$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC | MARC |



Título: DIAGRAMAS DE DECISÃO PARA CLASSIFICAÇÃO: NOVAS ABORDAGENS CONSTRUTIVAS
Autor: PEDRO SARMENTO BARBOSA MARTINS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  THIBAUT VICTOR GASTON VIDAL - ORIENTADOR
Nº do Conteudo: 64308
Catalogação:  16/10/2023 Liberação: 16/10/2023 Idioma(s):  INGLÊS - ESTADOS UNIDOS
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=64308&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=64308&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.64308

Resumo:
Diagramas de decisão são uma generalização de árvores de decisão, já propostos como um modelo de aprendizado de máquina para classificação supervisionada mas não largamente adotados. A razão é a dificuldade em treinar o modelo, já que o requerimento de decidir splits (partições) e merges (uniões de nós) em conjunto pode levar a problemas difíceis de otimização combinatória. Um diagrama de decisão tem importantes vantagens sobre árvores de decisão, pois melhor expressa conceitos binários disjuntos, evitando o problema de duplicação de subárvores e, portanto, apresentando menos fragmentação em nós internos. Por esse motivo, desenvolver algoritmos efetivos de construção é um esforço importante. Nesse contexto, o algoritmo Optimal Decision Diagram (ODD) foi recentemente proposto, formulando a construção do diagrama com programação inteira mista (MILP na sigla em inglês), com um warm start proveniente de uma heurística construtiva gulosa. Experimentos mostraram que essa heurística poderia ser aperfeiçoada, a fim de encontrar soluções próximas do ótimo de maneira mais efetiva, e por sua vez prover um warm start melhor. Nesse estudo, reportamos aperfeiçoamentos para essa heurística construtiva, sendo eles a randomização das decisões de split, a poda de fluxos puros (ou seja, fluxos de exemplos pertencentes a uma única classe), e aplicando uma poda bottom-up (de baixo para cima), que considera a complexidade do modelo além da sua acurácia. Todos os aperfeiçoamentos propostos têm efeitos positivos na acurácia e generalização, assim como no valor objetivo do algoritmo ODD. A poda bottom-up, em especial, tem impacto significativo no valor objetivo, e portanto na capacidade da formulação MILP de encontrar soluções ótimas. Ademais, provemos experimentos sobre a expressividade de diagramas de decisão em comparação a árvores no contexto de pequenas funções booleanas em Forma Normal Disjuntiva (DNF na sigla em inglês), assim como uma aplicação web para a exploração visual dos métodos construtivos propostos.

Descrição Arquivo
NA ÍNTEGRA  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui