XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: SEGMENTAÇÃO SEMÂNTICA DE CONJUNTO ABERTO APLICADA A IMAGENS DE SENSORIAMENTO REMOTO Autor: IAN MONTEIRO NUNES
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
MARCUS VINICIUS SOLEDADE POGGI DE ARAGAO - ORIENTADOR
HUGO NEVES DE OLIVEIRA - COORIENTADOR
Nº do Conteudo: 62040
Catalogação: 21/03/2023 Liberação: 21/03/2023 Idioma(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=62040&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=62040&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.62040
Resumo:
Título: SEGMENTAÇÃO SEMÂNTICA DE CONJUNTO ABERTO APLICADA A IMAGENS DE SENSORIAMENTO REMOTO Autor: IAN MONTEIRO NUNES
HUGO NEVES DE OLIVEIRA - COORIENTADOR
Nº do Conteudo: 62040
Catalogação: 21/03/2023 Liberação: 21/03/2023 Idioma(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=62040&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=62040&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.62040
Resumo:
Coletar amostras que esgotam todas as classes possíveis para tarefas do
mundo real geralmente é difícil ou impossível devido a muitos fatores diferentes.
Em um cenário realista/viável, os métodos devem estar cientes de que os
dados de treinamento estão incompletos e que nem todo o conhecimento está
disponível. Portanto, todos os métodos desenvolvidos devem ser capazes de
identificar as amostras desconhecidas enquanto executam corretamente a tarefa
proposta para as classes conhecidas na fase de testes.
Modelos de Reconhecimento de Conjunto Aberto e Segmentação Semântica surgem para lidar com esse tipo de cenário para, respectivamente, tarefas
de reconhecimento visual e rotulagem densa. Inicialmente, este trabalho propõe
uma nova taxonomia com o objetivo de organizar a literatura e fornecer uma
compreensão das tendências teóricas que guiaram as abordagens existentes que
podem influenciar métodos futuros. Este trabalho testou as técnicas propostas
em dados de sensoriamento remoto, estabelecendo novo estado-da-arte para os
resultados dos conjuntos de dados utilizados.
A segmentação de conjuntos abertos é uma tarefa relativamente nova e
inexplorada, com apenas um punhado de métodos propostos para modelar tais
tarefas. Este trabalho também propõe duas técnicas distintas para realizar a
segmentação semântica de conjunto aberto. Primeiro, um método chamado
OpenGMM estende a estrutura OpenPCS usando uma mistura gaussianas
para modelar a distribuição de pixels para cada classe de maneira multimodal.
Em segundo lugar, o método de Reconstrução Condicional para Segmentação
Semântica de Conjunto Aberto (CoReSeg) aborda o problema usando a
reconstrução condicionada por classe das imagens de entrada de acordo com
sua máscara. CoReSeg condiciona cada pixel de entrada para todas as classes
conhecidas, esperando erros maiores para pixels de classes desconhecidas.
A observação dos resultados qualitativos mostra que ambos os métodos
propostos produzem melhor consistência semântica em suas predições do que as
métodos de referência, resultando em mapas de segmentação mais limpos que
se ajustam melhor aos limites do objetos. Além disso, OpenGMM e CoReSeg
superaram o estado-da-arte estabelecido pelos métodos de referência para
conjuntos de dados de Vaihingen e de Potsdam disponibilizados pelo ISPRS.
A terceira abordagem proposta é um procedimento geral de pósprocessamento que usa superpixels para forçar regiões altamente homogêneas
a se comportarem igualmente, corrigindo pixels mal classificados dentro dessas
regiões. Também propusemos um novo método para geração de superpixels
chamado FuSC.
Todas as abordagens propostas melhoraram os resultados quantitativos
e qualitativos para ambos os conjuntos de dados. Além disso, CoReSeg pósprocessado com FuSC estabeleceu um novo estado-da-arte para segmentaçao
de ambos os conjuntos de dados.
A implementação oficial de todas as abordagens propostas está disponível
em https://github.com/iannunes.
Descrição | Arquivo |
NA ÍNTEGRA |