︷︷ ︸
λX2

T (2)

λX3 =
[
0.250 0.500 0.250 0 0 0 0 0 0

]
T (1) T (2)

λX3 =
[
0.483 0.217 0.177 0.078 0.033 0.009 0.003 4.883×10−4 6.104×10−5

]
.

Notice that the values of the mass function for the 2nd generation’s size
is also found along the operation above. The mass function for this distribution
is displayed next in Figure 3.2.

0 1 2 3 4 5 6 7 8

0
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0.2

0.3

0.4

0.5

Figure 3.2: Mass function for X3 when C ∼ Binomial (2, 0.5).

It is important to highlight that it is not possible to find the values of
the mass function for the 4th generation’s size for example with the one-step
transition matrices and the initial distribution above. In order to do that,
they must be resized according to a new state space S that includes all the
possible states of X4. Moreover, the 3rd one-step transition matrix must also
be calculated.

Another remarkable observation coming from the one-step transition
matrices of the BGW process is that the furthest matrix has all the elements of
the previous ones. This provides a great advantage in terms of computational
cost to find all necessary stochastic matrices. It avoids to calculate subsequently
all of them. From the last one matrix T (t), its rows qC

k + 2 to qC
t + 1 should

be replaced for row vectors that starts with 1 and is followed by zeros to get
T (k), ∀ 1 ≤ k < t.

3.1.4
Fourth methodology: Monte Carlo simulations

Monte Carlo simulations (MCS) is a numerical methodology based on
sampling from random generators to build statistical models. Its way of
employment is intrinsically associated to the problem in question. The general
steps that are common in the range of all applications are making realizations
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from a stochastic object, performing deterministic transformations on each
generated experiment, making sample statistics or histograms of them and
evaluating its convergence given a tolerance.

The problem in this work consists of finding the values of the mass
function for a further generation’s size. To tackle it, firstly nr realizations
of the branching process up to a desired generation is done. Each realization
is called an experiment and all of them represent a sample. Then, sample
statistics are taken from these nr realizations. They are indeed random objects,
since they rely at first on the random sample generator. In order to deal with
this uncertainty, a convergence analysis must be made. Then, a tolerance ξ

is established. If the sample statistics from the nr realizations do not satisfy
this error, another sample with a greater number of experiments than nr must
be generated and another sample statistics are taken and compared. For this
case, the difference between the sample mean µ̂Xt+1 and the expectation of the
generation’s random variable Xt+1 is compared with the tolerance

ξ̂t+1 =
∣∣∣E (Xt+1) − µ̂Xt+1

∣∣∣ < ξ. (3-17)

There are some problems in which it is impossible to get the expectation
of a specific random variable, but this is not the case E (Xt+1). In the BGW
process, despite the fact that there is no previous knowledge of the probability
distribution of any further generation, its expectation can be found as shown
in Grimmett and Welsh [21] with the help of the pgfs and Abel’s lemma

d(1)GXt+1 (s)
ds(1) = d(1)

ds(1)

∞∑
x=0

sx P (Xt+1 = x)

=
∞∑

x=0

d(1)

ds(1) sx P (Xt+1 = x)

=
∞∑

x=0
xs x−1 P (Xt+1 = x) . (3-18)

Taking s = 1 in Eq. (3-18), the expectation is found

d(1)GXt+1 (s)
ds(1)

∣∣∣∣∣
s=1

=
∞∑

x=0
xP (Xt+1 = x)

= E (Xt+1) . (3-19)

The relation between the pgf of a specific generation’s size GXt+1 (s) and
the pgf of the contagion random variable GC (s) is assessed by Eq. (3-5). This
substitution, in which recurrence happens t times, gives
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E (Xt+1) = d(1) [GC (GC (. . . (GC (s))))]
ds(1)

∣∣∣∣∣
s=1

. (3-20)

This numerical approach is a time-dependent and not a local method-
ology. Once the number of experiments nr is determined, each realization of
the branching process gives values of infected members per generation. Af-
ter that, a normalized histogram of each desired generation is done and the
approximation to the mass function along the support is visualized.

An example is explored in the following. The contagion random variable
is modeled this time as C ∼ Binomial(3, 0.7) distribution and the values of the
mass function for the 4th generation’s size are sought. Its expectation value
is E (X4) = 19.448 according to Eq. (3-20). For a tolerance of ξ = 0.001,
the sample statistic ξ̂4 from 48518 realizations attempts is acceptable. Its
convergence analysis is displayed in Fig. 3.3, in which the sample mean is
compared with the expectation of the random variable.

0.5 1 1.5 2 2.5 3 3.5 4 4.5

10
4
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15
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Expectation value

Figure 3.3: Convergence analysis of the number of experiments to approx-
imate the mass function for X4 when the contagion is modeled as C ∼
Binomial (3, 0.7) and a tolerance ξ = 0.001.

Therefore, nr = 49000 are made to build the histogram that approxi-
mates to the probability mass function for X4. Moreover, it is shown in Fig. 3.4
an evolution of histograms from different samples to show the stability of the in-
creasing number of experiments until nr = 49000 reflecting on the histograms’
shapes.

Monte Carlo has its foundations in two meaningful theorems: the law
of large numbers and the central limit theorem. The former ensures under
some circumstances that when increasing the sample size the approximations
converge. The latter shows how it converges.

3.1.4.1
The law of large numbers

Suppose a sequence of i.i.d. random variables Y1, Y2, . . . , Yn. Each one
of them has the same mean value µ and variance σ2. Now, another random



Chapter 3. Mass functions for further generations 36

0 25 50 75

0

0.01

0.02

0.03

0.04

0 25 50 75

0

0.01

0.02

0.03

0.04

0 25 50 75

0

0.01

0.02

0.03

0.04

0 25 50 75

0

0.01

0.02

0.03

0.04

Figure 3.4: Histogram evolution to approximate the mass function for X4 with
different samples when contagion is modeled as C ∼ Binomial (3, 0.7).

variable is defined as the sum of elements of the previous sequence, Sn =
Y1 + Y2 + . . . + Yn. We have that Sn/n converges in mean square to the
expectation value µ, Sn/n

m.s.−−→ µ, which means√√√√E
[(

Sn

n
− µ

)2]
→ 0, as n → ∞. (3-21)

3.1.4.2
The central limit theorem

Again, suppose the same sequence above and its elements’ sum Sn. This
time, rather than work with Sn, we deal with the standardized version of it,

Zn := Sn − E (Sn)√
var (Sn)

= Sn − nµ

σ
√

n
(3-22)

We have that Zn converges in distribution to a random variable, which
has normal distribution and its mean is 0 and variance is 1, Zn

d−→ N (0, 1),
which means

P (Zn ≤ x) →
∫ x

−∞

1√
2π

e− 1
2 u2

du, ∀ x ∈ R, as n → ∞. (3-23)
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3.2
Comparison among methodologies

In this section, the introduced methodologies are compared in terms of
computational cost (runtime and storage), time-dependency and local features,
limitations of the contagion’s random variable law and other aspects specific
from each methodology. It begins by comparing the pgf methodology with and
without the help of the polynomial identities of Section 3.1.2. Then, according
to the results of this first analysis, the pgf is also compared this time with
the Markov chain and Monte Carlo simulations methodologies. All codes were
written in MATLAB and they were run on a MacBook Air M2, 16 GB of RAM
and 512 GB of storage.

3.2.1
Local comparisons: probability generating functions with and without
polynomial identities

Firstly, the two different ways to obtain the general polynomial identities
in Section 3.1.2 are analyzed. Figure 3.5 shows the comparison in terms of
runtime (CPU time) between them.
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Figure 3.5: Runtime spent to generate each polynomial identity through Faà
di Bruno’s formula and recursive fashion.

Both approaches lead to almost the same runtime to generate the general
polynomial identities up to the case that covers later 30 infections in this
work’s context. From this number, the recursive fashion generates the next ones
identities faster. The execution of the Faà di Bruno’s generator was interrupted
when the 45th polynomial was obtained, once its runtimes were already longer
in comparison. Despite of the runtime benefit of the recursive fashion generator,
it was not feasible to find more polynomials than the 60th, because it faced
indeed a RAM issue. In order to get the 60th identity, the machine required
11.15 GB of RAM. This is a consequence of the cumulative extensive use of
symbolic computation to get each next polynomial. The total runtime spent
with the recursive fashion way to get all the 60 polynomials was 11559.943 s.
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After that, the polynomial identities are saved as MATLAB data files.
Finally, they are loaded and the values of the mass functions are obtained
according to Eq. (3-10) given the desired probability distribution of the
contagion random variable. The step of loading them required 2060.814 s.

The comparison between the pgf with and without the polynomial
identities is presented next. Two discrete probability distributions families
to model the contagion random variable are analyzed: the Binomial and
the Geometric-0. For each case, a parametric study is also presented. It is
important to highlight that the runtime spent to generate the polynomial
identities and the loading is not being included in the following analysis.

3.2.1.1
Contagion modeled as a Binomial distribution

For the case of C ∼ Binomial (m, p), the former parameter changes in
the range m = [2, 3], while the latter parameter in p = [0.3, 0.5, 0.7]. The 2nd
generation up to the 6th one are focused in here.

Figure 3.6 shows the runtime and the cumulative runtime to find the
values of the mass function for these generations for the Binomial (2, p) family
of random variables of the contagion. It is noticed that the pgf methodology
without the polynomial identities finishes faster the simulation. But, the
greater the number of the generation is, this difference decreases. According
to the value of the parameter p, the runtime’s curves visually vary for the pgf
itself, but not with the use of the polynomial identities.
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Figure 3.6: Runtime and cumulative runtime for the case of C ∼
Binomial (2, p) when comparing the pgf itself and with the help of polyno-
mial identities.

The notable peak displayed in the first point of the relation runtime
versus number of members infected for the identities approach from the
3rd generation on reflects the time-dependency of this methodology. It is
not possible to get the values of the mass function for the 3rd generation
without evaluating the ones from the 2nd one for example. Moreover, the
number of polynomial identities available cannot cover the whole support
of the 6th generation’ size. In this situation, the probabilistic information
missed is minimum as visualized in the pmf and cdf in Figure 3.7 for C ∼
Binomial (2, 0.7), which is the worst scenario.



Chapter 3. Mass functions for further generations 40

0 20 40 60

0

0.25

0.5

0.75

1

0 20 40 60

0.01

0.05

0.1

0.15

0.2

Figure 3.7: Pmf and cdf of X6 for C ∼ Binomial (2, 0.7)

Figure 3.8 shows this time the runtimes and cumulative runtimes for the
BGW process with C ∼ Binomial (2, 0.7).

2 4 6 8

10
-2

10
-1

10
0

2 4 6 8
10

-2

10
-1

10
0

5 10 15 20 25

10
-2

10
-1

10
0

5 10 15 20 25
10

-2

10
-1

10
0

10
1

10
2

20 40 60 80
10

-2

10
-1

10
0

10
1

10
2

N
o
 m

o
re

 i
d
e
n

ti
ti
e

s

20 40 60 80
10

-2

10
-1

10
0

10
1

10
2



Chapter 3. Mass functions for further generations 41

20 40 60
10

-2

10
-1

10
0

10
1

10
2

20 40 60
10

-2

10
0

10
2

10
4

20 40 60
10

-2

10
0

10
2

10
4

N
o

 m
o
re

 p
g
fs

20 40 60
10

-2

10
0

10
2

10
4

Figure 3.8: Runtime and cumulative runtime for the case of C ∼
Binomial (3, p) when comparing the pgf itself and with the help of polyno-
mial identities.

The pgf itself is not feasible to cover the entire support of the distribution
for generations further than the 5th one, due its already high values of
runtime for a few quantity of members infected. The parameter p = 0.5
is a exception. Its simulation runs faster than the others, because there is
a beneficial factorization in the probability generating function when this
value occurs. A forced expansion of the analytical expression provides indeed
similar runtimes coming from the other values of p. The polynomial identity
methodology for m = 3 has in general greater runtimes than the pgf itself in
this situation, but it is also not able to find all values of the mass function for
these random variables. The missed probabilistic content is now significant.
Figure 3.9 illustrates this aspect for the worst scenario of the 5th and 6th
generations, which is C ∼ Binomial (3, 0.7).
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Figure 3.9: Incomplete pmf and cdf of X5 and X6 for C ∼ Binomial (3, 0.7).

3.2.1.2
Contagion modeled as a Geometric-0 distribution

For the case of C ∼ Geometric − 0 (p), the probability of infection for
each member p varies in the range p = [0.3, 0.5, 0.7]. Unlike the previous one,
this distribution has not an upper limit for its support. Monte Carlo is then
first run for all the simulations desired to get a proper upper limit, because this
methodology allows with a few number of experiments and computational costs
to visualize the main interval inside the support that enclosures significant
probabilistic information. These results are displayed in Table 3.1. The values
of the mass function for the 2nd generation up to the 6th one are also sought
in here.

p t-th Generation
2 3 4 5 6

0.3 60 120 180 240 300
0.5 20 25 30 35 40
0.7 10 10 10 10 10

Table 3.1: Upper limit of the support according to Monte Carlo simulations.

Figure 3.10 presents the runtime and cumulative runtime of these sim-
ulations. This time, the pgf and the polynomial identities cover completely
the proposed support of the distributions for C ∼ Geometric − 0 (0.5) and
C ∼ Geometric − 0 (0.7). The worst scenario is C ∼ Geometric − 0 (0.3), in
which the number of identities contemplates totally only the second genera-
tion. Moreover, in this same scenario, the pgf methodology begins to struggle in
terms of runtime from the 4th generation on to entail all the support proposed.
It turns not feasible anymore to find the values of the mass function.
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Figure 3.10: Runtime and cumulative runtime for the case of C ∼ Geometric−
0 (p) when comparing the pgf itself and with the help of polynomial identities.

The situation gets more complicated in the 6th generation, in which
even with the limitation of the number of polynomial identities, the earlier
probabilities are way easier assessed by this means. The missing probabilistic
content is explored in Figure 3.11.
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Figure 3.11: Incomplete pmf and cdf of X5 and X6 for C ∼ Geometric−0 (0.3).

The different cumulative curves coming from the use of the polynomial
identities for the Geometric-0 case is a consequence of the support difference
of each contagion random variable evaluated. The runtime spent per member
infected is indeed the same per generation regardless of the model of the
contagion. The highest-valued curve in the cumulative runtime comparisons
over generations are the ones for p = 0.3, the mid ones from p = 0.5 and the
lowest-valued related to p = 0.7.



Chapter 3. Mass functions for further generations 45

3.2.2
Global comparisons

In this section, the analysis are done in a global perspective of the
generation’s size. Moreover, the methodologies are also compared in terms of
storage, except for the pgf, because the symbolic expressions get too complex
and it is not feasible to be stored in a data file. For the contagion modeled as
a Binomial random variable, Monte Carlo simulations, Markov chain and the
best scenario of the pgf regarding the use of polynomial identities or not based
are discussed. This last choice is based primarily on covering a greater support
and then on the cumulative runtime spent in case of the first one is the same.
For the Geometric-0 case, Markov chain methodology is not available.

3.2.2.1
Contagion modeled as a Binomial distribution

The analysis begins with the parametric study of the contagion random
variable modeled as C ∼ Binomial (2, p). For the Monte Carlo methodology,
the tolerance adopted was ξ = 0.001 for all simulations. The convergence study
was made individually for each generation desired based on p = 0.7, and the
required number of experiments nr and the correspondent expectation of its
random variables are shown in Table 3.2. The choice of p = 0.7 represents the
worst scenario, in which the probability of higher numbers of infected people
is seen.

t-th Generation 2 3 4 5 6
nr 1300 3900 14000 23000 54000

E (Xt) 1.960 2.744 3.842 5.378 7.530

Table 3.2: Number of experiments required per generation for C ∼
Binomial (2, p) and ξ = 0.001.

Based mainly on covering as many number of infected members per
generation as possible and then, in case of the support covered is the same,
on the cumulative runtime spent, Table 3.3 shows when the pgf is studied in a
global sense with or without the help of the polynomial identities. In Table 3.3
PGF refers to the case without the polynomials and ID for the opposite.
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p t-th Generation
2 3 4 5 6

0.3 PGF PGF PGF PGF PGF
0.5 PGF PGF PGF PGF PGF
0.7 PGF PGF PGF PGF PGF

Table 3.3: Description of when using probability generating function with or
without the help of polynomial identities for C ∼ Binomial (2, p).

Next, Figure 3.12 displays the runtime spent in a global sense for the
three methodologies and for the parametric analysis of p.
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Figure 3.12: Runtime spent in a global sense for C ∼ Binomial (2, p).

The Monte Carlo simulations’s runtime is actually a stochastic object,
because it relies on the random generator. Figure 3.12 illustrates only a single
realization of the runtime in each generation. For this specific scenario, this
methodology shows in general quicker runtimes. The Markov chain approach
has intrinsically a deterministic runtime, regardless of computational noises.
The same happens to the pgf approach, in which quicker values than the MC
one are presented, but it has the highest runtime increase per generation, due
the complexity advance of its analytical expressions associated to function
multicompositions.

The data file from a Monte Carlo simulations contains the runtime
spent for each experiment from the nr required, the number of members
infected per generation, the approximated values of the mass functions from
the generation’s size random variables. For the Markov chain methodology,
the data consists of all necessary one-step transition matrices, the values of
the initial distribution, the probabilities of the size from the generations and
the runtime spent of the entire simulation. Figure 3.13 shows the comparison
in terms of storage.
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Figure 3.13: Storage spent in a global sense for C ∼ Binomial (2, p).

The storage is also a random object for the Monte Carlo simulations.
Regardless the value of p, the storage of Monte Carlo methodology has the
greatest values in these realizations presented in Figure 3.13. The storage size
for the Markov chain approach remains almost the same regardless of the
value of p, except for p = 0.5, and it is a deterministic object. The storage
size differences between files with variables of the same amount of RAM is
a consequence of MAT-files’ features of storing with smaller data types and
using a specific data compression technique. More explanations of this subject
can be found in [24].

Now, the contagion is modeled as C ∼ Binomial (3, p). The same criteria
and considerations used above are again in here adopted. Table 3.4 shows the
number of experiments nr required and the expectation of the generations’
random variable.

t-th Generation 2 3 4 5 6
nr 12000 19000 49000 129000 3346000

E (Xt) 4.410 9.261 19.448 40.841 85.767

Table 3.4: Number of experiments required per generation for C ∼
Binomial (3, p) and ξ = 0.001.

Table 3.5 presents the scenarios in which the use of polynomial identities
have greater results according to the conditions established. This time, it is
seen that polynomial identities were at an advantage in general for greater
values of p.
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p t-th Generation
2 3 4 5 6

0.3 PGF PGF PGF ID ID
0.5 PGF PGF PGF PGF ID
0.7 PGF PGF PGF ID ID

Table 3.5: Description of when using probability generating function with or
without the help of polynomial identities C ∼ Binomial (3, p).

Runtime comparisons in a global sense are displayed in Figure 3.14 for
C ∼ Binomial (3, p). The red dashed lines are reminders of the incomplete
information of the pmf of the random variables for the pgf case. As a
consequence, the runtimes visualized of this methodology are lower than what
is indeed expected.
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Figure 3.14: Runtime spent in a global sense for C ∼ Binomial (3, p).

The Monte Carlo simulations methodology and the Markov chain have
closer values than the ones in the case C ∼ Binomial (2, p). But it is important
to highlight that the presented MCS values are just from one realization of the
runtime for each generation. Next, Figure 3.15 illustrates the storage spent.
The same characteristics observed for the case of C ∼ Binomial (2, p) are
somehow found in here given the scale difference aspect.
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Figure 3.15: Storage spent in a global sense for C ∼ Binomial (3, p).
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Another meaningful feature that has not been discussed so far is the
advantage of the analytical expression that links the contagion random variable
with the generation’s size random variable. Purely numerical methodologies,
such as the Monte Carlo simulations, do not get this probabilistic information.
As a consequence, it is not possible for example to use this methodology to
build a likelihood function in a bayesian inference problem. On the other hand,
Markov chain and the pgf approaches are effective to perform either a deductive
or inductive logical problem in this context.

3.2.2.2
Contagion modeled as a Geometric-0 distribution

The convergence analysis of Monte Carlo simulations for the parametric
study of the contagion modeled as C ∼ Geometric − 0 (p) is presentend
in Table 3.6. Now, the convergence study was made individually for each
generation desired based on p = 0.3 and the tolerance previously imposed
is also ξ = 0.001.

t-th Generation 2 3 4 5 6
nr 12000 38000 98000 190000 989000

E (Xt) 5.444 12.704 29.642 69.167 161.384

Table 3.6: Number of experiments required per generation for C ∼
Geometric − 0 (p) and ξ = 0.001.

The cases in which the pgf approach with polynomial identities are at an
advantage are represented in Table 3.7. The ID status for p = 0.3 and X6 is a
better option because the pgf methodology could not cover a greater support
due runtime issues, while for p = 0.3 and X5 the cumulative runtime with the
use of polynomial identities is lower than without it for the same support.

p t-th Generation
2 3 4 5 6

0.3 PGF PGF PGF PGF ID
0.5 PGF PGF PGF PGF ID
0.7 PGF PGF PGF PGF PGF

Table 3.7: Description of when using probability generating function with or
without the help of polynomial identities C ∼ Geometric − 0 (p).

Figure 3.16 displays the runtime comparison of both the methodologies:
MCS and pgfs. The red dashed lines represent this time the generations in
which the pgf methodology with or without the polynomial identities could
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not cover the proposed support from a preliminary analysis coming from the
Monte Carlo simulations exposed in Table 3.1.
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Figure 3.16: Runtime spent in a global sense for C ∼ Geometric − 0 (p).

The pgf approach comes closer to the values of runtime of the MCS
methodology for the values of p = 0.5 and p = 0.7. The main reason is that
the upper limit of the support of each generation of them is not that great as
in p = 0.3. Even not covering the complete proposed support, the runtimes
spent for the pgf are greater than the MCS ones for p = 0.3

Finally, the storage analysis is presented in Fig. 3.17. In this case, there
is not any other methodology to compare with the MCS one. The results
presented are again just a realization of this random object. The number of
experiments nr has a meaningful influence on it, because the data collects
nr realizations of each random variable from the BGW process. This is one
of the main reasons of the difference between the storage size of X6 for
C ∼ Binomial (2, p), C ∼ Binomial (3, p) and C ∼ Geometric − 0 (p).
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Figure 3.17: Storage spent in a global sense for C ∼ Geometric − 0 (p).



4
Inverse problem of bayesian parametric inference

4.1
Parametric inference problem of the contagion random variable

Let continuous parameters of a general model be assigned with the
random vector W = (W1, W2, . . . , Wk) and the data from different sources
with another random vector D = (D1, D2, . . . , Dn). Inspired in the idea of
Eq. (1-4),

P (W | D) =
∫

W
fW |D (w | d) dw

=
∫

W

fW ,D (w, d)
fD (d) dw

=
∫

W

fD,W (d, w)
fD (d) dw

=
∫

W

fD|W (d | w) fW (w)
fD (d) dw∫

W
fW |D (w | d) dw =

∫
W

fD|W (d | w) fW (w)
fD (d) dw

fW |D (w | d) = fD|W (d | w) fW (w)
fD (d) (4-1)

The development above begins with the probability measure P assigned
to a continuous random vector. For a Lebesgue measure, the idea of probability
is related to the cdf of the random object. As a consequence, four functions are
related. In a parametric inference problem, the data is an observable feature
d = d̂. Eq. (4-1) then is rewritten as

fW |D
(
w | d = d̂

)
=

fD|W
(
d = d̂ | w

)
fW (w)

fD

(
d = d̂

) (4-2)

Each term in Eq. (4-2) has a special name in literature:

– Posterior distribution is the one identified by fW |D
(
w | d = d̂

)
. This

represents the degree of belief of the underlying possible values of the
parameters assigned to the random vector W after the content of the
data gets observable, i.e., there is a realization of D.
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– Likelihood function is the one assigned in L (w) = fD|W
(
d = d̂ | w

)
. It

is responsible to change the previous beliefs of the underlying possible
values of the parameters given a new current information available in the
realization of D. Notice that L (w) is not necessarily a pdf. Instead of
that, it is a dimensionless numerical function, when multiplied by a prior
and a normalization constant may turn into a posterior distribution.

– Prior distribution is indicated as fW (w). This pdf states the knowledge
of the underlying values of the parameters assigned to random vector W

before data is available.

– Evidence is related to the quantity in fD

(
d = d̂

)
. Its dependency relies

only on the data. Therefore, it is a constant in the inference problem and
in many situation is not evaluated leading to Eq. (4-3).

fW |D
(
w | d = d̂

)
∝ fD|W

(
d = d̂ | w

)
fW (w) . (4-3)

Eqs. (4-2) and (4-3) provide an easier way to tackle inference problems.
The hard task of describing directly the knowledge for the hypothesis regarding
the parameters in light of data is rearranged for a combination of more under-
standable functions. Through the prior function, it is possible to incorporate
any source of knowledge of the problem in question before data is available.
Moreover, anytime a new information arrives, it is also possible to update the
current belief with the help of the likelihood.

The data can be incorporated sequentially or in a batch way. When the
data is independent, which means that the measurement of one datum does
not affect the outcome of another, the likelihood function can be expressed in
the one-step configuration as

fD|W
(
{dk} =

{
d̂k

}
| w

)
=

k∏
z=1

fD|W
(
dz = d̂z | w

)
. (4-4)

In our context, the aim is to make bayesian inferences of parameters from
the distribution function which models the contagion random variable, given
some set of data. We begin by proposing a discrete random variable family
to it, for instance the Binomial distribution. The challenge is now to assign a
likelihood function and a prior distribution.

The data available could be for example a collection of different spots of
a same region, all of them referring to the first generation’s size of members
infected. A good technique to assign a proper likelihood function is to identify
a sampling distribution fD|W (d | w = ŵ) when available. In this case, the
sampling distribution for each data is indeed the mass function from the
Binomial contagion random variable
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fX1|W (x1 | w = {m̂, p̂}) = m̂!
x1! (m̂ − x1)!

p̂ x1 (1 − p̂)m̂−x1 .

To simplify the problem, we assume that the parameter m is beforehand
known, so it is an observable m̂. The bayesian inference is applied only to the
parameter p. Therefore, given the sampling distribution that is related to the
deductive logical analysis, the likelihood function is

L (p) = m̂!
x̂1! (m̂ − x̂1)!

p x̂1 (1 − p)m̂−x̂1 .

If the k data collected from different spots are independent, the posterior
distribution representing the degree of belief in the underlying values of
parameter p is given in a batch sample as

fP |X1 (p | {x1k
} = {x̂1k

}) ∝
k∏

z=1

[
m̂!

x̂1z ! (m̂ − x̂1z)! p x̂1z (1 − p)m̂−x̂1z

]
fP (p)

In the absence of any coherent information available to ascribe features
to the prior distribution, a flat uniform one reflects the previous state of
knowledge. As a consequence, the prior distribution has no longer a dependency
on the parameter, regardless of the support [0, 1]. It is a constant. The posterior
is now proportional only to the likelihood function,

fP |X1 (p | {x1k
} = {x̂1k

}) ∝
k∏

z=1

[
m̂!

x̂1z ! (m̂ − x̂1z)! p x̂1z (1 − p)m̂−x̂1z

]

When data comes directly from realizations of the first generation’s size,
the likelihood function for the inverse problem is at first hand available, because
a law is assumed for the contagion. The attempts of the bayesian inference in
this situation are to find the most suitable probabilistic description of the
degree of belief of the underlying values of parameters according to the data.
The situation gets more complex when data comes from a further generation
or from a realization of the stochastic process observed over a certain number
of generations. In each one of these two scenarios, a specific strategy to make
the bayesian inference is required. The two developed strategies are explained
next.

4.1.1
First strategy: data coming from some further generation

Consider that the source of data is any further generation’s size of
members infected of different spots of a region. We start again proposing a
probabilistic model to the contagion, but how can we build a proper likelihood
function? The best attempt is to look at the BGW process in a deductive
perspective and find somehow another sampling distribution. As explored in
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the previous section, the pgf and Markov chain approaches provide piecewise
pmfs for each state from any generation attached to the BGW process. As
a novelty, this work shows that they are indeed tools to build the likelihood
functions.

The first technique has a sampling distribution according to Eq. (3-6)
from the previous section

fXt|W (xt | w = ŵ) = 1
xt!

d(xt) [GC (GC (. . . (GC (s, w = ŵ))))]
ds(xt)

∣∣∣∣∣
s=0

, (4-5)

in which the multicomposition function has t − 1 recurrence assignments. We
emphasize this time that the pgf GC (s, w = ŵ) has also a dependency on
parameters w from the distribution assigned to the contagion. It is usually
not represented, because in the deductive logic, the contagion is completely
previously defined. Based on Eq. (4-5), the piecewise likelihood function is
introduced as

L (w) = 1
x̂t!

d(x̂t) [GC (GC (. . . (GC (s, w))))]
ds(x̂t)

∣∣∣∣∣
s=0

. (4-6)

The construction of the likelihood function this time based on Markov
chain technique has also the limitation that the support of the contagion’s
probabilistic model must be finite. The sampling distribution according to this
method is given in Eq. (3-13).

fXt|W (xt | w = ŵ) = λC (w = ŵ) T (1) (w = ŵ) T (2) (w = ŵ) . . .

T (t−1) (w = ŵ)
(4-7)

Again, we highlight the dependency on parameters from the contagion
random variable. The pmf λC is directly dependent on them, whereas the
elements of one-step transition matrices rely on pgfs, which are functions
of these parameters. Finally, the likelihood function is obtained. Einstein
summation convention is adopted here.

L (w) = λC
i (w) T

(1)
ij (w) T

(2)
jk (w) . . . T

(t−1)
lm (w) δm x̂t

= λXt
x̂t

(w)
(4-8)

In other words, the likelihood function in this case is the analytical expression
that belongs to the position x̂t from the vector λXt , which is a function of the
parameters w.

In order to clarify how the bayesian parameter inference works and give
a better glimpse on how to use data from some further generation for this
purpose, an example is presented next. Our source of data comes for instance
from different realizations of the 2nd generation from the BGW process. Again,
we assume that the contagion’s random variable model is Binomial (3, p).
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Therefore, the aim is to estimate the parameter p.
According to the bayesian perspective, the parameter is indeed treated

as random variable P . Once more, there is not any coherent information in
our hands about the underlying values of this random variable. The priori
distribution is then better described as a uniform distribution. The state space
from X2 is in this situation S = {0, 1, . . . , 9}. These are all the possible
realizations of the 2nd generation’s size random variable. Each one of them
associates a dimensionless numerical function relying on p, i.e., a likelihood
function.

We could choose in this scenario between Eq. (4-6) and Eq. (4-8) to get
the expressions. Selecting the second one, which seems trickier at first hand, we
first need the initial distribution vector λC (p), which has all the probabilities
related to the random variable C, but relying on the parameter p. From the
pmf of the Binomial distribution,

λC (p) =
[

− (p − 1)3︸ ︷︷ ︸
C=0

3 p (p − 1)2︸ ︷︷ ︸
C=1

−3 p2 (p − 1)︸ ︷︷ ︸
C=2

p3︸︷︷︸
C=3

0 . . . 0︸ ︷︷ ︸
4≤C≤9

]
.

The other fundamental point in here is to write the one-step transition
matrices. In order to move from the 1st generation to the 2nd one, only the
1st one-step transition matrix T (1) is required. Each element of it depends for
our purpose on a function of GC (s, w), which is obtained in a similar way as
presented in Eq. (3-14) combined with Eq. (3-16),

pi,j (t, w) =



1, if

i = j = 0

i > qC
t (w) , j = 0

0, if


i = 0, j ̸= 0

i > qC
t (w) , j ̸= 0

0 < i ≤ qC
t (w) , j > i × qC (w)

P
(

Xt=i∑
k=1

C = j

)
= 1

j!
d(j)

[
GC

i (s, w)
]

ds(j)

∣∣∣∣∣∣
s=0

, otherwise.

(4-9)

For instance, the first four elements of the third row from the 1st
one-step transition matrices p2,0 (1, p) , p2,1 (1, p) , p2,2 (1, p) , p2,3 (1, p), which
suppose C = 2, according to Eq. (4-9) are

p2,0 (1, p) = 1
0!
[
[(1 − p) + p s] 3

]2∣∣∣∣
s=0

= (p − 1)6
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p2,1 (1, p) = 1
1!

d(1)
[
[(1 − p) + p s] 3

]2
ds(1)

∣∣∣∣∣∣∣
s=0

= −6 p (p − 1)5

p2,2 (1, p) = 1
2!

d(2)
[
[(1 − p) + p s] 3

]2
ds(2)

∣∣∣∣∣∣∣
s=0

= 15 p2 (p − 1)4

p2,3 (1, p) = 1
3!

d(3)
[
[(1 − p) + p s] 3

]2
ds(3)

∣∣∣∣∣∣∣
s=0

= −20 p3 (p − 1)3 .

Given the complete first one-step transition matrix T (1) (p), we are now
able to find all the possible likelihood expressions per state.

λX2 (p) = λC (p) T (1)

(
λX2 (p)

)⊤
=



−(p − 1)3 − 3 p2 (p − 1)7 − p3 (p − 1)9 − 3 p (p − 1)5

9 p2 (p − 1)4 + 18 p3 (p − 1)6 + 9 p4 (p − 1)8

−9 p3 (p − 1)3 − 45 p4 (p − 1)5 − 36 p5 (p − 1)7

3 p4 (p − 1)2 + 60 p5 (p − 1)4 + 84 p6 (p − 1)6

−45 p6 (p − 1)3 − 126 p7 (p − 1)5

18 p7 (p − 1)2 + 126 p8 (p − 1)4

−84 p9 (p − 1)3 − 3 p8 (p − 1)

36 p10 (p − 1)2

−9 p11 (p − 1)

p12


Suppose that the k-th first elements of a sequence of data collected from

realizations of X2 are {X2}k,k∈N∗ = {1, 1, 0, 0, 0, 2, . . .}. The first likelihood in
this case is given by the second element from the vector above, once X2 = 1.
It makes the posterior distribution be proportional to

fP |X2 (p | {x2}1 = {1}) ∝ 9 p2 (p − 1)4 + 18 p3 (p − 1)6 + 9 p4 (p − 1)8.

To make the expression above a probability density function (pdf), we
should multiply it by the inverse of its integral over the domain of p, which
would be exactly the value of the evidence term not mentioned. It is indeed
not necessary for merely parametric estimation. Following the sequence of
realizations, we have observed again X2 = 1, which makes the likelihood
function to be the second element of the vector as expected. The latest posterior
probability expressed is now the prior one. Multiplying both the current prior
and likelihood function, the updated posterior distribution is now

fP |X2 (p | {x2}2 = {1, 1}) ∝
[
9 p2 (p − 1)4 + 18 p3 (p − 1)6 + 9 p4 (p − 1)8

]2
.
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This updating process follows the same way as long as data coming from
X2 is available. The latest posterior turns the brand-new prior in light of new
information processed by the corresponding likelihood function in the vector
presented. The subsequent normalized posterior distributions are displayed in
Figure 4.1.
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Figure 4.1: Normalized posterior distribution evolution in light of new data
coming from realizations of X2.

When the number of realizations of X2 increases, the posterior distri-
bution related to the parameter in question tends to become a Dirac delta
function as far as the updating process lasts. This property is illustrated in
Figure 4.1. The higher degree of beliefs in the possible underlying values of the
random variable P concentrates each time in closer confidence intervals and
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the best statistic to estimate a value for the parameter p is the mode of its
posterior distribution.

4.1.2
Second strategy: data is a realization of the branching process observed
over a certain number of generations

Instead of data coming from realizations of a single generation of the
branching process, we could consider a different type of data. The data could
be just one realization of the branching process observed over a certain number
of generations. The main question remains: how to build proper likelihoods?
The answer to this question is another novelty of this work. In literature,
this sort of data has been used before in bayesian non-parametric inference
for multitype BGW processes [25]. This is not the case of this work, since
it is a bayesian parametric estimation. Before starting to develop this second
strategy, a brief observation about data dependence is quite important.

Eq. (4-6) and Eq. (4-8) provide likelihood functions for data coming from
a further generation. We could at first in this new strategy think to use one of
these equations applied to each generation from the ramification tree with no
concerns. At first sight this seems like a good idea, however, in the previous
case, the outcome of some Xt has not any influence on the next outcome of this
same random variable, since they are not from the same BGW process. This is
not what happens here. The subsequent data collected are structured. There
is a dependence, which modifies the updating process and does not allow to
use the assumption made in Eq. (4-4).

According to the Eq. (4-3), the first updating process is written as

fW |D
(
w | d = d̂

)
∝ fD|W

(
d = d̂ | w

)
fW (w) .

In order to save notation, we define in here

f
(
w | d̂

)
:= fW |D

(
w | d = d̂

)
f
(
d̂ | w

)
:= fD|W

(
d = d̂ | w

)
f (w) := fW (w) .

(4-10)

For the case of this parametric inference problem, the updating starts with
D = X1 and the parameter investigated is W = P ,

f (p | x̂1) ∝ f (x̂1 | p) f (p) (4-11)

The following update comes from data related to X2, when the most previous
posterior distribution is now the prior one,

f (p | x̂2, x̂1) ∝ f (x̂2 | x̂1, p) f (p | x̂1) (4-12)
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Next, new information comes from X3, then from X4 and so on. The
updates up to some Xt data are presented in the following.

f (p | x̂3, x̂2, x̂1) ∝ f (x̂3 | x̂2, x̂1, p) f (p | x̂2, x̂1) (4-13)

f (p | x̂4, x̂3, x̂2, x̂1) ∝ f (x̂4 | x̂3, x̂2, x̂1, p) f (p | x̂3, x̂2, x̂1) (4-14)
...

f (p | x̂t, x̂t−1, . . . , x̂2, x̂1) ∝ f (x̂t | x̂t−1, . . . , x̂2, x̂1, p) f (p | x̂t−1, . . . , x̂2, x̂1) .

(4-15)

The prior distribution from Eq. (4-15) is the posterior when data arrived
from Xt−1. Defining f (p | {x̂t}) := f (p | x̂t, x̂t−1, . . . , x̂2, x̂1) and reassigning to
each current prior the expression of the latest posterior in a recurrence fashion,

f (p | {x̂t}) ∝ f (x̂t | x̂t−1, . . . , x̂2, x̂1, p) f (p | {x̂t−1})

∝ f (x̂t | x̂t−1, . . . , x̂2, x̂1, p) f (x̂t−1 | x̂t−2, . . . , x̂2, x̂1, p)

f (p | {x̂t−2})

∝ f (x̂t | x̂t−1, . . . , x̂2, x̂1, p) f (x̂t−1 | x̂t−2, . . . , x̂2, x̂1, p)

. . . f (x̂2 | x̂1, p) f (p | {x̂1})

∝ f (x̂t | x̂t−1, . . . , x̂2, x̂1, p) f (x̂t−1 | x̂t−2, . . . , x̂2, x̂1, p)

. . . f (x̂2 | x̂1, p) f (x̂1 | p) f (p) .

(4-16)

Since the BGW process has the Markov property,

f (p | {x̂t}) ∝ f (x̂t | x̂t−1, p)︸ ︷︷ ︸
(A)

f (x̂t−1 | x̂t−2, p)︸ ︷︷ ︸
(A)

. . . f (x̂2 | x̂1, p)︸ ︷︷ ︸
(A)

f (x̂1 | p)︸ ︷︷ ︸
(B)

f (p)︸ ︷︷ ︸
(C)

.
(4-17)

The likelihood functions signed with (A) are obtained according to

f (x̂k | x̂k−1, p) = 1
x̂k!

d(x̂k)
[
GC

x̂k−1 (s, p)
]

ds(x̂k)

∣∣∣∣∣∣
s=0

. (4-18)

Otherwise, the remain likelihood signed with (B) can be found according to
Eq. (4-6) or just building it through the sampling distribution of the contagion
random variable. Finally, the function marked with (C) is just the prior
distribution.

Another example is presented to clarify this way of making bayesian
parametric inference. We assume again that the probabilistic model for the
contagion random variable is C ∼ Binomial (3, p) and we want to estimate
the parameter p. Therefore, it is treated as a continuous random variable P
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with support [0, 1], which covers the physical possible values of it. Suppose a
realization of the branching process is composed by the following realization
of subsequent generations {Xk}k∈N∗ = {1, 2, 4, 3, 5, 6, . . .}.

Our prior knowledge of P is modeled as a uniform distribution. The first
data X1 = 1 provides the following likelihood according to Eq. (4-6)

f (x̂1 | p) = 1
1!

d(1) [(1 − p) + p s] 3

ds(1)

∣∣∣∣∣
s=0

= 3 p (p − 1)2 .

As a consequence, the posterior distribution is

f (p | x̂1) ∝ 3 p (p − 1)2 .

Based on the conditional statement X2 = 2 | X1 = 1, the next likelihood is
built. From Eq. (4-18), the corresponding expression is

f (x̂2 | x̂1, p) = 1
2!

d(2) [(1 − p) + p s] 3

ds(2)

∣∣∣∣∣
s=0

= −3 p2 (p − 1) ,

which transforms our posterior distribution into

f (p | {x̂2}) ∝ −9 p3(p − 1)3.

The subsequent normalized posterior distributions are displayed in Fig-
ure 4.2. It shows the evolution of them in light of new data coming from further
generations of the same BGW process.
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Figure 4.2: Normalized posterior distribution evolution in light of new data
coming from realizations of subsequent generations of the same BGW process.

4.2
Measuring convergence in the updating of the posterior distributions

The likelihood function is responsible to change our degree of beliefs of
the underlying values of W given a new information d̂1 available. It modifies
the shape of prior distributions’ pdf and turns in into a posterior distribution.
What if the information obtained was for instance d̂2 instead of d̂1? Could the
transformation have been more significant? How to measure it?
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An interesting way to do this is by calculating a distance named Lp-
Wasserstein [26]. This is a probability metric that relates to an optimal mass
transference problem. It is also known as the Monge-Kantorovich problem.
We start with an example to give a better glimpse. Suppose we have an initial
two-dimensional mass function represented by fA (xA, yA) and we would like to
transform it to a configuration given by the also two-dimensional mass function
fB (xB, yB). Figure 4.3 shows a two dimensional scatter view of fA (xA, yA) in
blue color and fB (xB, yB) in red color.

Figure 4.3: Two dimensional scatter view of fA (xA, yA) and fB (xB, yB).

A possible transport plan to move the content of fA (xA, yA) to
fB (xB, yB) is illustrated in Figure 4.4. When moving some quantity of proba-
bility (mass) from a point from the domain of fA (xA, yA) into a point from the
domain of fB (xB, yB), there is also a cost embedded as a distance. Another
possible transport plan is illustrated in Figure 4.5.

There are many other possible options for transport plan to move
the content from fA (xA, yA) to fB (xB, yB). They are indeed in this case
joined mass functions fA,B (xA, xB, yA, yB), whose marginals are fA (xA, yA)
and fB (xB, yB). However, which one of them is the optimal transport plan
f ∗

A,B (xA, xB, yA, yB) responsible to minimize the cost associated to the trans-
ferring?

For now, the Lp-Wasserstein Wp (•, •) is defined as the total cost given
by the optimal transport plan between two pmf (discrete case) or two pdf
(continuous case), in which the cost function is a p-norm. Therefore, for the
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Figure 4.4: First option of transport plan to move fA (xA, yA) to fB (xB, yB).

Figure 4.5: Second option of transport plan to move fA (xA, yA) to fB (xB, yB).

continuous case that is faced in this work, the Lp-Wasserstein between the
posterior fα

(
p1 | d̂

)
and the prior fβ (p2) distributions is

Wp (fα, fβ) =
 inf

fα,β ∈ Γ(fP |D,fP )

∫
Ω×Ω

d (p1, p2)p dfα,β (p1, p2)
1/p

. (4-19)

It is not a simple task to find the optimal transport plan. However,
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there is a closed solution for the Lp-Wasserstein in case both the probability
distribution are continuous and one-dimensional [27, 28],

Wp (fα, fβ) =
[∫ 1

0

∣∣∣F −1
α (z) − F −1

β (z)
∣∣∣ p dz

]1/p

, (4-20)

in which, Fα

(
p1 | d̂

)
and Fβ (p2) are the cdf from the posterior and prior

distributions.

4.3
Comparison between the two strategies to make the bayesian inference

Given that in this work two strategies to use data from the BGW process
to estimate parameters from the contagion random variable are introduced,
we would like to understand what are the advantages and disadvantages
of each strategy. More than this, we would like to compare them in terms
of computational cost and rate of convergence when making the posterior
updating. Some of the questions that arise are: is it easier to estimate the
parameters using different data from the same generation or from a single
realization of the ramification tree? Is it faster (in terms of computational cost)
to estimate the parameters using different data from the same generation or
from a single realization of the ramification tree observed over a certain number
of generations? If we use the first strategy, that is, different realizations from
the same generation, what would be the influence of the generation’s number
in the rate of convergence? In other words, what leads to faster convergence,
to use data from an earlier generation or a more advanced?

First, we need to define a stopping criteria for the updating to the
bayesian parametric estimation. This is done here using the L2-Wasserstein
distance [29]. If the subsequent information does not change a prior distribution
into a posterior one in a value of L2-Wasserstein greater than ξW2 = 1 × 10−3,
the updating process is interrupted. An example is showed in the following.
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Figure 4.6: Example of convergence for bayesian parametric inference.
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Figure 4.6 shows a convergence analysis for data coming from X1 where
the contagion random variable is modeled as C ∼ Binomial (3, p). Based on
the L2-Wasserstein stopping criteria, the number of updates necessary was
n1 = 42, as showed in blue line. For every posterior distribution for the random
variable P , its mode was tracked and it was seen in red line that as long as
data arrived, the best estimate for P tended to a value of p ≈ 0.7.

There is a fundamental aspect to be considered of this analysis. A specific
data sequence {x1}k = {3, 2, 1, 1, 2, 3, . . .} is the one responsible for the number
of updates n1, the L2-Wasserstein path and the mode of P path visualized.
If another sequence was observed, different results of them would happen.
Therefore, the number of updates is indeed a random variable, here named N ,
conditional on the data sequence random variable {X1}k. The other features
are conditional stochastic processes.

In order to deal with this uncertainty scenario, Monte Carlo simulations
are done in order to get the mass function of the random variable N . The
stopping criteria in this case is based on the stability of the cumulative mean
of the outcomes nk.

The following analysis are divided in three main general cases: parametric
estimation for the contagion modeled as Binomial (3, p), Geometric−0 (p) and
Poisson (λ) families. For the first and second of them, a parametric study on
artificial data for the cases p = [0.3, 0.5, 0.7] is performed and, for the last one,
a parametric study on λ = [0.9, 1.5, 2.1] is done. For each of them, we compare
the case of data coming from the same 1st up to 4th generations and from a
certain number of generations of the same realization of a BGW process.

4.3.1
Contagion modeled as a Binomial distribution

First, as a result of the Monte Carlo simulations, the number of exper-
iments to study the stochastic effect of data sequence on the bayesian para-
metric estimation was 200 for C ∼ Binomial (3, p). All the scenarios studied
for this random variable family were done with Markov chain technique from
Eq. (4-8), because it was previously show in the last chapter that it is faster
than the pgf one. The cumulative mean for the outcomes of the number of
updates N is showed in Figure 4.7. The initial parameter to generate data to
study the case C ∼ Binomial (3, p) is p = 0.3.
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Figure 4.7: Convergence of the cumulative mean of the number of updates for
the case of data coming from the same generation when C ∼ Binomial (3, 0.3).

Despite the fact that the greater the number of the generation is, its
support is larger, the cumulative mean comparison shows that the number of
updates to achieve the convergence based on L2-Wasserstein gets slightly fewer
in mean. Next, it is presented in Figure 4.8 the mode of P paths from each
experiment done.
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Figure 4.8: Mode of P paths for the case of data coming from the same
generation when C ∼ Binomial (3, 0.3). The black curves are the mean paths.

From the mode of P paths indicated in Figure 4.8, it is observed that,
the greater the number of the generation is, the deviations of modes in general
decrease for the same number of udpates. Some values of the support are not
even once considered as a best estimate for P , which comes from the fact that
observed data from further generations tends to concentrate at small intervals
in comparison to its total support. This is a consequence of the pmf of them,
which affects directly the likelihoods chosen to update priors into posteriors
distributions.
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Next, the cumulative mean for the outcomes of the number of updates
N from data generated by C ∼ Binomial (3, 0.5) is presented in Figure 4.9.
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Figure 4.9: Convergence of the cumulative mean of the number of updates for
the case of data coming from the same generation when C ∼ Binomial (3, 0.5).

Likewise the last scenario, the greater the number of the generation is,
the cumulative mean indicates that the number of updates to achieve the
convergence criteria of L2-Wasserstein is lower. This time, the 4th generation
had a larger fluctuation in its value in comparison with the case p = 0.3. The
respective mode of P paths per experiment are displayed in Figure 4.10.
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Figure 4.10: Mode of P paths for the case of data coming from the same
generation when C ∼ Binomial (3, 0.5). The black curves are the mean paths.

The mode of P paths have the same behavior as for p = 0.3. However,
for the 1st generation now, the modes are somehow symetrically distributed
around the mean mode of P path. This particularity for X1 is related to its
symmetrical pmf alongside the support.
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Finally, the Monte Carlo simulations for the case of p = 0.7 is depicted
now in Figure 4.11.
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Figure 4.11: Convergence of the cumulative mean of the number of updates for
the case of data coming from the same generation when C ∼ Binomial (3, 0.7).

More infectious diseases, i.e., greater values of p for the contagion random
variable modeled as a Binomial family need lower number of updates to achieve
the convergence criteria of L2-Wasserstein. The same is true the greater the
number of the generation is in any of the three scenarios in here presented. In
the following, the mode of P paths are displayed in Figure 4.12. They follow
the same behavior presented in other scenarios.
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Figure 4.12: Mode of P paths for the case of data coming from the same
generation when C ∼ Binomial (3, 0.7). The black curves are the mean paths.

As exposed above, the greater the number of the generation is, the re-
quired number of updates to achieve the convergence criteria of L2-Wasserstein
decreases in mean. However, it is important to highlight that the runtime spent
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to work with these likelihoods increases a lot, due their analytical complexity
gain.

A better comprehension on why data from further generations are more
useful to achieve the L2-Wasserstein convergence is experienced in the presence
of the likelihood functions view. Figure 4.13 displays all possible normalized
likelihoods functions coming from the 1st up to the 4th generation.
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Figure 4.13: Normalized likelihood functions coming from the 1st up to 4th
generation for C ∼ Binomial (3, p).

The greater the number of the generation is, the normalized likelihood
functions have a sharper form, so their content gets more concentrated in
shorter intervals. Moreover, it is possible to visualize why for higher values of
p, the parametric estimation is easier. The function density gets higher and
the functions get more specified when closer to end of p.

Now, each sequence of data is composed for elements related to different
subsequent generations from the same BGW process. The cumulative means
of each realization of N , i.e., number of updates in bayesian convergence, is
showed in Figure 4.14.
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Figure 4.14: Convergence of the cumulative mean of the number of updates
for the case of data coming from different subsequent generations when
C ∼ Binomial (3, 0.3), C ∼ Binomial (3, 0.5) and C ∼ Binomial (3, 0.7)
respectively.

From the Monte Carlo simulations analysis, a sample with 200 hundred
experiments is also enough to enlighten the stochastic effect. The cumulative
means of each realization of N , i.e., number of updates in bayesian convergence,
is showed in Figure 4.14. The likelihood functions were built according to
Eq. (4-18). Before discussing these results, the mode of P paths are presented
in Figure 4.15.
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Figure 4.15: Mode of P paths for the case of data coming from different subse-
quent generations for the same BGW process when C ∼ Binomial (3, 0.3),
C ∼ Binomial (3, 0.5) and C ∼ Binomial (3, 0.7) respectively. The black
curves are the mean paths.

Different from the scenario where data comes from the same generation,
the case p = 0.3 now shows fewer updates in mean are required to update the
bayesian parametric inference in comparison with p = 0.5 and p = 0.7. This
information itself is tendentious. What is happening indeed is that for p = 0.3,
the BGW processes has a higher chance to extinct very soon. The probability of
extinction is a more critical feature on this way of making bayesian parametric
estimation. Therefore, the number of updates are low, because the sequences
have in general extinct early.
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On the other hand, there is a very important thing to say about the
results from p = 0.7. It is in fact the scenario where the data incorporated
through the likelihood most transform the prior functions into posterior in a
positive way of best estimating P as a mode. This is seen through the reduced
variances for few updates in the mode of P paths. However, the number
of updates were not interrupted because of the L2-Wasserstein convergence
criteria. A floating-point arithmetic precision issue was instead the main
responsible for it. The posteriors obtained are still in each update highly
modified and quickly get a sharply shape.

4.3.2
Contagion modeled as a Geometric-0 distribution

It is important to highlight that there is an upper limit imposed in
data acquisition to avoid calculating hardly feasible higher-order derivatives
for the Geometric-0 analysis. Despite the generation, the maximum possible
outcome is 60. As a consequence, this boundary leads to intervals covering the
approximate cumulative probabilities presented in Table 4.1.

p t-th Generation
1 2 3 4

0.3 100% 99.95% 96.29% -
0.5 100% 100% 100% 100%
0.7 100% 100% 100% 100%

Table 4.1: Approximate cumulative probabilities for C ∼ Geometric − 0 (p)
when data acquisition is truncated at 60 members infected.

Unlike the previous random variable family, the likelihoods in here cannot
be found according to the Markov technique from Eq. (4-8). We use the pgf
approach from Eq. (4-6) instead. Figure 4.16 shows the study related to the
convergence of the number of updates N for C ∼ Geometric − 0 (0.3).
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Figure 4.16: Convergence of the cumulative mean of the number of updates
for the case of data coming from the same generation when C ∼ Geometric −
0 (0.3).

Similar to the Binomial behavior, the greater the number of the gener-
ation is, the number of updates required to comply with the L2-Wasserstein
convergence criteria decreases in mean. The fourth generation is not investi-
gated this time, due its extensive runtime to be performed. Next, Figure 4.17
displays the mode of P paths from each sequence of data obtained.
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Figure 4.17: Mode of P paths for the case of data coming from the same
generation when C ∼ Geometric − 0 (0.3). The black curves are the mean
paths.

Some of the sequences lead initially to best estimates of the random
variable P as the value one. This is a consequence of the high probabilities
associated to the state 0 in the pmfs for the Geometric-0 random variable
family. However, with few updates this wrong estimate turns easily to values
closer to the real one p = 0.3.

This time, the case when data is generated according to p = 0.5 is
investigated in Figure 4.18. It is a case where the expected behavior according
to the previous experiences changes. It starts with a lower value in mean
number for N when data comes from the 1st generation. Then it increases
the next two generations. Finally, when evaluating the 4th generation, the
mean value returns to decrease. Figure 4.19 presents the mode of P paths.



Chapter 4. Inverse problem of bayesian parametric inference 72

50 100 150 200

50

60

70

80

90

100

50 100 150 200

40

50

60

70

80

90

50 100 150 200

50

60

70

80

90

100

50 100 150 200

40

50

60

70

80

90

Figure 4.18: Convergence of the cumulative mean of the number of updates
for the case of data coming from the same generation when C ∼ Geometric −
0 (0.5).

20 40 60 80 100 120 140

0.1

0.3

0.5

0.7

0.9

20 40 60 80 100 120

0.1

0.3

0.5

0.7

0.9

20 40 60 80

0.1

0.3

0.5

0.7

0.9

10 20 30 40 50 60 70

0.1

0.3

0.5

0.7

0.9

Figure 4.19: Mode of P paths for the case of data coming from the same
generation when C ∼ Geometric − 0 (0.5). The black curves are the mean
paths.

The last scenario when data comes from the same generation for
C Geometric − 0 (p) is the one with p = 0.7, which represents the least in-
fectious disease in comparison with previous cases studied this section. Its
number of updates’ convergence based on the sequential data is presented in
Figure 4.20.
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Figure 4.20: Convergence of the cumulative mean of the number of updates
for the case of data coming from the same generation when C ∼ Geometric −
0 (0.7).

The number of updates required are the highest in mean per generation
when compared to other values of p. The difference between the third and
fourth generation now is minimal. Finally, the mode of P paths are displayed
in Figure 4.21.
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Figure 4.21: Mode of P paths for the case of data coming from the same
generation when C ∼ Geometric − 0 (0.7). The black curves are the mean
paths.

It is important to emphasize that for the Geometric-0 family, the highest
values of p are related to less infectious diseases. This is the reason why the best
estimates in Figure 4.21 are many times mapped into p = 1.0, which means
that the related data sequences begin in these situations with no infections
and the following data are also this outcome. Some mode of P paths converge
indeed in this situation for p = 1.0, which is a wrong conclusion. This is a
consequence of the tolerance 0.001 imposed in the updating process for the
L2-Wasserstein criteria.

In order to get a better comprehension on the likelihood building ac-
cording to the data received, Figure 4.22 displays the normalized likelihood
functions according to each possible state up to 60 the data could have taken
from the four generations studied. Notice that for the first generation, the
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lower outcomes of data are the ones with flatten curves for likelihood function
and the higher outcomes map with more insurance that the parameter p is
closer to zero. The greater the number of the generation is, the likelihoods
related to higher outcomes move away the belief in the most lower values for
p. Moreover, the likelihoods associated to lower outcomes gets sharper and
more concentrated around some specific value. The only exception is for the
case of none infections, in which the likelihood functions seems to change into
a stationary flatten configuration the greater the number of the generation is.
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Figure 4.22: Normalized likelihood functions coming from the 1st up to 4th
generation for C ∼ Geometric − 0 (p).

Now, each data sequence comes from the realization of subsequent
generations that belongs to the same ramification tree. Figure 4.23 shows
the convergence analysis of the cumulative sample mean of N when C ∼
Geometric − 0 (0.3), C ∼ Geometric − 0 (0.5) and C ∼ Geometric − 0 (2.1).
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Figure 4.23: Convergence of the cumulative mean of the number of updates
for the case of data coming from different subsequent generations when
C ∼ Geometric−0 (0.3), C ∼ Geometric−0 (0.5) and C ∼ Geometric−0 (2.1)
respectively.

The above study gives us again an incomplete information about what is
indeed happening when data is used this way. It actually leads to a misleading
interpretation. According to the results seen in Fig 4.23, one can presume that
this methodology independently of the value of p requires way fewer updates
to achieve the L2-Wasserstein criteria than the other way of using data. This
comparison is not even fair. Before discussing this point, Figure 4.24 presents
the mode of P paths, which contribute to analyze this situation.
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Figure 4.24: Mode of P paths for the case of data coming from different
subsequent generations for the same BGW process when C ∼ Geometric −
0 (0.3), C ∼ Geometric − 0 (0.5) and C ∼ Geometric − 0 (2.1) respectively.

Parameter p = 0.3 is the one when working with C ∼ Geometric − 0 (p)
that in here leads to the most contagious spreading. The probability of
extinction is the lowest when compared to the other two cases studied for this
probabilistic model. None of the 200 experiments had its bayesian updating
ended because L2-Wasserstein was achieved. Most of them stopped indeed due
floating-point arithmetic problems. The other ones were ramification trees that
extinct early. The former situation indeed leads to great results for parametric
inference. However, the latest case does not. The critical identification happens
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to p = 0.7. All of the realizations of the BGW process extincts in earlier
generations. As a consequence, it does not provide substantial information to
work with and so the parametric inference fails.

4.3.3
Contagion modeled as a Poisson distribution

Again there is an upper limit imposed in data acquisition to avoid calcu-
lating hardly feasible higher-order derivatives for the Poisson analysis. Despite
the generation, the maximum possible outcome is 60. As a consequence, this
boundary leads to intervals covering the approximate cumulative probabilities
presented in Table 4.2.

p t-th Generation
1 2 3 4

0.9 100% 100% 100% 100%
1.5 100% 100% 100% 100%
2.1 100% 100% 100% -

Table 4.2: Approximate cumulative probabilities for C ∼ Poisson (λ) when
data acquisition is truncated at 60 members infected.

The last random variable family studied for the parametric inference
problem is the Poisson (λ) one. We begin the analysis when data comes
from the same generation for the contagion modeled as C ∼ Poisson (0.9).
The convergence of its number of updates random variable N is displayed in
Figure 4.25
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Figure 4.25: Convergence of the cumulative mean of the number of updates for
the case of data coming from the same generation when C ∼ Poisson (0.9).
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As we can see from Figure 4.25, the greater the number of the generation
is, the sample mean value for the random variable N presented the very
opposite behavior that was in the previous cases seen. Now, the sample mean
value has increased. This isolated information can lead to a quite tricky
conclusion that when data comes from most previous generation, it would
require in general few data to infer properly the best estimate for the parameter
λ. Let’s take a look at Figure 4.26.
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Figure 4.26: Mode of P paths for the case of data coming from the same
generation when C ∼ Poisson (0.9). The black curves are the mean paths.

When looking at the mode of L paths from the 1st generation, it
is possible to see that some data sequences lead the convergence in L2-
Wasserstein for a value of λ that is not that close to the real one in comparison
with the other results from further generations. The graphic related to X4 from
Figure 4.26 shows that in this scenario most of the data sequences result on
a final posterior distribution whose mode is closer to λ = 0.9. Therefore, the
major factor that leads to the results of N in Figure 4.25 was indeed the
tolerance.

Data is now generated according to λ = 1.5, the convergence study of
the random variable N related to the number of updates required is displayed
in Figure 4.27.
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Figure 4.27: Convergence of the cumulative mean of the number of updates for
the case of data coming from the same generation when C ∼ Poisson (1.5).

The general behavior now returns to the usual one. The greater the
number of the generation is, the required number of updates to achieve the
L2-Wasserstein convergence decreases in mean.
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Figure 4.28: Mode of P paths for the case of data coming from the same
generation when C ∼ Poisson (1.5). The black curves are the mean paths.

Figure 4.28 shows the mode of L paths. The results reassure that the
greater the number of the generation is, the data provides likelihood functions
whose mapping capacity towards the real value of the parameter λ is more
efficient. Another visible aspect is that the interval of modes of all the resulting
posteriors when the first data arrived gets shorter the greater the number of
the generation is.
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Figure 4.29: Convergence of the cumulative mean of the number of updates for
the case of data coming from the same generation when C ∼ Poisson (2.1).

The last case study is the one for C ∼ Poisson (2.1). The 4th generation
was not possible to analyse this time, due the symbolic gain complexity of
its probability generating functions, resulting in non-feasible runtimes. The
convergence study for the random variable N is presented in Figure 4.29.
Again, the greater the number of the generation is, the number of updates
to achieve the L2-Wasserstein criteria decreases in mean. Figure 4.30 shows
the mode of L paths for each one of the two hundred experiments done. The
same behavior is seen. The greater the number of the generation is, the modes
during the 200 paths are closer to the real value of λ with less updates.
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Figure 4.30: Mode of P paths for the case of data coming from the same
generation when C ∼ Poisson (2.1). The black curves are the mean paths.

Now, the overall aspect from the evolution of the likelihoods per genera-
tion is discussed. Figure 4.31 shows the normalized likelihood functions related
to each possible outcome up to the 40th one when C ∼ Poisson (λ).
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Figure 4.31: Normalized likelihood functions coming from the 1st up to 4th
generation for C ∼ Poisson (λ).

The greater the number of the generation is, it is possible to visualize
that the normalized likelihoods get also sharpen and they tend to concentrate
their significant content in lower values of λ. The mapping capacity towards
closer intervals for the underlying possible values for the parameter increases.
The only exceptions are the likelihoods related to no infections. Their evolution
over generations show that the shape of functions gets more flatten, which is
in agreement with the previous results seen from C ∼ Binomial (3, p) and
C ∼ Geometric − 0 (p).

Now, the second way to use data coming from the BGW process is
studied for the contagion modeled as a Poisson distribution. It consists on
looking at the realizations of subsequent generations from the same realization
of branching process. The convergence study for N is displayed in Figure 4.32
for the three cases studied of the Poisson family: C ∼ Poisson (0.9), C ∼
Poisson (1.5) and C ∼ Poisson (2.1).
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Figure 4.32: Convergence of the cumulative mean of the number of updates
for the case of data coming from different subsequent generations when
C ∼ Poisson (0.9), C ∼ Poisson (1.5) and C ∼ Poisson (2.1) respectively.

There is a similar behavior in the results seen in Figure 4.32 when
compared to the previous ones. The bayesian updating for a single experiment
from the 200 hundred studied does not properly end when the L2-Wasserstein
tolerance is achieved. Figure 4.33 shows the mode of L paths.
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Figure 4.33: Mode of L paths for the case of data coming from different
subsequent generations for the same BGW process when C ∼ Poisson (0.9),
C ∼ Poisson (1.5) and C ∼ Poisson (2.1) respectively. The black curves are
the mean paths.

For λ = 0.9, what usually happens is that many of the realizations of the
BGW process extinct shortly. Therefore, the number of updates in these cases
is not high. There was for instance a divergent realization that lasted longer.
As we can see, this one took 50 times before the bayesian updating stops. It
shows the discrepancy between ramification trees that extinct shortly and the
ones that not and how this affects the study. Higher probabilities of extinction
affect critically the result of parametric inference when data is used this way.
On the other hand, for λ = 2.1, where the chances of extinctions are lower,
the parametric inference is way more efficient, but the L2-Wasserstein is not
a good criteria to define when the bayesian updating should stop. The gain of
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good information per update is so strong that the evolution of the posteriors
shortly faces floating-point arithmetic precision problems.

4.3.4
Brief discussion on computational costs

There are two different ways explored in here to work with data to
make bayesian inference of parameters from the contagion random variable.
The first one, which focuses on different realizations of the same generation,
is compared in the last section the greater the number of the generation is.
The general behavior seen is that the required number of updates to achieve
the tolerance imposed by the L2-Wasserstein convergence criteria decreases in
mean for further generations. However, it is important to highlight that the
runtime spent to do this increases. The greater the number of the generation is,
the analytical expressions to build the likelihood functions turn more complex,
regardless the probabilistic model of the contagion random variable.

When the contagion random variable was modeled according to the
Geometric-0 or the Poisson family, a limit to the maximum outcome of data was
indeed necessary to be imposed to make the analysis feasible. Even though, it
was not possible to work with the 4th generation when C ∼ Geometric−0 (0.3)
and C ∼ Poisson (2.1). The most hard-working likelihoods to build are the
ones related to C ∼ Poisson (λ). Moreover, a recurrent problem was exceeding
RAM capacity. It was usually faced the greater the number of the generation
is, regardless the probabilistic model of the contagion. The workaround made
was to run the 200 experiments not in a row, but do it instead partially.

If data comes from each subsequent generation of the realization of the
same BGW process, the runtimes were not anymore the problem. The fact
that probability of extinction was a crucial point is not a computational issue.
However, when the realizations of the branching process do not extinct in
earlier generations, the boom of information makes really sharpen likelihood
functions. As a consequence, floating-point arithmetic precision is compromised
and the updating process struggles.



5
Conclusions

Mass functions for further generations play a central role in this work.
They are fundamental to get an overall comprehension on the stochastic
evolution of a disease over time. The first part of this dissertation focuses
on different methodologies to obtain these mass functions.

The first methodology developed to get the mass functions are probabil-
ity generating functions. It is the methodology that struggles the most with
computational costs. The greater the number of the generation is, the analyti-
cal expression of the pgfs gets more complex, because the number of recurrence
calls in muliticomposition function increases. As a consequence, the use of sym-
bolic computation is higher than the other methodologies. In order to find the
probabilities, taking derivatives of these expressions are necessary. The prob-
ability associated to a greater number of members infected in any generation
requires a higher-order derivative. Two main issues arise in this process. The
first disadvantage is the runtime spent to perform high-order derivatives the
greatest the number of the generation is. At some level, it is no longer feasible.
The second disadvantage is storing in MAT-file data each single expression
related to the probability of a specific numbers of members infected in some
generation. On the other hand, this technique allows to build likelihood func-
tions regardless the probabilistic model for the contagion random variable.

A novel attempt to improve this methodology was done introducing the
polynomial identities. The goal of this second methodology is to avoid taking
derivatives of functions multicomposition directly. Instead of that, based on
the chain rule, the derivatives would be done for single functions individually.
In order to do that, it is fundamental to know how the chain rule splits the
derivatives. The polynomial identities are responsible to describe it and two
different techniques to get them were discussed. The first one was based on the
Faà di Bruno’s formula and the second was a recursive fashion way to generate
them. In terms of runtime, the former struggles around the 45th polynomial,
which is associated to the probability of 45 members infected to any generation.
The latter was able to get up to 60 polynomials and the limitation was a
result of RAM capacity. The use of these identities provides better results in
terms of runtime the greatest the number of the generation is, because the
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pgf methodology itself is not feasible to find probabilities associated to higher
number of members infections of further generations.

The second methodology used comes from the Markov chain property
of the BGW process. The use of one-step transition matrices and a initial
distribution to find mass functions for further generations in this branching
process is also a novelty in this work. However, there is a limitation to apply
it. It is necessary a discrete support of the contagion’s probabilistic model. The
case, for example, of the Binomial distribution. Different from the pgfs, this is
a time-dependent and a global methodology. However, the computational costs
(runtime and storage) are in comparison greater. The main reason for it is that
the one-step transition probabilities are indeed function of pgfs, but they are
not in a function multicomposition structure. This explains the lower runtimes
spent. Now, from the storage perspective, the data stored are all numerical
information and this require less bytes. Moreover, an important aspect is that
this methodology also allows to build likelihood functions.

Monte Carlo simulations was the last methodology used to find mass
functions for further generations in a global and time-dependent sense. Dif-
ferent from the other ones analyzed, it is a numerical approach. There is no
need to deal with symbolic computation in here. As a consequence, the run-
time and storage properties are, the further the generation is, lower than the
other methodologies according to the set up for comparison. However, these
properties are this time stochastic, since they rely on realizations of the ran-
dom generator related to the probabilistic model of the contagion random
variable. Another important aspect to mention is that, since it is a numerical
methodology, it is not able to provide analytical expressions to build likelihood
functions.

Now that mass functions for further generations are able to be found
and two methodologies provide an analytical relation between the contagion
random variable and any further generation’s size random variable, the classical
inverse problem of parametric inference can be studied with the help of the
Bayes’ rule. Given that the probabilistic model of the contagion’s random
variable is known, its parameters are treated as random variables and they
are possible to be inferred using data coming from realizations of the BGW
process. Two strategies to incorporate data were proposed in this work as
novelties and studied. The first one is related to data coming from different
realizations of the same generation. The other is related to data coming from
the same ramification tree observed over a certain number of generations, i.e.,
a realization of the BGW process. The criteria to stop the bayesian updating of
prior distributions into posterior distributions was the L2-Wasserstein distance.
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The number of updates required is here a discrete random variable indeed, since
the data relies on random generators. Therefore, this point was studied in a
stochastic sense.

The first strategy to use data shows in general that it requires less
updates to achieve the same tolerance of the L2-Wasserstein criteria when
data come from further generations, regardless of the probabilistic model of
the contagion’s random variable. The main reason for it is that the greater the
number of the generation is the normalized likelihoods’ shape turn sharper.
Therefore, their mapping info is more concentrated in closer intervals. Other
conclusion seen is that it is easier to infer the values of the parameters when
data is actually generated in situations where the contagion’s random variable
is more infectious. This is a result of likelihoods tending to be less flat for
parameters that lead to more infectious scenarios.

Finally, the second strategy to use data relies significantly on the proba-
bility of extinction of the disease over the generations. If the realization of the
branching process ends shortly, there is not sufficient information available to
do a great inference of the parameters. On the other hand, when the ramifica-
tion lasts longer, each new update as a likelihood function changes the prior
beliefs in a very strong manner. The updating process is way more gainful
than the first way to incorporate data. However in this situation, floating-
point arithmetic precision is a concern. Moreover, the L2-Wasserstein is still
a good way to measure the impact of data changing a prior into a posterior
distribution, but it was not efficient as a stopping criteria to this strategy.

Another contribution of this work is the development in MATLAB of
all the symbolic and numerical routines used. Algorithms were developed to
find the mass function for further generations according to each methodology:
probability generating functions with and without the polynomial identities,
Markov chain and Monte Carlo simulations. Moreover, for the case of polyno-
mial identities, the Faà di Bruno’s formula and the recursive fashion approach
were implemented by the author in MATLAB. The routines related to the
second part of the dissertation, which are also novelties, consist on perform-
ing parametric bayesian inference with data coming from the BGW process in
both strategies using likelihoods constructed according to the pgf methodol-
ogy and also the Markov methodology. In this part, the implementation of the
L2-Wasserstein was also done.

Besides this dissertation, the following articles were also made:

– "A comparison of different approaches to find the probability distribution
of further generations in a branching process" for the 6th International
Symposium on Uncertainty Quantification and Stochastic Modeling (Un-
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certainties 2023). This article was done with the contribution of Roberta
Lima and Rubens Sampaio. It focuses on the comparison among the
probability generating function, Markov chain and Monte Carlo simula-
tions methodologies to find mass functions for further generations in a
BGW process;

– "Strategies to find the values of the mass functions of further generations
of a branching process that models the spread of an epidemiological dis-
ease" for the XLII Congresso Nacional de Matemática Aplicada e Com-
putacional (CNMAC 2023). This article was done with the contribution
of Roberta Lima and Rubens Sampaio. It focuses on the comparison
between the probability generating function with and without the poly-
nomial identities and also on the comparison between the Faà di Bruno’s
formula and the recursive fashion approach to generate these polynomi-
als;

– "Implementation of polynomial identities from the chain rule in proba-
bility generating functions for branching processes" for the XXXIX Con-
greso Argentino de Mecánica Computacional (MECOM 2023). This ar-
ticle was done with the contribution of Roberta Lima and Rubens Sam-
paio. It focuses on the mathematical implementation of the polynomial
identities to tackle function multicompositions and the advantages and
disadvantages of its use when compared to the probability generating
functions itself.
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